Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell Mol Life Sci ; 73(17): 3387-400, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26973180

RESUMEN

Trypanosoma brucei rhodesiense is one of the causative agents of human sleeping sickness, a fatal disease that is transmitted by tsetse flies and restricted to Sub-Saharan Africa. Here we investigate two independent lines of T. b. rhodesiense that have been selected with the drugs melarsoprol and pentamidine over the course of 2 years, until they exhibited stable cross-resistance to an unprecedented degree. We apply comparative genomics and transcriptomics to identify the underlying mutations. Only few mutations have become fixed during selection. Three genes were affected by mutations in both lines: the aminopurine transporter AT1, the aquaporin AQP2, and the RNA-binding protein UBP1. The melarsoprol-selected line carried a large deletion including the adenosine transporter gene AT1, whereas the pentamidine-selected line carried a heterozygous point mutation in AT1, G430R, which rendered the transporter non-functional. Both resistant lines had lost AQP2, and both lines carried the same point mutation, R131L, in the RNA-binding motif of UBP1. The finding that concomitant deletion of the known resistance genes AT1 and AQP2 in T. b. brucei failed to phenocopy the high levels of resistance of the T. b. rhodesiense mutants indicated a possible role of UBP1 in melarsoprol-pentamidine cross-resistance. However, homozygous in situ expression of UBP1-Leu(131) in T. b. brucei did not affect the sensitivity to melarsoprol or pentamidine.


Asunto(s)
Resistencia a Medicamentos/genética , Genoma de Protozoos , Trypanosoma brucei rhodesiense/genética , Secuencia de Aminoácidos , Acuaporinas/genética , Acuaporinas/metabolismo , Hibridación Genómica Comparativa , ADN Protozoario/química , ADN Protozoario/aislamiento & purificación , ADN Protozoario/metabolismo , Heterocigoto , Humanos , Masculino , Melarsoprol/farmacología , Proteínas de Transporte de Nucleósidos/genética , Proteínas de Transporte de Nucleósidos/metabolismo , Pruebas de Sensibilidad Parasitaria , Pentamidina/farmacología , Fenotipo , Polimorfismo de Nucleótido Simple , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Alineación de Secuencia , Tripanocidas/farmacología , Trypanosoma brucei rhodesiense/efectos de los fármacos , Trypanosoma brucei rhodesiense/aislamiento & purificación , Tripanosomiasis Africana/diagnóstico , Tripanosomiasis Africana/parasitología
2.
Biochem Soc Trans ; 44(5): 1253-1263, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27911707

RESUMEN

Centrioles are microtubule-based core components of centrosomes and cilia. They are duplicated exactly once during S-phase progression. Central to formation of each new (daughter) centriole is the formation of a nine-fold symmetrical cartwheel structure onto which microtubule triplets are deposited. In recent years, a module comprising the protein kinase polo-like kinase 4 (PLK4) and the two proteins STIL and SAS-6 have been shown to stay at the core of centriole duplication. Depletion of any one of these three proteins blocks centriole duplication and, conversely, overexpression causes centriole amplification. In this short review article, we summarize recent insights into how PLK4, STIL and SAS-6 co-operate in space and time to form a new centriole. These advances begin to shed light on the very first steps of centriole biogenesis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centriolos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Ciclo Celular/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Modelos Biológicos , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Homología de Secuencia de Aminoácido
3.
J Cell Sci ; 125(Pt 5): 1342-52, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22349698

RESUMEN

Control of centriole number is crucial for genome stability and ciliogenesis. Here, we characterize the role of human STIL, a protein that displays distant sequence similarity to the centriole duplication factors Ana2 in Drosophila and SAS-5 in Caenorhabditis elegans. Using RNA interference, we show that STIL is required for centriole duplication in human cells. Conversely, overexpression of STIL triggers the near-simultaneous formation of multiple daughter centrioles surrounding each mother, which is highly reminiscent of the phenotype produced by overexpression of the polo-like kinase PLK4 or the spindle assembly abnormal protein 6 homolog (SAS-6). We further show, by fluorescence and immunoelectron microscopy, that STIL is recruited to nascent daughter centrioles at the onset of centriole duplication and degraded, in an APC/C(Cdc20-Cdh1)-dependent manner, upon passage through mitosis. We did not detect a stable complex between STIL and SAS-6, but the two proteins resemble each other with regard to both localization and cell cycle control of expression. Thus, STIL cooperates with SAS-6 and PLK4 in the control of centriole number and represents a key centriole duplication factor in human cells.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , División Celular/fisiología , Centriolos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Secuencia de Aminoácidos , Antígenos CD , Cadherinas/genética , Proteínas Cdc20 , Ciclo Celular/fisiología , Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/biosíntesis , Proteínas de Ciclo Celular/genética , Línea Celular , Centriolos/genética , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Serina-Treonina Quinasas/biosíntesis , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas/genética , Interferencia de ARN , ARN Interferente Pequeño , Alineación de Secuencia
4.
J Bacteriol ; 193(24): 6923-8, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22001511

RESUMEN

The type III secretion systems are contact-activated secretion systems that allow bacteria to inject effector proteins across eukaryotic cell membranes. The secretion apparatus, called injectisome or needle complex, includes a needle that terminates with a tip structure. The injectisome exports its own distal components, like the needle subunit and the needle tip. Upon contact, it exports two hydrophobic proteins called translocators (YopB and YopD in Yersinia enterocolitica) and the effectors. The translocators, assisted by the needle tip, form a pore in the target cell membrane, but the structure of this pore remains elusive. Here, we purified the membranes from infected sheep erythrocytes, and we show that they contain integrated and not simply adherent YopB and YopD. In blue native PAGE, these proteins appeared as a multimeric 500- to 700-kDa complex. This heteropolymeric YopBD complex could be copurified after solubilization in 0.5% dodecyl maltoside but not visualized in the electron microscope. We speculate that this complex may not be stable and rigid but only transient.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Membrana Celular/microbiología , Eritrocitos/microbiología , Enfermedades de las Ovejas/microbiología , Yersiniosis/veterinaria , Yersinia enterocolitica/metabolismo , Animales , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Membrana Celular/química , Eritrocitos/química , Peso Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Unión Proteica , Transporte de Proteínas , Ovinos , Yersiniosis/microbiología , Yersinia enterocolitica/química , Yersinia enterocolitica/genética
5.
Open Biol ; 8(2)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29445034

RESUMEN

Deregulation of centriole duplication has been implicated in cancer and primary microcephaly. Accordingly, it is important to understand how key centriole duplication factors are regulated. E3 ubiquitin ligases have been implicated in controlling the levels of several duplication factors, including PLK4, STIL and SAS-6, but the precise mechanisms ensuring centriole homeostasis remain to be fully understood. Here, we have combined proteomics approaches with the use of MLN4924, a generic inhibitor of SCF E3 ubiquitin ligases, to monitor changes in the cellular abundance of centriole duplication factors. We identified human STIL as a novel substrate of SCF-ßTrCP. The binding of ßTrCP depends on a DSG motif within STIL, and serine 395 within this motif is phosphorylated in vivo SCF-ßTrCP-mediated degradation of STIL occurs throughout interphase and mutations in the DSG motif causes massive centrosome amplification, attesting to the physiological importance of the pathway. We also uncover a connection between this new pathway and CDK2, whose role in centriole biogenesis remains poorly understood. We show that CDK2 activity protects STIL against SCF-ßTrCP-mediated degradation, indicating that CDK2 and SCF-ßTrCP cooperate via STIL to control centriole biogenesis.


Asunto(s)
Centriolos/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas con Repetición de beta-Transducina/metabolismo , Ciclopentanos/farmacología , Células HEK293 , Homeostasis , Humanos , Interfase , Péptidos y Proteínas de Señalización Intracelular/genética , Mutación , Fosforilación , Proteolisis , Proteómica , Pirimidinas/farmacología , Proteínas Ligasas SKP Cullina F-box/antagonistas & inhibidores , Serina/metabolismo
6.
Elife ; 42015 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-26188084

RESUMEN

Polo-like kinases (PLK) are eukaryotic regulators of cell cycle progression, mitosis and cytokinesis; PLK4 is a master regulator of centriole duplication. Here, we demonstrate that the SCL/TAL1 interrupting locus (STIL) protein interacts via its coiled-coil region (STIL-CC) with PLK4 in vivo. STIL-CC is the first identified interaction partner of Polo-box 3 (PB3) of PLK4 and also uses a secondary interaction site in the PLK4 L1 region. Structure determination of free PLK4-PB3 and its STIL-CC complex via NMR and crystallography reveals a novel mode of Polo-box-peptide interaction mimicking coiled-coil formation. In vivo analysis of structure-guided STIL mutants reveals distinct binding modes to PLK4-PB3 and L1, as well as interplay of STIL oligomerization with PLK4 binding. We suggest that the STIL-CC/PLK4 interaction mediates PLK4 activation as well as stabilization of centriolar PLK4 and plays a key role in centriole duplication.


Asunto(s)
Centriolos/genética , Centriolos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Cristalografía por Rayos X , Análisis Mutacional de ADN , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Espectroscopía de Resonancia Magnética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/química
7.
Curr Biol ; 24(4): 351-60, 2014 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-24485834

RESUMEN

BACKGROUND: STIL is a centriole duplication factor that localizes to the procentriolar cartwheel region, and mutations in STIL are associated with autosomal recessive primary microcephaly (MCPH). Excess STIL triggers centriole amplification, raising the question of how STIL levels are regulated. RESULTS: Using fluorescence time-lapse imaging, we identified a two-step process that culminates in the elimination of STIL at the end of mitosis. First, at nuclear envelope breakdown, Cdk1 triggers the translocation of STIL from centrosomes to the cytoplasm. Subsequently, the cytoplasmic bulk of STIL is degraded via the anaphase-promoting complex/cyclosome (APC/C)-proteasome pathway. We identify a C-terminal KEN box as critical for STIL degradation. Remarkably, this KEN box is deleted in MCPH mutants of STIL, rendering STIL resistant to proteasomal degradation and causing centriole amplification. CONCLUSIONS: Our results reveal a role for Cdk1 in STIL dissociation from centrosomes during early mitosis, with implications for the timing of cartwheel disassembly. Additionally, we propose that centriole amplification triggered by STIL stabilization is the underlying cause of microcephaly in human patients with corresponding STIL mutations.


Asunto(s)
Centriolos/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mutación , Secuencia de Aminoácidos , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Centriolos/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Microcefalia/genética , Datos de Secuencia Molecular , Complejo de la Endopetidasa Proteasomal/metabolismo
8.
Philos Trans R Soc Lond B Biol Sci ; 369(1650)2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25047618

RESUMEN

Centrosomes-as well as the related spindle pole bodies (SPBs) of yeast-have been extensively studied from the perspective of their microtubule-organizing roles. Moreover, the biogenesis and duplication of these organelles have been the subject of much attention, and the importance of centrosomes and the centriole-ciliary apparatus for human disease is well recognized. Much less developed is our understanding of another facet of centrosomes and SPBs, namely their possible role as signalling centres. Yet, many signalling components, including kinases and phosphatases, have been associated with centrosomes and spindle poles, giving rise to the hypothesis that these organelles might serve as hubs for the integration and coordination of signalling pathways. In this review, we discuss a number of selected studies that bear on this notion. We cover different processes (cell cycle control, development, DNA damage response) and organisms (yeast, invertebrates and vertebrates), but have made no attempt to be comprehensive. This field is still young and although the concept of centrosomes and SPBs as signalling centres is attractive, it remains primarily a concept-in need of further scrutiny. We hope that this review will stimulate thought and experimentation.


Asunto(s)
Ciclo Celular/fisiología , Centrosoma/fisiología , Mitosis/fisiología , Modelos Biológicos , Transducción de Señal/fisiología , Cuerpos Polares del Huso/fisiología , Animales , Humanos , Especificidad de la Especie , Levaduras
9.
FEBS Lett ; 588(15): 2366-72, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24951839

RESUMEN

Centrioles function in the assembly of centrosomes and cilia. Structural and numerical centrosome aberrations have long been implicated in cancer, and more recent genetic evidence directly links centrosomal proteins to the etiology of ciliopathies, dwarfism and microcephaly. To better understand these disease connections, it will be important to elucidate the biogenesis of centrioles as well as the controls that govern centriole duplication during the cell cycle. Moreover, it remains to be fully understood how these organelles organize a variety of dynamic microtubule-based structures in response to different physiological conditions. In proliferating cells, centrosomes are crucial for the assembly of microtubule arrays, including mitotic spindles, whereas in quiescent cells centrioles function as basal bodies in the formation of ciliary axonemes. In this short review, we briefly introduce the key gene products required for centriole duplication. Then we discuss recent findings on the centriole duplication factor STIL that point to centrosome amplification as a potential root cause for primary microcephaly in humans. We also present recent data on the role of a disease-related centriole-associated protein complex, Cep164-TTBK2, in ciliogenesis.


Asunto(s)
Centriolos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Microcefalia/genética , Animales , Proteínas de Ciclo Celular , Centriolos/genética , Centriolos/patología , Proteínas del Citoesqueleto , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Neoplasias/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA