Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Biol Rep ; 49(3): 2037-2046, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34860319

RESUMEN

BACKGROUND: Melanoma is the most lethal form of skin cancer, and its incidence has increased considerably in the last decades. Melanoma presents difficult treatment with strong resistance of tumor cells, due to its extremely invasive nature with high capacity to metastases. Berberine (BBR), an isoquinoline alkaloid, is a molecule found in several medicinal plants, and has been studied in several diseases, demonstrating antimicrobial, antidiabetic and anti-inflammatory properties and anti-tumorigenic effects. METHODS AND RESULTS: In SK-MEL-28 cells, 50 µM BBR treatment for 24 h decreased cell viability by 50 percent. This concentration generated cell death both by early apoptosis and necrosis, with an increase in the DNA damage index. BBR increased (*p < 0.05) the proportion of cells in G1/G0 phase and decreased (###p < 0.005) the percentage of cells in S phase. The alcaloid increased (****p < 0.001) ROS production compared to untreated controls with an increase in activated caspase 3 and phosphorylated p53 protein levels. In addition, BBR significantly enhanced ERK as well as both pro- and anti-inflammatory cytokine expression compared to untreated controls. CONCLUSIONS: BBR has important antiproliferative effects and may be alone or in adjunct therapy a promising candidate for melanoma treatment, a cancer with great incidence and high lethality.


Asunto(s)
Berberina , Melanoma , Apoptosis , Berberina/farmacología , Línea Celular Tumoral , Citocinas/metabolismo , Humanos , Melanoma/tratamiento farmacológico
2.
Metab Brain Dis ; 36(4): 627-638, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33394288

RESUMEN

Microglia are immune cells that are resident in central nervous system. Activation of microglial cells are detrimental to the survival of neurons. Thus, prevention of microglia activation and/or protection against microglia activation could be potential therapeutic strategy towards the management of inflammation-mediated neurodegenerative diseases. Moringa oleifera is widely consumed as food and used in folklore medicine for treating several diseases. This study was convened to investigate the effect of aqueous extract of Moringa oleifera on cell viability, cholinergic and purinergic enzymes in BV-2 microglial cultured cell. Aqueous extract of Moringa oleifera was prepared, lyophilized and reconstituted in 0.5% dimethylsulphoxide (DMSO). Cells were treated with Moringa oleifera extracts (0.1-100 µg/mL) and assessed for cell viability and nitric oxide production. Furthermore, the effect of Moringa oleifera on enzymes of cholinergic (acetylcholinesterase) and purinergic (nucleoside triphosphate diphosphohydrolase; NTPDase, 5' nucleotidase and adenosine deaminase; ADA) systems in BV-2 microglial cells were determined. Incubation of BV-2 microglia cell with M. oleifera extract maintained cell viability, modulated cholinergic and purinergic enzymes activity. The phenolic compounds found in M. oleifera extracts, include chlorogenic acid, rutin; quercetin pentoside, kaempferol derivative and quercetin derivative. Thus, this study suggest that the potential therapeutic effect of the phenolic compounds found in M. oleifera may have been responsible for the maintenance of cell viability in BV-2 microglia cells and modulation of cholinergic as well as purinergic enzymes activity.


Asunto(s)
Microglía/efectos de los fármacos , Microglía/enzimología , Moringa oleifera , Extractos Vegetales/farmacología , 5'-Nucleotidasa/metabolismo , Acetilcolinesterasa/metabolismo , Adenosina Desaminasa/metabolismo , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Ratones , Extractos Vegetales/aislamiento & purificación , Hojas de la Planta , Pirofosfatasas/metabolismo
3.
Parasitol Res ; 119(9): 2897-2905, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32677001

RESUMEN

The central nervous system of the intermediate host plays a central role in lifelong persistence of Toxoplasma gondii as well as the pathogenesis of congenital toxoplasmosis and reactivated infection in immunocompromised individuals. The purinergic system has been implicated in a wide range of immunological pathways for controlling intracellular responses to pathogens, including T. gondii. In the present study, we investigated the effect of resveratrol (RSV) on ectonucleotidases, adenosine deaminase (ADA), and purinergic receptors during chronic infection by T. gondii. For this study, Swiss mice were divided into control (CTL), resveratrol (RSV), infected (INF), and INF+RSV groups. The animals were orally infected with the VEG strain and treated with RSV (100 mg/kg, orally). Ectonucleotidase activities, P2X7, P2Y1, A1, and A2A purinergic receptor density, ROS, and thiobarbituric acid reactive substances levels were measured in the cerebral cortex of mice. T. gondii infection increased NTPDase and reduced ADA activities. Treatment with RSV also affected enzymes hydrolysing extracellular nucleotides and nucleosides. Finally, RSV affected P1 and P2 purinergic receptor expression during T. gondii infection. Overall, RSV-mediated beneficial changes in purinergic signalling and oxidative stress, possibly improving cerebral cortex homeostasis in T. gondii infection.


Asunto(s)
Corteza Cerebral/parasitología , Inhibidores Enzimáticos/farmacología , Fármacos Neuroprotectores/farmacología , Resveratrol/farmacología , Toxoplasmosis Animal/tratamiento farmacológico , Adenosina Desaminasa/metabolismo , Animales , Ratones , Receptores Purinérgicos/metabolismo , Transducción de Señal , Toxoplasma/inmunología
4.
Drug Chem Toxicol ; 43(3): 255-265, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-30033776

RESUMEN

Methylmercury (MeHg) is a well-known toxic pollutant. However, little is known about the effects of this toxic agent in an adult as a consequence of a parental or preimaginal exposure. This study used Drosophila melanogaster to investigate whether a parental or a preimaginal (eggs-larvae-pupae stages) exposure could impact parameters as viability, locomotor activity, and sleep patterns of fruit flies. Thus, we performed two exposure protocols. One where just parents were exposed to MeHg (0-12 µM) during 24 h, then flies were transferred to lay eggs in a healthy medium (without MeHg). In the other, flies were set to lay eggs in a MeHg medium, same concentrations, and discarded after this (preimaginal exposure). Viability was evaluated from egg to adult flies. F1 progeny was collected within 24 h and transferred to a fresh healthy medium. Sleep behavior analysis was performed using Drosophila Active Monitoring System (DAMS), and the locomotor activity was evaluated by climbing assay. Results have shown that the parental exposure had a significant impact on F1 progeny reducing viability and locomotor activity performance, but no significant circadian rhythm alterations. Whereas the preimaginal exposure had a stronger effect decreasing viability and locomotor activity, it also disrupted sleep patterns. MeHg preimaginal exposure showed a longer sleep duration and lower daily activity. Results corroborate the hypothesis that low MeHg exposure could trigger subclinical symptoms related to a 'neurotoxicological development effect'. Complementary investigations could clarify the underlying mechanisms of MeHg effects in neural functions due to parental and early development exposure to this toxicant.


Asunto(s)
Ritmo Circadiano/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Locomoción/efectos de los fármacos , Compuestos de Metilmercurio/toxicidad , Animales , Drosophila melanogaster/efectos de los fármacos , Femenino , Estadios del Ciclo de Vida , Masculino , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/fisiopatología , Sueño/efectos de los fármacos
5.
J Cell Biochem ; 120(3): 3232-3242, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30230598

RESUMEN

Sepsis is a generalized infection that involves alterations in inflammatory parameters, oxidant status, and purinergic signaling in many tissues. Physical exercise has emerged as a tool to prevent this disease because of its anti-inflammatory and antioxidant properties. Thus, in this study, we investigated the effects of physical exercise on preventing alterations in purinergic system components, oxidative stress, and inflammatory parameters in lipopolysaccharide (LPS)-induced sepsis in rats. Male Wistar rats were divided into four groups: control, exercise (EX), LPS, and EX+LPS. The resisted physical exercise was performed for 12 weeks on a ladder with 1 m height. After 72 hours of the last exercise session, the animals received 2.5 mg/kg of LPS for induction of sepsis, and after 24 hours, lungs and blood samples were collected for analysis. The results showed that the exercise protocol used was able to prevent, in septic animals: (1) the increase in body temperature; (2) the increase of lipid peroxidation and reactive species levels in the lung, (3) the increase in adenosine triphosphate levels in serum; (4) the change in the activity of the enzymes ectonucleotidases in lymphocytes, partially; (5) the change in the density of purinergic enzymes and receptors in the lung, and (6) the increase of IL-6 and IL-1ß gene expression. Our results revealed the involvement of purinergic signaling and oxidative damage in the mechanisms by which exercise prevents sepsis aggravations. Therefore, the regular practice of physical exercise is encouraged as a better way to prepare the body against sepsis complications.


Asunto(s)
Lipopolisacáridos/toxicidad , Condicionamiento Físico Animal/fisiología , Sepsis/inducido químicamente , Sepsis/prevención & control , Animales , Antioxidantes/metabolismo , Catalasa/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Masculino , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Sepsis/metabolismo , Superóxido Dismutasa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
6.
Mol Biol Rep ; 46(6): 5785-5793, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31385236

RESUMEN

The purpose of this study was to investigate the effect of a superoxide-hydrogen peroxide (S-HP) imbalance of the superoxide dismutase manganese dependent (SOD2) gene, generated by paraquat and porphyrin exposure, on the keratinocytes cell line (HaCaT) oxidative metabolism. Paraquat acts increasing superoxide (O2·-) levels, while porphyrin increases hydrogen peroxide (H2O2) levels, acting as VV-SOD2-like and AA-SOD2-like molecules, respectively. First of all, HaCAT cells were treated with different concentrations of paraquat and porphyrin (1; 10; 30, and 70 µM) to determine the concentration of both that causes imbalance. After defining the concentration of paraquat and porphyrin (70 µM), a time curve was performed (1, 3, 6, and 24 h) to evaluate ROS production levels. Other oxidative parameters, such as nitric oxide (NO), lipoperoxidation (TBARS) and protein carbonyl, were evaluated after 24 h of incubation, as well as genotoxic analyses, apoptosis detection, and gene expression. Our findings revealed that paraquat exposure decreased cell viability, increasing lipoperoxidation, DNA damage, and apoptosis. On the other hand, porphyrin treatment increased cell viability and proliferation, ROS and NO production, triggering protein and DNA damage. In addition, porphyrin up-regulated Keap1 and Nrf2 gene expression, while paraquat decreased Nrf2 gene expression. In this sense, we suggested that the superoxide-hydrogen peroxide imbalance differentially modulates oxidative stress on keratinocytes cell line via Keap1-Nrf2 gene expression pathway.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Queratinocitos , Factor 2 Relacionado con NF-E2/metabolismo , Superóxidos/metabolismo , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Estrés Oxidativo/fisiología , Paraquat/farmacología , Polimorfismo de Nucleótido Simple , Porfirinas/farmacología , Especies Reactivas de Oxígeno/análisis , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
7.
Mol Biol Rep ; 46(2): 2085-2092, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30719606

RESUMEN

Cutaneous melanoma (CM) is an extremely aggressive cancer presenting low survival and high mortality. The vast majority of patients affected by this disease does not respond or show resistance to the chemotherapeutic drugs, which makes the treatment ineffective. In this sense, the necessity for the development of new agents to assist in CM therapy is extremely important. One of the sources of great interest in this search are compounds of natural origin. Among these compounds, caffeic acid has demonstrated a broad spectrum of pharmacological activities as well as antitumor effects in some types of cancer. Therefore, the objective of this work was to investigate the possible antitumor effect of caffeic acid on the SK-Mel-28 cell line, human CM cells. Cells were cultured in flasks with culture medium containing fetal bovine serum, antibiotic, and antifungal, and maintained in ideal conditions. Cells were treated with 25 µM, 50 µM, 100 µM, 150 µM and 200 µM of caffeic acid and dacarbazine at 1 mg/mL. We verified the effect on cell viability and cell death, apoptosis, cell cycle, colony formation and gene expression of caspases. Results showed a decrease in cell viability, cell death induction by apoptosis, inhibition of colony formation, modulation of cell cycle and alterations in gene expression of caspases after caffeic acid treatment. These results suggest an antitumor effect of the compound on SK-Mel-28 cells. This study provides original information on mechanisms by which caffeic acid may play a key role in preventing tumor progression in human melanoma cells.


Asunto(s)
Ácidos Cafeicos/farmacología , Melanoma/tratamiento farmacológico , Adulto , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Ácidos Cafeicos/metabolismo , Caspasas/efectos de los fármacos , Caspasas/genética , Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/genética , División Celular/efectos de los fármacos , Línea Celular Tumoral/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Dacarbazina/farmacología , Femenino , Voluntarios Sanos , Humanos , Masculino , Melanoma/patología , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Melanoma Cutáneo Maligno
8.
Ecotoxicol Environ Saf ; 182: 109420, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31299472

RESUMEN

Mancozeb (MZ), chlorothalonil (CT), and thiophanate methyl (TM) are pesticides commonly used in agriculture due to their efficacy, low acute toxicity to mammals, and short environmental persistence. Although the toxic effects of these pesticides have been previously reported, studies regarding their influence on the immune system are limited. As such, this study focused on the immunomodulatory effect of MZ, CT, and TM pesticides on macrophage cells. RAW 264.7 cells were exposed to a range of concentrations (0.1-100 µg/mL) of these pesticides. CT exposure promoted an increase in reactive oxygen species (ROS) and nitric oxide (NO) levels. The MTT and ds-DNA assay results demonstrated that MZ, CT, and TM exposure induced macrophage proliferation. Moreover, MZ, CT, and TM promoted cell cycle arrest at S phase, strongly suggesting macrophage proliferation. The levels of pro-inflammatory cytokines (IL-1ß, IL-6, TNF-α, and IFN-γ) and caspases (caspase 1, 3, and 8) in macrophages exposed to MZ, CT, and TM pesticides increased, whereas the anti-inflammatory cytokine levels decreased. These results suggest that MZ, CT, and TM exert an immunomodulatory effect on the immune system, inducing macrophage activation and enhancing the inflammatory response.


Asunto(s)
Plaguicidas/toxicidad , Animales , Citocinas/metabolismo , Inmunomodulación , Interleucina-1beta/metabolismo , Macrófagos/efectos de los fármacos , Maneb/toxicidad , Óxido Nítrico/metabolismo , Nitrilos/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Tiofanato/toxicidad , Pruebas de Toxicidad , Factor de Necrosis Tumoral alfa/metabolismo , Zineb/toxicidad
9.
Zygote ; 25(6): 719-730, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29179786

RESUMEN

We produced a new chemical compound based on methylxanthines and polyphenols (CCMP) present in the chemical matrix of guaraná (Paullinia cupana), a seed extract with antioxidant properties. After supplementation with the standard extract of resveratrol, a well documented antioxidant found in other plant sources, we investigated whether this resveratrol-enriched compound could improve sperm viability and modulate differentially reactive oxygen species (ROS) and nitric oxide (NO) levels in thawed sperm. Sperm samples obtained from healthy young donors were treated with different concentrations of guaraná extract (0.1, 1, 5 or 10 mg/ml) and cells were frozen at -80°C for 24 h. In addition, the potential protective effects of guaraná treatment on sperm treated with pro-oxidant compound (200 µM hydrogen peroxide, H2O2) were assessed. Samples were also exposed to three concentrations of CCMP before being frozen in liquid nitrogen (-196°C) or in an ultrafreezer (-80°C) for 24 h, and both pre-freezing and post-thaw measurements of viability and oxidative stress were performed. Guaraná supplementation at 10 mg/ml significantly increased post-thaw viability and decreased oxidative metabolism of the sperm. Moreover, selected concentrations of CCMP improved viability and oxidative metabolism in sperm samples pre-freezing. Furthermore, CCMP showed cryoprotective activity by increasing viability and decreasing oxidative stress in post-thaw samples. In summary, these findings suggested that CCMP supplementation acts as a cryoprotectant to modulate ROS and NO levels in thawed sperm. CCMP could be used to enhance sperm quality and reproductive success.


Asunto(s)
Óxido Nítrico/metabolismo , Paullinia/química , Extractos Vegetales/farmacología , Polifenoles/química , Motilidad Espermática/efectos de los fármacos , Espermatozoides/fisiología , Xantinas/química , Adulto , Antioxidantes/farmacología , Crioprotectores/farmacología , Congelación , Humanos , Masculino , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Análisis de Semen , Espermatozoides/efectos de los fármacos , Adulto Joven
10.
Steroids ; 203: 109352, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38128896

RESUMEN

Physical exercise is recognized as a non-pharmacological approach to treat and protect against several neuroinflammatory conditions and thus to prevent brain disorders. However, the interest in ergogenic resources by athletes and bodybuilding practitioners is widespread and on the rise. These substances shorten the process of performance gain and improve aesthetics, having led to the prominent use and abuse of hormones in the past years. Recent evidence has shown that the purinergic system, composed of adenine nucleotides, nucleosides, enzymes, and receptors, participates in a wide range of processes within the brain, such as neuroinflammation, neuromodulation, and cellular communication. Here, we investigated the effects of the anabolic androgenic steroid (AAS) testosterone (TES) at a dose of 70 mg/kg/week in female rats and the neuroprotective effect of resistance exercise related to the purinergic system and oxidative stress parameters. Our findings showed a decrease in ATP and ADO hydrolysis in treated and trained animals. Furthermore, there was an increase in the density of purinoceptors (P2X7 and A2A) and inflammatory markers (IBA-1, NRLP3, CASP-1, IL-1ß, and IL-6) in the cerebral cortex of animals that received AAS. On the other hand, exercise reversed neuroinflammatory parameters such as IBA-1, NLRP3, CASP-1, and IL-1ß and improved antioxidant response and anti-inflammatory IL-10 cytokine levels. Overall, this study shows that the use of TES without indication or prescription disrupts brain homeostasis, as demonstrated by the increase in neuroinflammation, and that the practice of exercise can protect brain health.


Asunto(s)
Anabolizantes , Entrenamiento de Fuerza , Humanos , Ratas , Femenino , Animales , Testosterona , Anabolizantes/farmacología , Enfermedades Neuroinflamatorias , Congéneres de la Testosterona/farmacología , Encéfalo
11.
J Nutr Biochem ; 127: 109602, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38373509

RESUMEN

This study evaluated the effect of vitamin D3 (VIT D3) supplementation on the enzymatic activities and density of ectonucleoside triphosphate diphosphohydrolase (E-NTPDase), ecto-5-nucleotidase (E-5'-NT), adenosine deaminase (ADA), as well as the density of P2 × 7R, P2Y12R, A1R, A2AR receptors, IL-1ß, and oxidative parameters in type 2 diabetic rats. Forty male Wistar rats were fed a high carbohydrate-high fat diet (HCHFD) and received an intraperitoneal injection containing a single dose of streptozotocin (STZ, 35 mg/kg). Animals were divided into four groups: 1) control; 2) control/VIT D3 12 µg/kg; 3) diabetic; and 4) diabetic/VIT D3 12 µg/kg. Results show that VIT D3 reduced blood glucose, ATP hydrolysis, ADA activity, P2Y12R density (platelets), as well as ATP, ADP, and AMP hydrolysis and ADA activity (synaptosomes). Moreover, VIT D3 increased insulin levels and AMP hydrolysis (platelets) and improved antioxidant defense. Therefore, we suggest that VIT D3 treatment modulates hyperglycemia-induced changes via purinergic enzymes and receptor expression, consequently attenuating insulin homeostasis dysregulation in the diabetic state.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Insulinas , Ratas , Masculino , Animales , Ratas Wistar , Colecalciferol/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Dieta Alta en Grasa/efectos adversos , Vitaminas , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo
12.
J Nutr Biochem ; 115: 109280, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36796549

RESUMEN

The present study evaluated the effect of caffeic acid (CA) on behavioral learning and memory tasks in the diabetic state. We also evaluated the effect of this phenolic acid on the enzymatic activities of acetylcholinesterase, ecto-nucleoside triphosphate diphosphohydrolase, ecto-5-nucleotidase and adenosine deaminase as well as on the density of M1R, α7nAChR, P2×7R, A1R, A2AR, and inflammatory parameters in the cortex and hippocampus of diabetic rats. Diabetes was induced by a single intraperitoneal dose of streptozotocin (55 mg/kg). The animals were divided into six groups: control/vehicle; control/CA 10 and 50 mg/kg; diabetic/vehicle; diabetic/CA 10 and 50 mg/kg, treated by gavage. The results showed that CA improved learning and memory deficits in diabetic rats. Also, CA reversed the increase in acetylcholinesterase and adenosine deaminase activities and reduced ATP and ADP hydrolysis. Moreover, CA increased the density of M1R, α7nAChR, and A1R receptors and reversed the increase in P2×7R and A2AR density in both evaluated structures. In addition, CA treatment attenuated the increase in NLRP3, caspase 1, and interleukin 1ß density in the diabetic state; moreover, it increased the density of interleukin-10 in the diabetic/CA 10 mg/kg group. The results indicated that CA treatment positively modified the activities of cholinergic and purinergic enzymes and the density of receptors, and improved the inflammatory parameters of diabetic animals. Thus, the outcomes suggest that this phenolic acid could improve the cognitive deficit linked to cholinergic and purinergic signaling in the diabetic state.


Asunto(s)
Disfunción Cognitiva , Diabetes Mellitus Experimental , Ratas , Animales , Ratas Wistar , Adenosina Desaminasa/metabolismo , Acetilcolinesterasa/metabolismo , Estreptozocina , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Enfermedades Neuroinflamatorias , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Transducción de Señal , Colinérgicos/uso terapéutico
13.
Mol Cell Endocrinol ; 563: 111852, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36657632

RESUMEN

Several studies have indicated the vitamin D deficiency in the development of macro- and microvascular complications of diabetes mellitus (DM) including DM-related cognitive dysfunction. The purinergic system plays an important role in the modulation of a variety of mechanisms, including neuroinflammation, plasticity, and cell-cell communication. In addition, purines, their receptors, and enzymes can regulate the purinergic axis at different levels in type 1 DM (T1DM). This study evaluated the effects of vitamin D3 alone or in combination with metformin in the behavioral performance of streptozotocin-induced T1DM rats. The effects of this combination on the metabolism of ATP and ADP were also studied by NTPDase (CD39), AMP by 5'-nucleotidase (CD73), and adenosine by adenosine deaminase (E-ADA) in the brain and peripheral lymphocytes of type 1 diabetic STZ-induced rats. The results showed that anxiety and memory loss from the DM condition reverted after 30 days of vitamin D3 treatment. Furthermore, the DM state affected systemic enzymes, with no effect on the central enzymes hydrolyzing extracellular nucleotides and nucleosides. Vitamin D3 treatment positively regulated ectonucleotidase (NTPDase and 5'-nucleotidase) activity, E-ADA, and the purinergic receptors as a mechanism to prevent oxidative damage in the cerebral cortex of T1DM rats. A neuroprotector effect of vitamin D3 through adenosine signaling was also observed, by regulating A1 and A2A receptors proteins levels. The present findings suggest that purinergic signaling through vitamin D3 modulation may be a novel alternative strategy for T1DM treatment, and may compensate for the negative changes in the central nervous system.


Asunto(s)
Diabetes Mellitus Tipo 1 , Metformina , Ratas , Animales , Colecalciferol , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/tratamiento farmacológico , 5'-Nucleotidasa/metabolismo , Metformina/farmacología , Adenosina/farmacología
14.
Neurotoxicology ; 99: 217-225, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37890558

RESUMEN

Resistance physical exercise has neuroprotective and anti-inflammatory effects on many known diseases and, therefore, it has been increasingly explored. The way in which this type of exercise exerts these actions is still under investigation. In this study, we aimed to analyze the enzymes and components of the purinergic system involved in the inflammatory process triggered by the P2X7R. Rats were divided into four groups: control, exercise (EX), lipopolysaccharide (LPS), and EX + LPS. The animals in the exercise groups were subjected to a 12-week ladder-climbing resistance physical exercise and received LPS after the last session for sepsis induction. Enzymes activities (NTPDase, 5'-nucleotidase, and adenosine deaminase), purinoceptors' density (P2X7R, A1, and A2A), and the levels of inflammatory indicators (pyrin domain-containing protein 3 (NLRP3), Caspase-1, interleukin (IL)- 6, IL-1B, and tumor necrosis factor (TNF) -α) were measured in the cortex and hippocampus of the animals. The results show that exercise prevented (in the both structures) the increase of: 1) nucleoside-triphosphatase (NTPDase) and 5'-nucleotidase activities; 2) P2X7R density; 3) NLRP3 and Caspase-1; and 4) IL-6, IL-1ß, and TNF-α It is suggested that the purinergic system and the inflammatory pathway of P2X7R are of fundamental importance and influence the effects of resistance physical exercise on LPS-induced inflammation. Thus, the modulation of the P2X7R by resistance physical exercise offers new avenues for the management of inflammatory-related illnesses.


Asunto(s)
Lipopolisacáridos , Proteína con Dominio Pirina 3 de la Familia NLR , Ratas , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Lipopolisacáridos/toxicidad , 5'-Nucleotidasa/metabolismo , Enfermedades Neuroinflamatorias , Hipocampo/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Ejercicio Físico , Caspasas/metabolismo , Receptores Purinérgicos P2X7/metabolismo
15.
Neuroscience ; 502: 25-40, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36058342

RESUMEN

BACKGROUND: Some studies have suggested that mitochondrial dysfunction and a superoxide imbalance could increase susceptibility to chronic stressful events, contributing to the establishment of chronic inflammation and the development of mood disorders. The mitochondrial superoxide imbalance induced by some molecules, such as rotenone, could be evolutionarily conserved, causing behavioral, immune, and neurological alterations in animals with a primitive central nervous system. OBJECTIVE: Behavioral, immune, and histological markers were analyzed in Eisenia fetida earthworms chronically exposed to rotenone for 14 days. METHODS: Earthworms were placed in artificial soil containing 30 nM of rotenone distributed into a plastic cup that allowed the earthworms to leave and return freely into the ground. Since these organisms prefer to be buried, the model predicted that the earthworms would necessarily have to return to the rotenone-contaminated medium, creating a stressful condition. The effect on survival behavior in the immune and histological body wall and ventral nervous ganglia (VNG) structures, as well as gene expression related to inflammation and mitochondrial and neuromuscular changes. RESULTS: Rotenone-induced loss of earthworm escape behavior and immune alterations indicated a chronic inflammatory state. Some histological changes in the body wall and VNG indicated a possible earthworm reaction aimed at protecting against rotenone. Overexpression of the nicotinic acetylcholine receptor gene (nAChR α5) in neural tissues could also help earthworms reduce the degenerative effects of rotenone on dopaminergic neurons. CONCLUSION: These data suggest that mitochondrial dysfunction could be an evolutionarily conserved element that induces inflammatory and behavioral changes related to chronic stress.


Asunto(s)
Oligoquetos , Receptores Nicotínicos , Contaminantes del Suelo , Animales , Oligoquetos/metabolismo , Superóxidos/metabolismo , Superóxidos/farmacología , Rotenona/toxicidad , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/farmacología , Suelo/química , Plásticos/metabolismo , Plásticos/farmacología , Inflamación/inducido químicamente , Receptores Nicotínicos/metabolismo
16.
J Mol Med (Berl) ; 100(4): 645-663, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35249135

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has significantly impacted the world and has driven many researchers into the pathophysiology of COVID-19. In the findings, there is a close association between purinergic signaling and the immune response. Then, this study aimed to evaluate alterations in the purinergic signaling in COVID-19 patients according to range severity. We divided the COVID-19 patients into moderate and severe cases following the guideless of NIH and WHO, together with clinical characteristics. The blood samples were collected to obtain PBMCs and platelets. We analyzed the ectonucleotidase activities through ATP, ADP, AMP, Ado hydrolysis, E-NTPDase1 (CD39), and 5'-NT (CD73) expression by flow cytometry in total leukocytes. The extracellular ATP was measured by bioluminescence, and cytokines were analyzed by flow cytometry. We observed a decrease in ATP hydrolysis and increased AMP hydrolysis in PBMCs for both groups. In severe cases, ATP hydrolysis was raised for the platelets, while ADP and AMP hydrolysis have risen significantly in both groups. Additionally, there was a significant increase in ADP hydrolysis in severe cases compared to moderate cases. In addition, we observed an increase in the ADA activity in platelets of moderate patients. Moderate and severe cases showed increased expression of CD39 and CD73 in total leukocytes. To finalize the purinergic signaling, extracellular ATP was increased in both groups. Furthermore, there was an increase in IL-2, IL-6, IL-10, and IL-17 in moderate and severe groups. Thus, for the first time, our findings confirm the changes in purinergic signaling and immune response in COVID-19, in addition to making it more evident that the severity range directly impacts these changes. Therefore, the therapeutic potential of the purinergic system must be highlighted and studied as a possible target for the treatment of SARS-CoV-2 disease. KEY MESSAGES: COVID-19 patients exhibit alterations in purinergic system and immune response. High levels of extracellular ATP lead to different inflammatory responses. CD39 and CD73 expression were increased in COVID-19 patients. Cytokines IL-2, IL-6, IL-10, and IL-17 also were altered in these patients. The purinergic system may be a possibility target to SARS-CoV-2 treatments.


Asunto(s)
COVID-19 , Adenosina Trifosfato/metabolismo , Plaquetas , Humanos , Pandemias , SARS-CoV-2
17.
J Med Food ; 24(10): 1050-1057, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33769097

RESUMEN

Eye diseases have a negative impact on the eyesight quality of the world population. The age-related macular degeneration (AMD) draws special attention since it is a chronic disorder characterized by oxidative and inflammatory damage to the retinal epithelial pigment, which triggers progressive vision loss. In the Brazilian Amazon, Astrocaryum aculeatum is an Amazonian fruit (Tucumã) used by riverside communities in traditional medicine to treat a number of ailments. These communities have recently shown to have increased longevity and reduced prevalence of age-related morbidity. Thus, the aim of this research was to chemically characterize and analyze the in vitro antioxidant effect and molecular damage prevention of the Tucumã ethanolic extract in retinal pigment epithelium (RPE) cells in a model for AMD. The extract was chemically characterized by ultra-high-performance liquid chromatography (HPLC) coupled with diode-array detection and mass spectrophotometry (HPLC-DAD-MS). In vitro protocols were performed, and the cytopreventive effect of Tucumã on RPE cells exposed to high concentrations of superoxide anion, an oxidant and genotoxic molecule, as well as the effect of Tucumã extract on oxidative and molecular makers were assessed. Biochemical and flow cytometry analyses were conducted in these protocols. The extract presents high concentrations of caffeic acid, gallic acid, catechin, luteolin, quercetin, and rutin. Treatment did not show cytotoxic effects in cells treated only with extract at 50 µg/mL. In fact, it improved cell viability and was able to prevent necrosis and apoptosis, and oxidative and molecular damage was significantly reduced. In summary, Tucumã is an important Amazon fruit, which seems to contribute significantly to improve human health conditions, as our findings suggest that its extract has a relevant chemical matrix rich in antioxidant molecules, and its consumption could improve eye health and contribute to prevention against oxidative stress through cytoprevention, reactive oxygen species reduction, and maintenance of DNA integrity in retinal pigment epithelium (RPE) cells.


Asunto(s)
Arecaceae , Epitelio Pigmentado de la Retina , Daño del ADN , Humanos , Oxidación-Reducción , Estrés Oxidativo
18.
Biomed Pharmacother ; 137: 111273, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33524787

RESUMEN

Diabetes mellitus (DM) and hypertension are highly prevalent worldwide health problems and frequently associated with severe clinical complications, such as diabetic cardiomyopathy, nephropathy, retinopathy, neuropathy, stroke, and cardiac arrhythmia, among others. Despite all existing research results and reasonable speculations, knowledge about the role of purinergic system in individuals with DM and hypertension remains restricted. Purinergic signaling accounts for a complex network of receptors and extracellular enzymes responsible for the recognition and degradation of extracellular nucleotides and adenosine. The main components of this system that will be presented in this review are: P1 and P2 receptors and the enzymatic cascade composed by CD39 (NTPDase; with ATP and ADP as a substrate), CD73 (5'-nucleotidase; with AMP as a substrate), and adenosine deaminase (ADA; with adenosine as a substrate). The purinergic system has recently emerged as a central player in several physiopathological conditions, particularly those linked to inflammatory responses such as diabetes and hypertension. Therefore, the present review focuses on changes in both purinergic P1 and P2 receptor expression as well as the activities of CD39, CD73, and ADA in diabetes and hypertension conditions. It can be postulated that the manipulation of the purinergic axis at different levels can prevent or exacerbate the insurgency and evolution of diabetes and hypertension working as a compensatory mechanism.


Asunto(s)
Diabetes Mellitus/metabolismo , Hipertensión/metabolismo , Purinas/metabolismo , Receptores Purinérgicos P1/metabolismo , Receptores Purinérgicos P2/metabolismo , 5'-Nucleotidasa/metabolismo , Adenosina Desaminasa/metabolismo , Animales , Antígenos CD/metabolismo , Apirasa/metabolismo , Comunicación Celular , Diabetes Mellitus/epidemiología , Diabetes Mellitus/fisiopatología , Diabetes Mellitus/terapia , Dieta Saludable , Ejercicio Físico , Humanos , Hipertensión/epidemiología , Hipertensión/fisiopatología , Hipertensión/terapia , Antagonistas de Receptores Purinérgicos P1/uso terapéutico , Antagonistas del Receptor Purinérgico P2/uso terapéutico , Transducción de Señal
19.
Neurochem Int ; 148: 105085, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34052297

RESUMEN

Nutraceuticals have been the focus of numerous research in recent years and accumulating data support their use for promoting some health benefits. Several nutraceuticals have been widely studied as supplements due to their functional properties ameliorating symptoms associated with neurological disorders, such as oxidative stress and chronic inflammatory states. This seems to be the case of some fruits and seeds from the Amazon Biome consumed since the pre-Columbian period that could have potential beneficial impact on the human nervous system. The beneficial activities of these food sources are possibly related to a large number of bioactive molecules including polyphenols, carotenoids, unsaturated fatty acids, vitamins, and trace elements. In this context, this review compiled the research on six Amazonian fruits and seeds species and some of the major nutraceuticals found in their composition, presenting brief mechanisms related to their protagonist action in improving inflammatory responses and neuroinflammation.


Asunto(s)
Suplementos Dietéticos , Inflamación/tratamiento farmacológico , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Plantas Medicinales/química , Ríos , Animales , Productos Biológicos , Brasil , Enfermedad Crónica , Fenómenos Electrofisiológicos , Humanos
20.
Life Sci ; 277: 119421, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33785337

RESUMEN

Diabetes mellitus (DM) is a metabolic disorder characterized by a chronic hyperglycemia state, increased oxidative stress parameters, and inflammatory processes. AIMS: To evaluate the effect of caffeic acid (CA) on ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) and adenosine deaminase (ADA) enzymatic activity and expression of the A2A receptor of the purinergic system, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymatic activity and expression of the α7nAChR receptor of the cholinergic system as well as inflammatory and oxidative parameters in diabetic rats. METHODS: Diabetes was induced by a single dose intraperitoneally of streptozotocin (STZ, 55 mg/kg). Animals were divided into six groups (n = 10): control/oil; control/CA 10 mg/kg; control/CA 50 mg/kg; diabetic/oil; diabetic/CA 10 mg/kg; and diabetic/CA 50 mg/kg treated for thirty days by gavage. RESULTS: CA treatment reduced ATP and ADP hydrolysis (lymphocytes) and ATP levels (serum), and reversed the increase in ADA and AChE (lymphocytes), BuChE (serum), and myeloperoxidase (MPO, plasma) activities in diabetic rats. CA treatment did not attenuate the increase in IL-1ß and IL-6 gene expression (lymphocytes) in the diabetic state; however, it increased IL-10 and A2A gene expression, regardless of the animals' condition (healthy or diabetic), and α7nAChR gene expression. Additionally, CA attenuated the increase in oxidative stress markers and reversed the decrease in antioxidant parameters of diabetic animals. CONCLUSION: Overall, our findings indicated that CA treatment positively modulated purinergic and cholinergic enzyme activities and receptor expression, and improved oxi-inflammatory parameters, thus suggesting that this phenolic acid could improve redox homeostasis dysregulation and purinergic and cholinergic signaling in the diabetic state.


Asunto(s)
Acetilcolinesterasa/metabolismo , Butirilcolinesterasa/metabolismo , Ácidos Cafeicos/farmacología , Diabetes Mellitus Experimental/patología , Regulación de la Expresión Génica/efectos de los fármacos , Mediadores de Inflamación/metabolismo , Estrés Oxidativo/efectos de los fármacos , Acetilcolinesterasa/genética , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Antioxidantes/farmacología , Apirasa/genética , Apirasa/metabolismo , Butirilcolinesterasa/genética , Citocinas/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Linfocitos/efectos de los fármacos , Linfocitos/metabolismo , Linfocitos/patología , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Peroxidasa/metabolismo , Ratas , Ratas Wistar , Receptor Nicotínico de Acetilcolina alfa 7/genética , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA