Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 173(1): 8-10, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29571000

RESUMEN

H2S is an endogenous gasotransmitter that plays an important role in physiological conditions. In this issue, Das et al. provide evidence that SIRT1-dependent angiogenesis is augmented by H2S-findings reinforced by Longchamp et al., who demonstrate that H2S-dependent angiogenesis is triggered by amino acid deprivation.


Asunto(s)
NAD , Sirtuina 1
2.
Stroke ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38920050

RESUMEN

BACKGROUND: Preconditioning by intermittent fasting is linked to improved cognition and motor function, and enhanced recovery after stroke. Although the duration of fasting was shown to elicit different levels of neuroprotection after ischemic stroke, the impact of time of fasting with respect to the circadian cycles remains unexplored. METHODS: Cohorts of mice were subjected to a daily 16-hour fast, either during the dark phase (active-phase intermittent fasting) or the light phase (inactive-phase intermittent fasting) or were fed ad libitum. Following a 6-week dietary regimen, mice were subjected to transient focal cerebral ischemia and underwent behavioral functional assessment. Brain samples were collected for RNA sequencing and histopathologic analyses. RESULTS: Active-phase intermittent fasting cohort exhibited better poststroke motor and cognitive recovery as well as reduced infarction, in contrast to inactive-phase intermittent fasting cohort, when compared with ad libitum cohort. In addition, protection of dendritic spine density/morphology and increased expression of postsynaptic density protein-95 were observed in the active-phase intermittent fasting. CONCLUSIONS: These findings indicate that the time of daily fasting is an important factor in inducing ischemic tolerance by intermittent fasting.

3.
J Neuroinflammation ; 20(1): 111, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37158957

RESUMEN

BACKGROUND: Chronically dysregulated neuroinflammation has been implicated in neurodegenerative dementias, with separate studies reporting increased brain levels of inflammatory mediators and gliosis in Alzheimer's disease (AD) as well as in Lewy body dementias (LBD). However, it is unclear whether the nature and extent of neuroinflammatory responses in LBD are comparable to those in AD. In this study, we performed head-to-head measurements of a panel of cytokines in the post-mortem neocortex of AD versus the two major clinical subtypes of LBD, namely, dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD). METHODS: Post-mortem tissues from the mid-temporal cortex (Brodmann area 21) of a cohort of neuropathologically well-defined AD, PDD and DLB patients were processed and measured for a comprehensive range of cytokines (IL-1α, IL-1Ra, IL-8, IL-10, IL-12p70, IL-13, IFN-γ, GM-CSF and FGF-2) using a multiplex immunoassay platform. Associations between inflammation markers and neuropathological measures of neuritic plaques, neurofibrillary tangles as well as Lewy bodies were also performed. RESULTS: We found IL-1α, IFN-γ, GM-CSF and IL-13 to be elevated in the mid-temporal cortex of AD patients. In contrast, none of the measured cytokines were significantly altered in either DLB or PDD. Similar cytokine changes were observed in two other neocortical areas of AD patients. Furthermore, increases of IL-1α, IFN-γ, GM-CSF, IL-10 and IL-13 associated with moderate-to-severe neurofibrillary tangle burden, but not with neuritic plaques or Lewy bodies. Our findings of elevated neocortical pro- and anti-inflammatory cytokines in AD, but not in DLB or PDD, suggest that neuroinflammatory responses are strongly linked to neurofibrillary tangle burden, which is higher in AD compared to LBD. In conclusion, neuroinflammation may not play a prominent role in the pathophysiology of late-stage LBD.


Asunto(s)
Enfermedad de Alzheimer , Demencia , Neocórtex , Enfermedad de Parkinson , Humanos , Citocinas , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Interleucina-10 , Interleucina-13 , Enfermedades Neuroinflamatorias , Placa Amiloide
4.
Mol Psychiatry ; 26(8): 4544-4560, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33299135

RESUMEN

Chronic cerebral hypoperfusion is associated with vascular dementia (VaD). Cerebral hypoperfusion may initiate complex molecular and cellular inflammatory pathways that contribute to long-term cognitive impairment and memory loss. Here we used a bilateral common carotid artery stenosis (BCAS) mouse model of VaD to investigate its effect on the innate immune response-particularly the inflammasome signaling pathway. Comprehensive analyses revealed that chronic cerebral hypoperfusion induces a complex temporal expression and activation of inflammasome components and their downstream products (IL-1ß and IL-18) in different brain regions, and promotes activation of apoptotic and pyroptotic cell death pathways. Polarized glial-cell activation, white-matter lesion formation and hippocampal neuronal loss also occurred in a spatiotemporal manner. Moreover, in AIM2 knockout mice we observed attenuated inflammasome-mediated production of proinflammatory cytokines, apoptosis, and pyroptosis, as well as resistance to chronic microglial activation, myelin breakdown, hippocampal neuronal loss, and behavioral and cognitive deficits following BCAS. Hence, we have demonstrated that activation of the AIM2 inflammasome substantially contributes to the pathophysiology of chronic cerebral hypoperfusion-induced brain injury and may therefore represent a promising therapeutic target for attenuating cognitive impairment in VaD.


Asunto(s)
Disfunción Cognitiva , Demencia Vascular , Sustancia Blanca , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Inflamasomas/metabolismo , Ratones , Ratones Endogámicos C57BL , Sustancia Blanca/metabolismo
5.
Proc Natl Acad Sci U S A ; 116(25): 12516-12523, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31164420

RESUMEN

BACE1 is the rate-limiting enzyme for amyloid-ß peptides (Aß) generation, a key event in the pathogenesis of Alzheimer's disease (AD). By an unknown mechanism, levels of BACE1 and a BACE1 mRNA-stabilizing antisense RNA (BACE1-AS) are elevated in the brains of AD patients, implicating that dysregulation of BACE1 expression plays an important role in AD pathogenesis. We found that nuclear factor erythroid-derived 2-related factor 2 (NRF2/NFE2L2) represses the expression of BACE1 and BACE1-AS through binding to antioxidant response elements (AREs) in their promoters of mouse and human. NRF2-mediated inhibition of BACE1 and BACE1-AS expression is independent of redox regulation. NRF2 activation decreases production of BACE1 and BACE1-AS transcripts and Aß production and ameliorates cognitive deficits in animal models of AD. Depletion of NRF2 increases BACE1 and BACE1-AS expression and Aß production and worsens cognitive deficits. Our findings suggest that activation of NRF2 can prevent a key early pathogenic process in AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Trastornos del Conocimiento/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/genética , Péptidos beta-Amiloides/metabolismo , Animales , Ácido Aspártico Endopeptidasas/genética , Trastornos del Conocimiento/patología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Isotiocianatos/farmacología , Ratones , Ratones Transgénicos , Factor 2 Relacionado con NF-E2/biosíntesis , Regiones Promotoras Genéticas , Unión Proteica , Especies Reactivas de Oxígeno/metabolismo , Sulfóxidos , Transcripción Genética
6.
J Neurochem ; 153(1): 120-137, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31486527

RESUMEN

Previous studies documented up-regulation of peptidase neurolysin (Nln) after brain ischemia, however, the significance of Nln function in the post-stroke brain remained unknown. The aim of this study was to assess the functional role of Nln in the brain after ischemic stroke. Administration of a specific Nln inhibitor Agaricoglyceride A (AgaA) to mice after stroke in a middle cerebral artery occlusion model, dose-dependently aggravated injury measured by increased infarct and edema volumes, blood-brain barrier disruption, increased levels of interleukin 6 and monocyte chemoattractant protein-1, neurological and motor deficit 24 h after stroke. In this setting, AgaA resulted in inhibition of Nln in the ischemic hemisphere leading to increased levels of Nln substrates bradykinin, neurotensin, and substance P. AgaA lacked effects on several physiological parameters and appeared non-toxic to mice. In a reverse approach, we developed an adeno-associated viral vector (AAV2/5-CAG-Nln) to overexpress Nln in the mouse brain. Applicability of AAV2/5-CAG-Nln to transduce catalytically active Nln was confirmed in primary neurons and in vivo. Over-expression of Nln in the mouse brain was also accompanied by decreased levels of its substrates. Two weeks after in vivo transduction of Nln using the AAV vector, mice were subjected to middle cerebral artery occlusion and the same outcome measures were evaluated 72 h later. These experiments revealed that abundance of Nln in the brain protects animals from stroke. This study is the first to document functional significance of Nln in pathophysiology of stroke and provide evidence that Nln is an endogenous mechanism functioning to preserve the brain from ischemic injury.


Asunto(s)
Encéfalo/fisiopatología , Metaloendopeptidasas/fisiología , Accidente Cerebrovascular/fisiopatología , Animales , Edema , Regulación de la Expresión Génica , Glicéridos/farmacología , Infarto de la Arteria Cerebral Media , Masculino , Metaloendopeptidasas/antagonistas & inhibidores , Metaloendopeptidasas/genética , Ratones , Proteínas Recombinantes/efectos de los fármacos , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/patología , Transfección
7.
Hum Mol Genet ; 27(9): 1497-1513, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29447348

RESUMEN

Genetic changes due to dietary intervention in the form of either calorie restriction (CR) or intermittent fasting (IF) are not reported in detail until now. However, it is well established that both CR and IF extend the lifespan and protect against neurodegenerative diseases and stroke. The current research aims were first to describe the transcriptomic changes in brains of IF mice and, second, to determine whether IF induces extensive transcriptomic changes following ischemic stroke to protect the brain from injury. Mice were randomly assigned to ad libitum feeding (AL), 12 (IF12) or 16 (IF16) h daily fasting. Each diet group was then subjected to sham surgery or middle cerebral artery occlusion and consecutive reperfusion. Mid-coronal sections of ipsilateral cerebral tissue were harvested at the end of the 1 h ischemic period or at 3, 12, 24 or 72 h of reperfusion, and genome-wide mRNA expression was quantified by RNA sequencing. The cerebral transcriptome of mice in AL group exhibited robust, sustained up-regulation of detrimental genetic pathways under ischemic stroke, but activation of these pathways was suppressed in IF16 group. Interestingly, the cerebral transcriptome of AL mice was largely unchanged during the 1 h of ischemia, whereas mice in IF16 group exhibited extensive up-regulation of genetic pathways involved in neuroplasticity and down-regulation of protein synthesis. Our data provide a genetic molecular framework for understanding how IF protects brain cells against damage caused by ischemic stroke, and reveal cellular signaling and bioenergetic pathways to target in the development of clinical interventions.


Asunto(s)
Isquemia Encefálica/genética , Ayuno/fisiología , Transcriptoma/genética , Animales , Restricción Calórica , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia de ARN , Transducción de Señal/genética , Transducción de Señal/fisiología
8.
Brain Behav Immun ; 80: 344-357, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30980950

RESUMEN

Aggregation of the microtubule-associated protein, tau, can lead to neurofibrillary tangle formation in neurons and glia which is the hallmark of tauopathy. The cellular damage induced by the formation of neurofibrillary tangles leads to neuroinflammation and consecutive neuronal death. However, detailed observation of transcriptomic changes under tauopathy together with the comparison of age-dependent progression of neuroinflammatory gene expressions mediated by tau overexpression is required. Employing RNA sequencing on PS19 transgenic mice that overexpress human mutant tau harboring the P301S mutation, we have examined the effects of age-dependent tau overexpression on transcriptomic changes of immune and inflammatory responses in the cerebral cortex. Compared to age-matched wild type control, P301S transgenic mice exhibit significant transcriptomic alterations. We have observed age-dependent neuroinflammatory gene expression changes in both wild type and P301S transgenic mice where tau overexpression further promoted the expression of neuroinflammatory genes in 10-month old P301S transgenic mice. Moreover, functional gene network analyses (gene ontology and pathway enrichment) and prospective target protein interactions predicted the potential involvement of multiple immune and inflammatory pathways that may contribute to tau-mediated neuronal pathology. Our current study on P301S transgenic mice model revealed for the first time, the differences of gene expression patterns in both early and late stage of tau pathology in cerebral cortex. Our analyses also revealed that tau overexpression alone induces multiple inflammatory and immune transcriptomic changes and may provide a roadmap to elucidate the targets of anti-inflammatory therapeutic strategy focused on tau pathology and related neurodegenerative diseases.


Asunto(s)
Corteza Cerebral/metabolismo , Encefalitis/metabolismo , Transcriptoma , Proteínas tau/metabolismo , Factores de Edad , Animales , Corteza Cerebral/patología , Progresión de la Enfermedad , Encefalitis/genética , Perfilación de la Expresión Génica , Humanos , Masculino , Ratones Transgénicos , Mutación , Fosforilación , Mapas de Interacción de Proteínas , Proteínas tau/genética
9.
Brain Behav Immun ; 75: 34-47, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30195027

RESUMEN

Stroke is the second leading cause of death in the world and a major cause of long-term disability. Recent evidence has provided insight into a newly described inflammatory mechanism that contributes to neuronal and glial cell death, and impaired neurological outcome following ischemic stroke - a form of sterile inflammation involving innate immune complexes termed inflammasomes. It has been established that inflammasome activation following ischemic stroke contributes to neuronal cell death, but little is known about inflammasome function and cell death in activated microglial cells following cerebral ischemia. Microglia are considered the resident immune cells that function as the primary immune defense in the brain. This study has comprehensively investigated the expression and activation of NLRP1, NLRP3, NLRC4 and AIM2 inflammasomes in isolates of microglial cells subjected to simulated ischemic conditions and in the brain following ischemic stroke. Immunoblot analysis from culture media indicated microglial cells release inflammasome components and inflammasome activation-dependent pro-inflammatory cytokines following ischemic conditions. In addition, a functional role for NLRC4 inflammasomes was determined using siRNA knockdown of NLRC4 and pharmacological inhibitors of caspase-1 and -8 to target apoptotic and pyroptotic cell death in BV2 microglial cells under ischemic conditions. In summary, the present study provides evidence that the NLRC4 inflammasome complex mediates the inflammatory response, as well as apoptotic and pyroptotic cell death in microglial cells under in vitro and in vivo ischemic conditions.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Unión al Calcio/metabolismo , Inflamasomas/metabolismo , Accidente Cerebrovascular/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Apoptosis/inmunología , Proteínas Reguladoras de la Apoptosis/fisiología , Encéfalo/metabolismo , Isquemia Encefálica/inmunología , Isquemia Encefálica/fisiopatología , Proteínas de Unión al Calcio/fisiología , Caspasa 1/metabolismo , Muerte Celular , Inflamasomas/fisiología , Ratones , Ratones Endogámicos C57BL , Microglía/inmunología , Microglía/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Neuronas/metabolismo , Cultivo Primario de Células , Piroptosis/inmunología , Transducción de Señal/fisiología , Accidente Cerebrovascular/inmunología
10.
J Neurosci ; 37(20): 5099-5110, 2017 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-28432138

RESUMEN

Excessive mitochondrial fission is a prominent early event and contributes to mitochondrial dysfunction, synaptic failure, and neuronal cell death in the progression of Alzheimer's disease (AD). However, it remains to be determined whether inhibition of excessive mitochondrial fission is beneficial in mammal models of AD. To determine whether dynamin-related protein 1 (Drp1), a key regulator of mitochondrial fragmentation, can be a disease-modifying therapeutic target for AD, we examined the effects of Drp1 inhibitor on mitochondrial and synaptic dysfunctions induced by oligomeric amyloid-ß (Aß) in neurons and neuropathology and cognitive functions in Aß precursor protein/presenilin 1 double-transgenic AD mice. Inhibition of Drp1 alleviates mitochondrial fragmentation, loss of mitochondrial membrane potential, reactive oxygen species production, ATP reduction, and synaptic depression in Aß-treated neurons. Furthermore, Drp1 inhibition significantly improves learning and memory and prevents mitochondrial fragmentation, lipid peroxidation, BACE1 expression, and Aß deposition in the brain in the AD model. These results provide evidence that Drp1 plays an important role in Aß-mediated and AD-related neuropathology and in cognitive decline in an AD animal model. Therefore, inhibiting excessive Drp1-mediated mitochondrial fission may be an efficient therapeutic avenue for AD.SIGNIFICANCE STATEMENT Mitochondrial fission relies on the evolutionary conserved dynamin-related protein 1 (Drp1). Drp1 activity and mitochondria fragmentation are significantly elevated in the brains of sporadic Alzheimer's disease (AD) cases. In the present study, we first demonstrated that the inhibition of Drp1 restored amyloid-ß (Aß)-mediated mitochondrial dysfunctions and synaptic depression in neurons and significantly reduced lipid peroxidation, BACE1 expression, and Aß deposition in the brain of AD mice. As a result, memory deficits in AD mice were rescued by Drp1 inhibition. These results suggest that neuropathology and combined cognitive decline can be attributed to hyperactivation of Drp1 in the pathogenesis of AD. Therefore, inhibitors of excessive mitochondrial fission, such as Drp1 inhibitors, may be a new strategy for AD.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/metabolismo , Trastornos del Conocimiento/fisiopatología , Dinaminas/metabolismo , Depresión Sináptica a Largo Plazo , Mitocondrias/metabolismo , Neuronas/metabolismo , Enfermedad de Alzheimer/complicaciones , Animales , Encéfalo/fisiopatología , Trastornos del Conocimiento/complicaciones , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Inhibición Neural
11.
Stroke ; 49(3): 700-709, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29382802

RESUMEN

BACKGROUND AND PURPOSE: Human amnion epithelial cells (hAECs) are nonimmunogenic, nontumorigenic, anti-inflammatory cells normally discarded with placental tissue. We reasoned that their profile of biological features, wide availability, and the lack of ethical barriers to their use could make these cells useful as a therapy in ischemic stroke. METHODS: We tested the efficacy of acute (1.5 hours) or delayed (1-3 days) poststroke intravenous injection of hAECs in 4 established animal models of cerebral ischemia. Animals included young (7-14 weeks) and aged mice (20-22 months) of both sexes, as well as adult marmosets of either sex. RESULTS: We found that hAECs administered 1.5 hours after stroke in mice migrated to the ischemic brain via a CXC chemokine receptor type 4-dependent mechanism and reduced brain inflammation, infarct development, and functional deficits. Furthermore, if hAECs administration was delayed until 1 or 3 days poststroke, long-term functional recovery was still augmented in young and aged mice of both sexes. We also showed proof-of-principle evidence in marmosets that acute intravenous injection of hAECs prevented infarct development from day 1 to day 10 after stroke. CONCLUSIONS: Systemic poststroke administration of hAECs elicits marked neuroprotection and facilitates mechanisms of repair and recovery.


Asunto(s)
Amnios/trasplante , Células Epiteliales/trasplante , Neuroprotección , Accidente Cerebrovascular/terapia , Animales , Callithrix , Modelos Animales de Enfermedad , Femenino , Xenoinjertos , Humanos , Masculino , Ratones , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología
12.
Neurobiol Learn Mem ; 154: 70-77, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29277679

RESUMEN

Metaplasticity is the inherent property of a neuron or neuronal population to undergo activity-dependent changes in neural function that modulate subsequent synaptic plasticity. Here we studied the effect of intermittent fasting (IF) in governing the interactions of associative plasticity mechanisms in the pyramidal neurons of rat hippocampal area CA1. Late long-term potentiation and its associative mechanisms such as synaptic tagging and capture at an interval of 120 min were evaluated in four groups of animals, AL (Ad libitum), IF12 (daily IF for 12 h), IF16 (daily IF for 16 h) and EOD (every other day IF for 24 h). IF had no visible effect on the early or late plasticity but it manifested a critical role in prolonging the associative interactions between weak and strong synapses at an interval of 120 min in IF16 and EOD animals. However, both IF12 and AL did not show associativity at 120 min. Plasticity genes such as Bdnf and Prkcz, which are well known for their expressions in late plasticity and synaptic tagging and capture, were significantly upregulated in IF16 and EOD in comparison to AL. Specific inhibition of brain derived neurotropic factor (BDNF) prevented the prolonged associativity expressed in EOD. Thus, daily IF for 16 h or more can be considered to enhance the metaplastic properties of synapses by improving their associative interactions that might translate into animprovedmemoryformation.


Asunto(s)
Región CA1 Hipocampal/fisiología , Ayuno/fisiología , Potenciación a Largo Plazo , Células Piramidales/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína Quinasa Tipo 4 Dependiente de Calcio Calmodulina/metabolismo , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores , Masculino , Ratones Endogámicos C57BL , Proteína Quinasa C/metabolismo
13.
Ann Neurol ; 77(3): 504-16, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25558977

RESUMEN

OBJECTIVE: Stroke is a leading cause of mortality and disability. The peptidyl-prolyl cis/trans isomerase Pin1 regulates factors involved in cell growth. Recent evidence has shown that Pin1 plays a major role in apoptosis. However, the role of Pin1 in ischemic stroke remains to be investigated. METHODS: We used Pin1 overexpression and knockdown to manipulate Pin1 expression and explore the effects of Pin1 in cell death on ischemic stress in vitro and in a mouse stroke model. We also used Pin 1 inhibitor, γ-secretase inhibitor, Notch1 intracellular domain (NICD1)-deleted mutant cells, and Pin1 mutant cells to investigate the underlying mechanisms of Pin1-NICD1-mediated cell death. RESULTS: Our findings indicate that Pin1 facilitates NICD1 stability and its proapoptotic function following ischemic stroke. Thus, overexpression of Pin1 increased NICD1 levels and enhanced its potentiation of neuronal death in simulated ischemia. By contrast, depletion or knockout of Pin1 reduced the NICD1 level, which in turn desensitized neurons to ischemic conditions. Pin1 interacted with NICD1 and increased its stability by inhibiting FBW7-induced polyubiquitination. We also demonstrate that Pin1 and NICD1 levels increase following stroke. Pin1 heterozygous (+/-) and knockout (-/-) mice, and also wild-type mice treated with an inhibitor of Pin1, each showed reduced brain damage and improved functional outcomes in a model of focal ischemic stroke. INTERPRETATION: These results suggest that Pin1 contributes to the pathogenesis of ischemic stroke by promoting Notch signaling, and that inhibition of Pin1 is a novel approach for treating ischemic stroke.


Asunto(s)
Apoptosis/fisiología , Isquemia/metabolismo , Neuronas/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Receptor Notch1/metabolismo , Accidente Cerebrovascular/metabolismo , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Humanos , Isquemia/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Isomerasa de Peptidilprolil/antagonistas & inhibidores , Isomerasa de Peptidilprolil/genética , Estabilidad Proteica , Estructura Terciaria de Proteína/fisiología , Transducción de Señal/fisiología , Accidente Cerebrovascular/tratamiento farmacológico
15.
J Neuroinflammation ; 12: 73, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25886362

RESUMEN

BACKGROUND: Ischemic stroke causes a high rate of deaths and permanent neurological damage in survivors. Ischemic stroke triggers the release of damage-associated molecular patterns (DAMPs) such as high-mobility group box 1 (HMGB1), which activate toll-like receptors (TLRs) and receptor for advanced glycation endproducts (RAGE) in the affected area, leading to an exaggerated inflammatory response and cell death. Both TLRs and RAGE are transmembrane pattern recognition receptors (PRRs) that have been shown to contribute to ischemic stroke-induced brain injury. Intravenous immunoglobulin (IVIg) preparations obtained by fractionating human blood plasma are increasingly being used as an effective therapeutic agent in the treatment of several inflammatory diseases. Its use as a potential therapeutic agent for treatment of stroke has been proposed, but little is known about the direct neuroprotective mechanisms of IVIg. We therefore investigate whether IVIg exerts its beneficial effects on the outcome of neuronal injury by modulating HMGB1-induced TLR and RAGE expressions and activations. METHODS: Primary cortical neurons were subjected to glucose deprivation or oxygen and glucose deprivation conditions and treated with IVIg and recombinant HMGB1. C57/BL6J mice were subjected to middle cerebral artery occlusion, followed by reperfusion, and IVIg was administered intravenously 3 h after the start of reperfusion. Expression of TLRs, RAGE and downstream signalling proteins in neurons and brain tissues were evaluated by immunoblot. RESULTS: Treatment of cultured neurons with IVIg reduced simulated ischemia-induced TLR2, TLR4, TLR8 and RAGE expressions, pro-apoptotic caspase-3 cleavage and phosphorylation of the cell death-associated kinases such as c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK) as well as the p65 subunit of nuclear factor kappa B (NF-κB). These results were recapitulated in an in vivo model of stroke. IVIg treatment also upregulated the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) in cortical neurons under ischemic conditions. Finally, IVIg protected neurons against HMGB1-induced neuronal cell death by modulating TLR and RAGE expressions and signalling pathways. CONCLUSIONS: Taken together, these results provide a rationale for the potential use of IVIg to target inappropriately activated components of the innate immune system following ischemic stroke.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Inmunoglobulinas Intravenosas/farmacología , Factores Inmunológicos/farmacología , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Neuronas/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/citología , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Embrión de Mamíferos , Glucosa/deficiencia , Hipoxia , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/genética , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transducción de Señal/efectos de los fármacos , Receptores Toll-Like/metabolismo
16.
Ann Rheum Dis ; 74(1): 267-74, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24255545

RESUMEN

OBJECTIVE: To test the hypothesis that Notch signalling plays a role in the pathogenesis of rheumatoid arthritis (RA) and to determine whether pharmacological inhibition of Notch signalling with γ-secretase inhibitors can ameliorate the RA disease process in an animal model. METHODS: Collagen-induced arthritis was induced in C57BL/6 or Notch antisense transgenic mice by immunisation with chicken type II collagen (CII). C57BL/6 mice were administered with different doses of inhibitors of γ-secretase, an enzyme required for Notch activation, at disease onset or after onset of symptoms. Severity of arthritis was monitored by clinical and histological scores, and in vivo non-invasive near-infrared fluorescence (NIRF) images. Micro-CT was used to confirm joint destruction. The levels of CII antibodies and cytokines in serum were determined by ELISA and bead-based cytokine assay. The expression levels of cytokines were studied by quantitative PCR in rheumatoid synovial fibroblasts. RESULTS: The data show that Notch signalling stimulates synoviocytes and accelerates their production of proinflammatory cytokines and immune responses involving the upregulation of IgG1 and IgG2a. Pharmacological inhibition of γ-secretase and antisense-mediated knockdown of Notch attenuates the severity of inflammatory arthritis, including arthritis indices, paw thickness, tissue damage and neutrophil infiltration, and reduces the levels of active NF-κB, ICAM-1, proinflammatory cytokines and matrix metalloproteinase-3 activity in the mouse model of RA. CONCLUSIONS: These results suggest that Notch is involved in the pathogenesis of RA and that inhibition of Notch signalling is a novel approach for treating RA.


Asunto(s)
Artritis Experimental/inmunología , Artritis Reumatoide/inmunología , Citocinas/inmunología , Receptores Notch/inmunología , Transducción de Señal/inmunología , Membrana Sinovial/inmunología , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Animales , Citocinas/efectos de los fármacos , Dipéptidos/farmacología , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores Notch/antagonistas & inhibidores , Receptores Notch/efectos de los fármacos , Índice de Severidad de la Enfermedad , Transducción de Señal/efectos de los fármacos
17.
Brain Behav Immun ; 48: 301-12, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26021559

RESUMEN

Neuroinflammation in the central nervous system is detrimental for learning and memory, as evident form epidemiological studies linking developmental defects and maternal exposure to harmful pathogens. Postnatal infections can also induce neuroinflammatory responses with long-term consequences. These inflammatory responses can lead to motor deficits and/or behavioral disabilities. Toll like receptors (TLRs) are a family of innate immune receptors best known as sensors of microbial-associated molecular patterns, and are the first responders to infection. TLR2 forms heterodimers with either TLR1 or TLR6, is activated in response to gram-positive bacterial infections, and is expressed in the brain during embryonic development. We hypothesized that early postnatal TLR2-mediated neuroinflammation would adversely affect cognitive behavior in the adult. Our data indicate that postnatal TLR2 activation affects learning and memory in adult mice in a heterodimer-dependent manner. TLR2/6 activation improved motor function and fear learning, while TLR2/1 activation impaired spatial learning and enhanced fear learning. Moreover, developmental TLR2 deficiency significantly impairs spatial learning and enhances fear learning, stressing the involvement of the TLR2 pathway in learning and memory. Analysis of the transcriptional effects of TLR2 activation reveals both common and unique transcriptional programs following heterodimer-specific TLR2 activation. These results imply that adult cognitive behavior could be influenced in part, by activation or alterations in the TLR2 pathway at birth.


Asunto(s)
Aprendizaje/fisiología , Memoria/fisiología , Destreza Motora/fisiología , Neuronas/metabolismo , Receptor Toll-Like 2/metabolismo , Animales , Condicionamiento Psicológico/fisiología , Conducta Exploratoria/fisiología , Miedo/fisiología , Ratones , Ratones Noqueados , Prueba de Desempeño de Rotación con Aceleración Constante , Aprendizaje Espacial/fisiología , Receptor Toll-Like 2/genética
18.
Stroke ; 45(3): 835-41, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24457292

RESUMEN

BACKGROUND AND PURPOSE: Experimental studies indicate that estrogen typically, but not universally, has a neuroprotective effect in stroke. Ischemic stroke increases membrane-bound G protein-coupled estrogen receptor (GPER) distribution and expression in the brain of male but not female mice. We hypothesized that GPER activation may have a greater neuroprotective effect in males than in females after stroke. METHODS: Vehicle (dimethyl sulfoxide), a GPER agonist (G-1, 30 µg/kg), or a GPER antagonist (G-15, 300 µg/kg) were administered alone or in combination to young or aged male mice, or young intact or ovariectomized female mice, 1 hour before or 3 hours after cerebral ischemia-reperfusion. Some mice were treated with a combination of G-1 and the pan-caspase inhibitor, quinoline-Val-Asp(Ome)-CH2-O-phenoxy (Q-VD-OPh), 1 hour before stroke. We evaluated functional and histological end points of stroke outcome up to 72 hours after ischemia-reperfusion. In addition, apoptosis was examined using cleaved caspase-3 immunohistochemistry. RESULTS: Surprisingly, G-1 worsened functional outcomes and increased infarct volume in males poststroke, in association with an increased expression of cleaved caspase-3 in peri-infarct neurons. These effects were blocked by G-15 or Q-VD-OPh. Conversely, G-15 improved functional outcomes and reduced infarct volume after stroke in males, whether given before or after stroke. In contrast to findings in males, G-1 reduced neurological deficit, apoptosis, and infarct volume in ovariectomized females, but had no significant effect in intact females. CONCLUSIONS: Future therapies for acute stroke could exploit the modulation of GPER activity in a sex-specific manner.


Asunto(s)
Isquemia Encefálica/patología , Receptores de Estrógenos/fisiología , Receptores Acoplados a Proteínas G/fisiología , Accidente Cerebrovascular/patología , Envejecimiento/fisiología , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Encéfalo/patología , Isquemia Encefálica/tratamiento farmacológico , Inhibidores de Caspasas/farmacología , Infarto Cerebral/patología , Femenino , Inmunohistoquímica , Masculino , Ratones , Enfermedades del Sistema Nervioso/patología , Enfermedades del Sistema Nervioso/fisiopatología , Ovariectomía , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Daño por Reperfusión/patología , Caracteres Sexuales , Accidente Cerebrovascular/tratamiento farmacológico , Resultado del Tratamiento
19.
J Neurochem ; 129(1): 179-89, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24164478

RESUMEN

In this study, we provide evidence for the first time that membrane-bound endopeptidase neurolysin is up-regulated in different parts of mouse brain affected by focal ischemia-reperfusion in a middle cerebral artery occlusion model of stroke. Radioligand binding, enzymatic and immunoblotting experiments in membrane preparations of frontoparietal cortex, striatum, and hippocampus isolated from the ischemic hemisphere of mouse brain 24 h after reperfusion revealed statistically significant increase (≥ twofold) in quantity and activity of neurolysin compared with sham-operated controls. Cerebellar membranes isolated from the ischemic hemisphere served as negative control supporting the observations that up-regulation of neurolysin occurs in post-ischemic brain regions. This study also documents sustained functional up-regulation of neurolysin in frontoparietal cortical membranes for at least 7 days after stroke, which appears not to be transcriptionally or translationally regulated, but rather depends on translocation of cytosolic neurolysin to the membranes and mitochondria. Considering diversity of endogenous neurolysin substrates (neurotensin, bradykinin, angiotensins I/II, substance P, hemopressin, dynorphin A(1-8), metorphamide, somatostatin) and the well-documented role of these peptidergic systems in pathogenesis of stroke, resistance to ischemic injury and/or post-stroke brain recovery, our findings suggest that neurolysin may play a role in processes modulating the brain's response to stroke and its recovery after stroke.


Asunto(s)
Encéfalo/metabolismo , Modelos Animales de Enfermedad , Metaloendopeptidasas/biosíntesis , Recuperación de la Función/fisiología , Accidente Cerebrovascular/metabolismo , Regulación hacia Arriba/fisiología , Animales , Encéfalo/patología , Masculino , Ratones , Accidente Cerebrovascular/patología , Factores de Tiempo
20.
Neurobiol Dis ; 62: 286-95, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24141018

RESUMEN

Recent findings suggest that Notch-1 signaling contributes to neuronal death in ischemic stroke, but the underlying mechanisms are unknown. Hypoxia inducible factor-1α (HIF-1α), a global regulator of cellular responses to hypoxia, can interact with Notch and modulate its signaling during hypoxic stress. Here we show that Notch signaling interacts with the HIF-1α pathway in the process of ischemic neuronal death. We found that a chemical inhibitor of the Notch-activating enzyme, γ-secretase, and a HIF-1α inhibitor, protect cultured cortical neurons against ischemic stress, and combined inhibition of Notch-1 and HIF-1α further decreased neuronal death. HIF-1α and Notch intracellular domain (NICD) are co-expressed in the neuronal nucleus, and co-immunoprecipitated in cultured neurons and in brain tissue from mice subjected to focal ischemic stroke. Overexpression of NICD and HIF-1α in cultured human neural cells enhanced cell death under ischemia-like conditions, and a HIF-1α inhibitor rescued the cells. RNA interference-mediated depletion of endogenous NICD and HIF-1α also decreased cell death under ischemia-like conditions. Finally, mice treated with inhibitors of γ-secretase and HIF-1α exhibited improved outcome after focal ischemic stroke, with combined treatment being superior to individual treatments. Additional findings suggest that the NICD and HIF-1α collaborate to engage pro-inflammatory and apoptotic signaling pathways in stroke.


Asunto(s)
Isquemia Encefálica/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neuronas/metabolismo , Receptor Notch1/metabolismo , Accidente Cerebrovascular/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Muerte Celular/fisiología , Línea Celular Tumoral , Células Cultivadas , Humanos , Infarto de la Arteria Cerebral Anterior/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Daño por Reperfusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA