Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 629(8012): 573-578, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38750231

RESUMEN

A key challenge in realizing practical quantum networks for long-distance quantum communication involves robust entanglement between quantum memory nodes connected by fibre optical infrastructure1-3. Here we demonstrate a two-node quantum network composed of multi-qubit registers based on silicon-vacancy (SiV) centres in nanophotonic diamond cavities integrated with a telecommunication fibre network. Remote entanglement is generated by the cavity-enhanced interactions between the electron spin qubits of the SiVs and optical photons. Serial, heralded spin-photon entangling gate operations with time-bin qubits are used for robust entanglement of separated nodes. Long-lived nuclear spin qubits are used to provide second-long entanglement storage and integrated error detection. By integrating efficient bidirectional quantum frequency conversion of photonic communication qubits to telecommunication frequencies (1,350 nm), we demonstrate the entanglement of two nuclear spin memories through 40 km spools of low-loss fibre and a 35-km long fibre loop deployed in the Boston area urban environment, representing an enabling step towards practical quantum repeaters and large-scale quantum networks.

2.
Phys Rev Lett ; 129(5): 053603, 2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35960557

RESUMEN

An efficient, scalable source of shaped single photons that can be directly integrated with optical fiber networks and quantum memories is at the heart of many protocols in quantum information science. We demonstrate a deterministic source of arbitrarily temporally shaped single-photon pulses with high efficiency [detection efficiency=14.9%] and purity [g^{(2)}(0)=0.0168] and streams of up to 11 consecutively detected single photons using a silicon-vacancy center in a highly directional fiber-integrated diamond nanophotonic cavity. Combined with previously demonstrated spin-photon entangling gates, this system enables on-demand generation of streams of correlated photons such as cluster states and could be used as a resource for robust transmission and processing of quantum information.

3.
Science ; 378(6619): 557-560, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36378964

RESUMEN

Long-distance quantum communication and networking require quantum memory nodes with efficient optical interfaces and long memory times. We report the realization of an integrated two-qubit network node based on silicon-vacancy centers (SiVs) in diamond nanophotonic cavities. Our qubit register consists of the SiV electron spin acting as a communication qubit and the strongly coupled silicon-29 nuclear spin acting as a memory qubit with a quantum memory time exceeding 2 seconds. By using a highly strained SiV, we realize electron-photon entangling gates at temperatures up to 1.5 kelvin and nucleus-photon entangling gates up to 4.3 kelvin. We also demonstrate efficient error detection in nuclear spin-photon gates by using the electron spin as a flag qubit, making this platform a promising candidate for scalable quantum repeaters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA