Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Int J Mol Sci ; 24(18)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37762650

RESUMEN

Novel amino-substituted pyridoquinazolinone derivatives have been designed and synthesized as potential c-MYC G-quadruplex (G4) ligands, employing an efficient methodology. All the new compounds exhibited moderate to good antiproliferative activity against the human osteosarcoma U2OS cell line. NMR and docking experiments revealed that the recently synthesized compounds interact with the Pu22 G-quadruplex in the c-MYC promoter region, establishing a 2:1 complex, with each molecule positioned over the tetrads at the 3'- and 5'-ends.


Asunto(s)
Neoplasias Óseas , G-Cuádruplex , Osteosarcoma , Humanos , Línea Celular , Regiones Promotoras Genéticas
2.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36555657

RESUMEN

G-quadruplexes are nucleotide sequences present in the promoter region of numerous oncogenes, having a key role in the suppression of gene transcription. Recently, the binding of anthraquinones from Aloe vera to G-quadruplex structures has been studied through various physico-chemical techniques. Intrigued by the reported results, we investigated the affinity of aloe emodin, aloe emodin-8-glucoside, and aloin to selected G-quadruplex nucleotide sequences by NMR spectroscopy. The structural determinants for the formation of the ligand/nucleotide complexes were elucidated and a model of the interactions between the tested compounds and C-Kit and c-Myc G-quadruplex DNA structures was built by integrated NMR and molecular modeling studies. Overall, the obtained results confirmed and implemented the previously reported findings, pointing out the complementarity of the different approaches and their contribution to a more detailed overview of the ligand/nucleotide complex formation. Furthermore, the proposed models of interaction could pave the way to the design of new nature-derived compounds endowed with increased G-quadruplex stabilizing activity.


Asunto(s)
Aloe , G-Cuádruplex , Aloe/química , Ligandos , Antraquinonas , Proteínas Proto-Oncogénicas c-kit/genética , Nucleótidos
3.
Molecules ; 27(15)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35897968

RESUMEN

The enzyme PARP1 is an attractive target for cancer therapy, as it is involved in DNA repair processes. Several PARP1 inhibitors have been approved for clinical treatments. However, the rapid outbreak of resistance is seriously threatening the efficacy of these compounds, and alternative strategies are required to selectively regulate PARP1 activity. A noncanonical G-quadruplex-forming sequence within the PARP1 promoter was recently identified. In this study, we explore the interaction of known G-quadruplex binders with the G-quadruplex structure found in the PARP gene promoter region. The results obtained by NMR, CD, and fluorescence titration, also confirmed by molecular modeling studies, demonstrate a variety of different binding modes with small stabilization of the G-quadruplex sequence located at the PARP1 promoter. Surprisingly, only pyridostatin produces a strong stabilization of the G-quadruplex-forming sequence. This evidence makes the identification of a proper (3+1) stabilizing ligand a challenging goal for further investigation.


Asunto(s)
G-Cuádruplex , Dicroismo Circular , Reparación del ADN , Ligandos , Regiones Promotoras Genéticas
4.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34204214

RESUMEN

Curaxins and especially the second-generation derivative curaxin CBL0137 have important antitumor activities in multiple cancers such as glioblastoma, melanoma and others. Although most of the authors suggest that their mechanism of action comes from the activation of p53 and inactivation of NF-kB by targeting FACT, there is evidence supporting the involvement of DNA binding in their antitumor activity. In this work, the DNA binding properties of curaxin CBL0137 with model quadruplex DNA oligomers were studied by 1H NMR, CD, fluorescence and molecular modeling. We provided molecular details of the interaction of curaxin with two G-quadruplex structures, the single repeat of human telomere d(TTAGGGT)4 and the c-myc promoter Pu22 sequence. We also performed 1H and 31P NMR experiments were also performed in order to investigate the interaction with duplex DNA models. Our data support the hypothesis that the interaction of curaxin with G-quadruplex may provide a novel insight into the DNA-binding properties of CBL0137, and it will be helpful for the design of novel selective DNA-targeting curaxin analogues.


Asunto(s)
Carbazoles/química , ADN/química , G-Cuádruplex , Sustancias Macromoleculares/química , Carbazoles/farmacología , ADN/metabolismo , G-Cuádruplex/efectos de los fármacos , Humanos , Sustancias Macromoleculares/metabolismo , Espectroscopía de Resonancia Magnética , Conformación Molecular , Estructura Molecular , Relación Estructura-Actividad , Telómero/genética , Telómero/metabolismo
5.
Int J Mol Sci ; 22(16)2021 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-34445442

RESUMEN

DNA repair inhibitors are one of the latest additions to cancer chemotherapy. In general, chemotherapy produces DNA damage but tumoral cells may become resistant if enzymes involved in DNA repair are overexpressed and are able to reverse DNA damage. One of the most successful drugs based on modulating DNA repair are the poly(ADP-ribose) polymerase 1 (PARP1) inhibitors. Several PARP1 inhibitors have been recently developed and approved for clinical treatments. We envisaged that PARP inhibition could be potentiated by simultaneously modulating the expression of PARP 1 and the enzyme activity, by a two-pronged strategy. A noncanonical G-quadruplex-forming sequence within the PARP1 promoter has been recently identified. In this study, we explored the potential binding of clinically approved PARP1 inhibitors to the G-quadruplex structure found at the gene promoter region. The results obtained by NMR, CD, and fluorescence titration confirmed by molecular modeling demonstrated that two out the four PARP1 inhibitors studied are capable of forming defined complexes with the PARP1 G-quadruplex. These results open the possibility of exploring the development of better G-quadruplex binders that, in turn, may also inhibit the enzyme.


Asunto(s)
G-Cuádruplex , Modelos Moleculares , Poli(ADP-Ribosa) Polimerasa-1/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Regiones Promotoras Genéticas , Bencimidazoles/química , Bencimidazoles/farmacología , ADN/química , ADN/efectos de los fármacos , Humanos , Indazoles/química , Indazoles/farmacología , Espectroscopía de Resonancia Magnética , Ftalazinas/química , Ftalazinas/farmacología , Piperazinas/química , Piperazinas/farmacología , Piperidinas/química , Piperidinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología
6.
Molecules ; 25(16)2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32824454

RESUMEN

A novel coronavirus (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2) has been the cause of a recent global pandemic. The highly contagious nature of this life-threatening virus makes it imperative to find therapies to counteract its diffusion. The main protease (Mpro) of SARS-CoV-2 is a promising drug target due to its indispensable role in viral replication inside the host. Using a combined two-steps approach of virtual screening and molecular docking techniques, we have screened an in-house collection of small molecules, mainly composed of natural and nature-inspired compounds. The molecules were selected with high structural diversity to cover a wide range of chemical space into the enzyme pockets. Virtual screening experiments were performed using the blind docking mode of the AutoDock Vina software. Virtual screening allowed the selection of structurally heterogeneous compounds capable of interacting effectively with the enzymatic site of SARS-CoV-2 Mpro. The compounds showing the best interaction with the protein were re-scored by molecular docking as implemented in AutoDock, while the stability of the complexes was tested by molecular dynamics. The most promising candidates revealed a good ability to fit into the protein binding pocket and to reach the catalytic dyad. There is a high probability that at least one of the selected scaffolds could be promising for further research.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Productos Biológicos/farmacología , Infecciones por Coronavirus/tratamiento farmacológico , Neumonía Viral/tratamiento farmacológico , Inhibidores de Proteasas/farmacología , COVID-19 , Proteínas M de Coronavirus , Reposicionamiento de Medicamentos , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Pandemias , Péptido Hidrolasas/metabolismo , SARS-CoV-2 , Proteínas de la Matriz Viral/antagonistas & inhibidores , Tratamiento Farmacológico de COVID-19
7.
Molecules ; 26(1)2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33375124

RESUMEN

In recent years, G protein vs. ß-arrestin biased agonism at opioid receptors has been proposed as an opportunity to produce antinociception with reduced adverse effects. However, at present this approach is highly debated, a reason why more information about biased ligands is required. While the practical relevance of bias in the case of µ-opioid receptors (MOP) still needs to be validated, it remains important to understand the basis of this bias of MOP (and other GPCRs). Recently, we reported two cyclopeptides with high affinity for MOP, the G protein biased Dmt-c[d-Lys-Phe-pCF3-Phe-Asp]NH2 (F-81), and the ß-arrestin 2 biased Dmt-c[d-Lys-Phe-Asp]NH2 (C-33), as determined by calcium mobilization assay and bioluminescence resonance energy transfer-based assay. The biased character of F-81 and C-33 has been further analyzed in the [35S]GTPγS binding assay in human MOP-expressing cells, and the PathHunter enzyme complementation assay, used to measure ß-arrestin 2 recruitment. To investigate the structural features of peptide-MOP complexes, we performed conformational analysis by NMR spectroscopy, molecular docking, and molecular dynamics simulation. These studies predicted that the two ligands form alternative complexes with MOP, engaging specific ligand-receptor contacts. This would induce different displays of the cytosolic side of the seven-helices bundle, in particular by stabilizing different angulations of helix 6, that could favor intracellular coupling to either G protein or ß-arrestin.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Modelos Moleculares , Conformación Molecular , Receptores Opioides mu/agonistas , Receptores Opioides mu/química , Transducción de Señal/efectos de los fármacos , beta-Arrestinas/metabolismo , Animales , Células CHO , Cricetulus , Descubrimiento de Drogas , Humanos , Ligandos , Espectroscopía de Resonancia Magnética , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular
8.
Biochim Biophys Acta Gen Subj ; 1862(3): 615-629, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29229300

RESUMEN

BACKGROUND: Pyridoquinazolinecarboxamides have been reported as RNA polymerase I inhibitors and represent a novel class of potential antitumor agents. BMH-21, was reported to intercalate with GC-rich rDNA, resulting in nucleolar stress as a primary mechanism of cytotoxicity. METHODS: The interaction of BMH-21 and analogues with DNA G-quadruplex structures was studied by NMR and molecular modelling. The cellular response was investigated in a panel of human tumor cell lines and protein expression was examined by Western Blot analysis. RESULTS AND CONCLUSIONS: We explored the ability of BMH-21 and its analogue 2 to bind to G-quadruplex present in the c-MYC promoter, by NMR and molecular modelling studies. We provide evidence that both compounds are not typical DNA intercalators but are effective binders of the tested G-quadruplex. The interaction with c-MYC G-quadruplex was reflected in down-regulation of c-Myc expression in human tumor cells. The inhibitory effect was almost complete in lymphoma cells SUDHL4 characterized by overexpression of c-Myc protein. This downregulation reflected an early and persistent modulation of cMyc mRNA. Given the relevance of c-MYC in regulation of ribosome biogenesis, it is conceivable that the inhibition of c-MYC contributes to the perturbation of nuclear functions and RNA polymerase I activity. Similar experiments with CX-5461, another RNA polymerase I transcription inhibitor, indicate the same behaviour in G-quadruplex stabilization. GENERAL SIGNIFICANCE: Our results support the hypothesis that BMH-21 and analogue compounds share the same mechanism, i.e. G-quadruplex binding as a primary event of a cascade leading to inhibition of RNA polymerase I and apoptosis.


Asunto(s)
Antineoplásicos/farmacología , ADN de Neoplasias/efectos de los fármacos , G-Cuádruplex/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genes myc/efectos de los fármacos , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Regiones Promotoras Genéticas/efectos de los fármacos , ARN Polimerasa I/antagonistas & inhibidores , Transcripción Genética/efectos de los fármacos , Benzotiazoles/farmacología , Western Blotting , Línea Celular Tumoral , ADN de Neoplasias/genética , Inhibidores Enzimáticos/farmacología , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Naftiridinas/farmacología , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Resonancia Magnética Nuclear Biomolecular , Biogénesis de Organelos , Ribosomas/metabolismo
9.
Biochim Biophys Acta ; 1860(6): 1129-38, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26922833

RESUMEN

BACKGROUND: Intra-molecular G-quadruplex structures are present in the guanine rich regions of human telomeres and were found to be prevalent in gene promoters. More recently, the targeting of c-MYC transcriptional control has been suggested, because the over expression of the c-MYC oncogene is one of the most common aberration found in a wide range of human tumors. METHODS: The interaction of nemorubicin and doxorubicin with DNA G-quadruplex structures has been studied by NMR, ESI-MS and molecular modelling, in order to obtain further information about the complex and the multiple mechanisms of action of these drugs. RESULTS AND CONCLUSIONS: Nemorubicin intercalates between A3 and G4 of d(TTAGGGT)4 and form cap-complex at the G6pT7 site. The presence of the adenine in this sequence is important for the stabilization of the complex, as was shown by the interaction with d(TTGGGTT)4 and d(TTTGGGT)4, which form only a 1:1 complex. The interaction of doxorubicin with d(TTAGGGT)4 is similar, but the complex appears less stable. Nemorubicin also binds with high efficiency the c-MYC G-quadruplex sequence Pu22, to form a very well defined complex. Two nemorubicin molecules bind to the 3'-end and to the 5'-end, forming an additional plane of stacking over each external G-tetrad. The wild type c-MYCPu22 sequence forms with nemorubicin the same complex. GENERAL SIGNIFICANCE: Nemorubicin and doxorubicin, not only intercalate into the duplex DNA, but also result in significant ligands for G-quadruplex DNA segments, stabilizing their structure; this may in part explain the multiple mechanisms of action of their antitumor activity.


Asunto(s)
Antineoplásicos/química , Doxorrubicina/análogos & derivados , Doxorrubicina/química , G-Cuádruplex , Genes myc , Regiones Promotoras Genéticas , Telómero , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Espectrometría de Masa por Ionización de Electrospray
10.
Biochim Biophys Acta ; 1850(4): 673-80, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25497213

RESUMEN

BACKGROUND: G-quadruplexes have become important drug-design targets for the treatment of various human disorders such as cancer, diabetes and cardiovascular diseases. Recently, G-quadruplex structures have been visualized in the DNA of human cells and appeared to be dynamically sensitive to the cell cycle and stabilized by small molecule ligands. A small library of isoxazolo naphthoquinones (1a-h), which exhibited a strong antiproliferative activity on different cancer cell lines, was studied as potential ligands of G-quadruplex DNA. METHODS: The DNA binding properties of a series of the selected compounds have been analyzed by fluorescence assays. NMR/modeling studies were performed to describe the complexes between G-quadruplex DNA sequences and two selected compounds 1a and 1b. RESULTS: 1a and 1b in the presence of G-quadruplexes, d(T(2)AG(3)T)(4), d(TAG(3)T(2)A)(4) and d(T(2)G(3)T(2))(4), showed good ability of intercalation and the formation of complexes with 2:1 stoichiometry. 1a showed an important interaction with the sequence Pu22 belonging to the promoter of oncogenes c-myc. CONCLUSIONS: The ligands directly interact with the external G-tetrads of the G-quadruplexes, without alterations in the structure of the G-quadruplex core. The role of the adenine moieties over the G-tetrads in the stabilization of the complexes was discussed. GENERAL SIGNIFICANCE: The results obtained suggested that the strong antiproliferative activity of isoxazolo naphthoquinones is not due to the Hsp90 inhibition, but mainly to the interaction at the level of telomeres and/or at the level of gene promoter. These findings can be used as a basis for the rational drug design of new anticancer agents.


Asunto(s)
G-Cuádruplex , Espectroscopía de Resonancia Magnética/métodos , Naftoquinonas/química , Antineoplásicos/química , Antineoplásicos/farmacología , Diseño de Fármacos , Fluorescencia , Humanos , Modelos Moleculares , Naftoquinonas/farmacología
11.
Biopolymers ; 106(3): 309-17, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27038094

RESUMEN

The study reports the synthesis and biological evaluation of two opioid analogs, a monomer and a dimer, obtained as products of the solid-phase, side-chain to side-chain cyclization of the pentapeptide Tyr-d-Lys-Phe-Phe-AspNH2 . The binding affinities to the mu, delta, and kappa opioid receptors, as well as results obtained in a calcium mobilization functional assay are reported. Tyr-[d-Lys-Phe-Phe-Asp]2 -NH2 1 was a potent and selective full agonist of mu with sub-nanomolar affinity, while the dimer (Tyr-[d-Lys-Phe-Phe-Asp]2 -NH2 )2 2 showed a significant mixed mu/kappa affinity, acting as an agonist at the mu. Molecular docking computations were utilized to explain the ability of the dimeric cyclopeptide 2 to interact with the receptor. Interestingly, in spite of the increased ring size, the higher flexibility allowed 2 to fold and fit into the mu receptor binding pocket. Both cyclopeptides were shown to elicit strong antinociceptive activity after intraventricular injection but only cyclomonomer 1 was able to cross the blood-brain barrier. However, the cyclodimer 2 displayed a potent peripheral antinociceptive activity in a mouse model of visceral inflammatory pain. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 309-317, 2016.


Asunto(s)
Analgésicos Opioides/síntesis química , Analgésicos/síntesis química , Oligopéptidos/síntesis química , Dolor/tratamiento farmacológico , Péptidos Cíclicos/síntesis química , Receptores Opioides mu/agonistas , Secuencia de Aminoácidos , Analgésicos/farmacología , Analgésicos Opioides/farmacología , Animales , Sitios de Unión , Bioensayo , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Calcio/metabolismo , Ciclización , Dimerización , Humanos , Inyecciones Intraventriculares , Masculino , Ratones , Modelos Moleculares , Simulación del Acoplamiento Molecular , Oligopéptidos/química , Oligopéptidos/farmacología , Dolor/metabolismo , Dolor/fisiopatología , Péptidos Cíclicos/farmacología , Unión Proteica , Receptores Opioides delta/química , Receptores Opioides delta/metabolismo , Receptores Opioides kappa/química , Receptores Opioides kappa/metabolismo , Receptores Opioides mu/química , Receptores Opioides mu/metabolismo , Relación Estructura-Actividad
12.
Bioorg Med Chem Lett ; 24(2): 462-6, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24388690

RESUMEN

Poly(ADP-ribose)polymerase-I (PARP-1) enzyme is involved in maintaining DNA integrity and programmed cell death. A virtual screening of commercial libraries led to the identification of five novel scaffolds with inhibitory profile in the low nanomolar range. A hit-to-lead optimization led to the identification of a group of new potent PARP-1 inhibitors, acyl-piperazinylamides of 3-(4-oxo-3,4-dihydro-quinazolin-2-yl)-propionic acid. Molecular modeling studies highlighted the preponderant role of the propanoyl side chain.


Asunto(s)
Antineoplásicos/química , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Quinazolinonas/química , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Femenino , Humanos , Ratones , Ratones SCID , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/metabolismo , Quinazolinonas/farmacología , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
13.
Bioorg Med Chem ; 22(23): 6545-6551, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25456075

RESUMEN

Cyclization of linear sequences is a well recognized tool in opioid peptide chemistry for generating analogs with improved bioactivities. Cyclization can be achieved through various bridging bonds between peptide ends or side-chains. In our earlier paper we have reported the synthesis and biological activity of a cyclic peptide, Tyr-c[D-Lys-Phe-Phe-Asp]NH2 (1), which can be viewed as an analog of endomorphin-2 (EM-2, Tyr-Pro-Phe-Phe-NH2). Cyclization was achieved through an amide bond between side-chains of D-Lys and Asp residues. Here, to increase rigidity of the cyclic structure, we replaced d-Lys with cis- or trans-4-aminocyclohexyl-D-alanine (D-ACAla). Two sets of analogs incorporating either Tyr or Dmt (2',6'-dimethyltyrosine) residues in position 1 were synthesized. In the binding studies the analog incorporating Dmt and trans-D-ACAla showed high affinity for both, µ- and δ-opioid receptors (MOR and DOR, respectively) and moderate affinity for the κ-opioid receptor (KOR), while analog with Dmt and cis-D-ACAla was exceptionally MOR-selective. Conformational analyses by NMR and molecular docking studies have been performed to investigate the molecular structural features responsible for the noteworthy MOR selectivity.


Asunto(s)
Alanina/análogos & derivados , Ciclohexanos/química , Péptidos Opioides/química , Alanina/síntesis química , Alanina/química , Ciclización , Ciclohexanos/síntesis química , Humanos , Péptidos Opioides/síntesis química , Péptidos Opioides/metabolismo , Receptores Opioides/metabolismo , Estereoisomerismo
14.
Bioorg Med Chem ; 22(3): 1089-103, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24398383

RESUMEN

7-Azaindole-1-carboxamides were designed as a new class of PARP-1 inhibitors. The compounds displayed a variable pattern of target inhibition profile that, in part, paralleled the antiproliferative activity in cell lines characterized by homologous recombination defects. A selected compound (1l; ST7710AA1) showed significant in vitro target inhibition and capability to substantially bypass the multidrug resistance mediated by Pgp. In antitumor activity studies against the MX1 human breast carcinoma growth in nude mice, the compound exhibited an effect similar to that of Olaparib in terms of tumor volume inhibition when used at a lower dose than the reference compound. Treatment was well tolerated, as no deaths or significant weight losses were observed among the treated animals.


Asunto(s)
Antineoplásicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Inhibidores Enzimáticos/síntesis química , Femenino , Células HeLa/efectos de los fármacos , Recombinación Homóloga , Humanos , Indoles/química , Ratones , Ratones Desnudos , Modelos Moleculares , Poli(ADP-Ribosa) Polimerasa-1 , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
15.
J Med Chem ; 66(7): 5021-5040, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-36976921

RESUMEN

α4ß1 integrin is a cell adhesion receptor deeply involved in the migration and accumulation of leukocytes. Therefore, integrin antagonists that inhibit leukocytes recruitment are currently regarded as a therapeutic opportunity for the treatment of inflammatory disorder, including leukocyte-related autoimmune diseases. Recently, it has been suggested that integrin agonists capable to prevent the release of adherent leukocytes might serve as therapeutic agents as well. However, very few α4ß1 integrin agonists have been discovered so far, thus precluding the investigation of their potential therapeutic efficacy. In this perspective, we synthesized cyclopeptides containing the LDV recognition motif found in the native ligand fibronectin. This approach led to the discovery of potent agonists capable to increase the adhesion of α4 integrin-expressing cells. Conformational and quantum mechanics computations predicted distinct ligand-receptor interactions for antagonists or agonists, plausibly referable to receptor inhibition or activation.


Asunto(s)
Integrina alfa4beta1 , Integrina beta1 , Integrina alfa4beta1/metabolismo , Péptidos Cíclicos/farmacología , Ligandos , Integrinas/metabolismo , Adhesión Celular
16.
Biochim Biophys Acta ; 1810(8): 769-76, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21570448

RESUMEN

BACKGROUND: DNA-intercalating drugs are planar molecules with several fused aromatic rings that form stacks between DNA base pairs, reducing the opening and unwinding of the double helix. Recently, interest on intercalating agents has moved in the search for new ligands to G-quadruplex structures. METHODS: The DNA binding properties of 4-aminoproline oligomers functionalized with one, two or three units of acridine and/or quindoline have been analyzed by competitive dialysis. A NMR/molecular dynamics study was performed on G-quadruplex telomeric sequence and the 4-aminoproline dimer carrying two quindolines. A model of the complex with the telomeric DNA quadruplex is described. RESULTS AND CONCLUSIONS: A selectivity of quindoline 4-aminoproline oligomers for G-quadruplex and triplex structures was observed, especially for those quadruplex sequences found in telomeres and in the promoter regions of c-myc and bcl-2 oncogenes. In this model the quindoline dimer is stabilized by π-π stacking interactions between the aromatic rings of the ligand and the nucleobases of the telomeric sequence that are located above and below the molecule. GENERAL SIGNIFICANCE: The results of this work can be used for the design of new molecules with high affinity to telomeres which may have anticancer properties.


Asunto(s)
Acridinas/química , Alcaloides/química , ADN/química , Genes bcl-2 , Genes myc , Indoles/química , Modelos Moleculares , Quinolinas/química , Humanos , Estructura Molecular
17.
Bioorg Med Chem ; 19(16): 4971-84, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21783369

RESUMEN

A novel 5-oxa-6a,8-diazaindeno[2,1-b]phenanthren-7-one scaffold was designed and synthesized as an active analogue of the cytotoxic marine alkaloid Lamellarin D. The design was based on molecular modeling of the site of interaction of Lamellarin D with DNA-topoisomerase I cleavable complex, whereas the synthesis capitalized on a simple Friedel-Crafts cyclization of indole to a ß-carbolinone nucleus. The product exhibited topoisomerase I poisoning activity and submicromolar cytotoxicity on human non-small cell lung cancer H460 cell line.


Asunto(s)
Alcaloides/síntesis química , Antineoplásicos/síntesis química , Cumarinas/química , ADN-Topoisomerasas de Tipo I/efectos de los fármacos , Compuestos Heterocíclicos de 4 o más Anillos/química , Isoquinolinas/química , Inhibidores de Topoisomerasa I/síntesis química , Alcaloides/química , Alcaloides/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cumarinas/farmacología , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Isoquinolinas/farmacología , Modelos Moleculares , Moluscos , Océanos y Mares , Virus 40 de los Simios/efectos de los fármacos , Virus 40 de los Simios/genética , Relación Estructura-Actividad , Inhibidores de Topoisomerasa I/química , Inhibidores de Topoisomerasa I/farmacología
18.
Magn Reson Chem ; 49(3): 132-6, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21322008

RESUMEN

1,2,3,4,6-Penta-O-galloyl-ß-D-glucopyranose (PGG) is a polyphenolic compound found in substantial amounts in a number of medicinal herbs. We report (i) its conformational analysis by solution NMR and molecular dynamics calculation and (ii) theoretical study of its interaction with a model membrane bilayer. The galloyl groups B and E appear to play important roles in the interaction with the phospholipid bilayer.


Asunto(s)
Taninos Hidrolizables/química , Membrana Dobles de Lípidos/química , Modelos Biológicos , Modelos Teóricos , Fosfolípidos/química , Espectroscopía de Resonancia Magnética , Estructura Molecular
19.
Sci Rep ; 11(1): 3869, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33594142

RESUMEN

Poly ADP-ribose polymerases (PARP) are key proteins involved in DNA repair, maintenance as well as regulation of programmed cell death. For this reason they are important therapeutic targets for cancer treatment. Recent studies have revealed a close interplay between PARP1 recruitment and G-quadruplex stabilization, showing that PARP enzymes are activated upon treatment with a G4 ligand. In this work the DNA binding properties of a PARP-1 inhibitor derived from 7-azaindole-1-carboxamide, (2-[6-(4-pyrrolidin-1-ylmethyl-phenyl)-pyrrolo[2,3-b]pyridin-1-yl]-acetamide, compound 1) with model duplex and quadruplex DNA oligomers were studied by NMR, CD, fluorescence and molecular modelling. We provide evidence that compound 1 is a strong G-quadruplex binder. In addition we provide molecular details of the interaction of compound 1 with two model G-quadruplex structures: the single repeat of human telomeres, d(TTAGGGT)4, and the c-MYC promoter Pu22 sequence. The formation of defined and strong complexes with G-quadruplex models suggests a dual G4 stabilization/PARP inhibition mechanism of action for compound 1 and provides the molecular bases of its therapeutic potential.


Asunto(s)
Antineoplásicos/metabolismo , G-Cuádruplex , Genes myc , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Telómero/metabolismo , Antineoplásicos/química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Regiones Promotoras Genéticas , Espectrometría de Fluorescencia
20.
Biology (Basel) ; 10(12)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34943140

RESUMEN

Berberine, the most known quaternary protoberberine alkaloid (QPA), has been reported to inhibit the SIK3 protein connected with breast cancer. Berberine also appears to reduce the bcl-2 and XIAP expression-proteins responsible for the inhibition of apoptosis. As some problems in the therapy with berberine arose, we studied the DNA binding properties of escholidine, another QPA alkaloid. CD, fluorescence, and NMR examined models of i-motif and G-quadruplex sequences present in the n-myc gene and the c-kit gene. We provide evidence that escholidine does not induce stabilization of the i-motif sequences, while the interaction with G-quadruplex structures appears to be more significant.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA