Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nano Lett ; 20(6): 4588-4593, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32402200

RESUMEN

When surface states (SSs) form in topological insulators (TIs), they inherit the properties of bulk bands, including the electron-hole (e-h) asymmetry but with much more profound impacts. Here via combining magneto-infrared spectroscopy with theoretical analysis, we show that e-h asymmetry significantly modifies the SS electronic structures when interplaying with the quantum confinement effect. Compared with the case without e-h asymmetry, the SSs now bear not only a band asymmetry, such as that in the bulk, but also a shift of the Dirac point relative to the bulk bands and a reduction of the hybridization gap of up to 70%. Our results signify the importance of e-h asymmetry in the band engineering of TIs in the thin-film limit.

2.
Nano Lett ; 14(12): 6823-7, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25414977

RESUMEN

The perfect transmission of charge carriers through potential barriers in graphene (Klein tunneling) is a direct consequence of the Dirac equation that governs the low-energy carrier dynamics. As a result, localized states do not exist in unpatterned graphene, but quasibound states can occur for potentials with closed integrable dynamics. Here, we report the observation of resonance states in photoswitchable self-assembled molecular(SAM)-graphene hybrid. Conductive AFM measurements performed at room temperature reveal strong current resonances, the strength of which can be reversibly gated on- and off- by optically switching the molecular conformation of the mSAM. Comparisons of the voltage separation between current resonances (∼ 70-120 mV) with solutions of the Dirac equation indicate that the radius of the gating potential is ∼ 7 ± 2 nm with a strength ≥ 0.5 eV. Our results and methods might provide a route toward optically programmable carrier dynamics and transport in graphene nanomaterials.

3.
Phys Rev Lett ; 112(13): 136602, 2014 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-24745446

RESUMEN

Broken symmetries in graphene affect the massless nature of its charge carriers. We present an analysis of scattering by defects in graphene in the presence of spin-orbit interactions (SOIs). A characteristic constant ratio (≃2) of the transport to elastic times for massless electrons signals the anisotropy of the scattering. We show that SOIs lead to a drastic decrease of this ratio, especially at low carrier concentrations, while the scattering becomes increasingly isotropic. As the strength of the SOI determines the energy (carrier concentration) where this drop is more evident, this effect could help evaluate these interactions through transport measurements in graphene systems with enhanced spin-orbit coupling.

4.
J Phys Condens Matter ; 34(31)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35580577

RESUMEN

We develop a theory for the non-equilibrium screening of a charged impurity in a two-dimensional electron system under a strong time-periodic drive. Our analysis of the time-averaged polarization function and dielectric function reveals that Floquet driving modifies the screened impurity potential in two main regimes. In the weak drive regime, the time-averaged screened potential exhibits unconventional Friedel oscillations with multiple spatial periods contributed by a principal period modulated by higher-order periods, which are due to the emergence of additional Kohn anomalies in the polarization function. In the strong drive regime, the time-averaged impurity potential becomes almost unscreened and does not exhibit Friedel oscillations. This tunable Friedel oscillations is a result of the dynamic gating effect of the time-dependent driving field on the two-dimensional electron system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA