Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell ; 155(4): 765-77, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24209692

RESUMEN

Kinase suppressor of Ras 2 (KSR2) is an intracellular scaffolding protein involved in multiple signaling pathways. Targeted deletion of Ksr2 leads to obesity in mice, suggesting a role in energy homeostasis. We explored the role of KSR2 in humans by sequencing 2,101 individuals with severe early-onset obesity and 1,536 controls. We identified multiple rare variants in KSR2 that disrupt signaling through the Raf-MEKERK pathway and impair cellular fatty acid oxidation and glucose oxidation in transfected cells; effects that can be ameliorated by the commonly prescribed antidiabetic drug, metformin. Mutation carriers exhibit hyperphagia in childhood, low heart rate, reduced basal metabolic rate and severe insulin resistance. These data establish KSR2 as an important regulator of energy intake, energy expenditure, and substrate utilization in humans. Modulation of KSR2-mediated effects may represent a novel therapeutic strategy for obesity and type 2 diabetes.


Asunto(s)
Resistencia a la Insulina , Obesidad/genética , Proteínas Serina-Treonina Quinasas/genética , Factores de Edad , Edad de Inicio , Secuencia de Aminoácidos , Animales , Niño , Metabolismo Energético , Ácidos Grasos/metabolismo , Femenino , Glucosa/metabolismo , Humanos , Hiperfagia/genética , Hiperfagia/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Obesidad/epidemiología , Obesidad/metabolismo , Oxidación-Reducción , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas B-raf/química , Proteínas Proto-Oncogénicas B-raf/metabolismo , Alineación de Secuencia
2.
Mol Cell ; 37(1): 67-78, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-20129056

RESUMEN

Mitochondrial DNA is replicated by a unique enzymatic machinery, which is distinct from the replication apparatus used for copying the nuclear genome. We examine here the mechanisms of origin-specific initiation of lagging-strand DNA synthesis in human mitochondria. We demonstrate that the mitochondrial RNA polymerase (POLRMT) is the primase required for initiation of DNA synthesis from the light-strand origin of DNA replication (OriL). Using only purified POLRMT and DNA replication factors, we can faithfully reconstitute OriL-dependent initiation in vitro. Leading-strand DNA synthesis is initiated from the heavy-strand origin of DNA replication and passes OriL. The single-stranded OriL is exposed and adopts a stem-loop structure. At this stage, POLRMT initiates primer synthesis from a poly-dT stretch in the single-stranded loop region. After about 25 nt, POLRMT is replaced by DNA polymerase gamma, and DNA synthesis commences. Our findings demonstrate that POLRMT can function as an origin-specific primase in mammalian mitochondria.


Asunto(s)
Replicación del ADN , ADN Mitocondrial/biosíntesis , ARN Polimerasas Dirigidas por ADN/fisiología , ADN Mitocondrial/química , Silenciador del Gen , Humanos , Modelos Genéticos , Conformación de Ácido Nucleico , Poli T/química , Origen de Réplica
3.
Hum Mol Genet ; 20(6): 1212-23, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21228000

RESUMEN

A large number of mutations in the gene encoding the catalytic subunit of mitochondrial DNA polymerase γ (POLγA) cause human disease. The Y955C mutation is common and leads to a dominant disease with progressive external ophthalmoplegia and other symptoms. The biochemical effect of the Y955C mutation has been extensively studied and it has been reported to lower enzyme processivity due to decreased capacity to utilize dNTPs. However, it is unclear why this biochemical defect leads to a dominant disease. Consistent with previous reports, we show here that the POLγA:Y955C enzyme only synthesizes short DNA products at dNTP concentrations that are sufficient for proper function of wild-type POLγA. In addition, we find that this phenotype is overcome by increasing the dNTP concentration, e.g. dATP. At low dATP concentrations, the POLγA:Y955C enzyme stalls at dATP insertion sites and instead enters a polymerase/exonuclease idling mode. The POLγA:Y955C enzyme will compete with wild-type POLγA for primer utilization, and this will result in a heterogeneous population of short and long DNA replication products. In addition, there is a possibility that POLγA:Y955C is recruited to nicks of mtDNA and there enters an idling mode preventing ligation. Our results provide a novel explanation for the dominant mtDNA replication phenotypes seen in patients harboring the Y955C mutation, including the existence of site-specific stalling. Our data may also explain why mutations that disturb dATP pools can be especially deleterious for mtDNA synthesis.


Asunto(s)
ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Mutación Missense , Oftalmoplejía Externa Progresiva Crónica/enzimología , Línea Celular , ADN Polimerasa gamma , Replicación del ADN , ADN Mitocondrial/genética , Humanos , Oftalmoplejía Externa Progresiva Crónica/genética
4.
Biochemistry ; 47(50): 13362-70, 2008 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-19053250

RESUMEN

Replication in archaea is carried out by proteins that are homologues of eukaryotic counterparts. However, the archaeal systems tend to be much simpler with fewer different genes encoding the core functions than in eukaryotic counterparts. In many archaea, there is a single minichromosome maintenance (MCM) homologue, presumed to be the replicative helicase and between one and three origin recognition complex (ORC) homologues involved in binding to the replication origins. Here we describe the cloning and characterization of the MCM protein from the crenarchaeote Aeropyrum pernix. Like other eukaryotic and archaeal MCM proteins, it is found to be an ATP-dependent DNA helicase, and the putative active site residues involved in ATP binding and hydrolysis are confirmed by mutation. Deletion of the N-terminal 256 amino acids yielded a protein with higher ATPase activity in the absence of DNA and retained robust helicase activity. Interactions with the ORC proteins of A. pernix were examined, and it was found that both ORC homologues could inhibit the helicase activity of MCM. Further it was found that ORC2 could autophosphorylate in the presence of ATP and more remarkably could phosphorylate MCM in a species-specific manner.


Asunto(s)
Aeropyrum/química , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Complejo de Reconocimiento del Origen/química , Complejo de Reconocimiento del Origen/metabolismo , Aeropyrum/genética , Proteínas Arqueales/genética , Humanos , Mutagénesis Sitio-Dirigida , Complejo de Reconocimiento del Origen/genética , Fosforilación/genética , Unión Proteica/genética , Unión Proteica/fisiología , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Alineación de Secuencia , Homología Estructural de Proteína
5.
J Mol Biol ; 363(2): 355-69, 2006 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-16978641

RESUMEN

We have characterised the interaction of the Aeropyrum pernix origin recognition complex proteins (ORC1 and ORC2) with DNA using DNase I footprinting. Each protein binds upstream of its respective gene. However, ORC1 protein alone interacts more tightly with an additional region containing multiple origin recognition box (ORB) sites that we show to be a replication origin. At this origin, there are four ORB elements disposed either side of an A+T-rich region. An ORC1 protein dimer binds at each of these ORB sites. Once all four ORB sites have bound ORC1 protein, there is a transition to a higher-order assembly with a defined alteration in topology and superhelicity. Furthermore, after this transition, the A+T-rich region becomes sensitive to digestion by DNase I and P1 nuclease, revealing that the transition promotes distortion of the DNA in this region, presumably as a prelude to loading of MCM helicase.


Asunto(s)
Aeropyrum , Proteínas Arqueales/metabolismo , Complejo de Reconocimiento del Origen/metabolismo , Origen de Réplica , Aeropyrum/genética , Aeropyrum/metabolismo , Proteínas Arqueales/genética , Secuencia de Bases , ADN/química , ADN/metabolismo , Huella de ADN , Radical Hidroxilo/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Complejo de Reconocimiento del Origen/genética , Unión Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Endonucleasas Específicas del ADN y ARN con un Solo Filamento/metabolismo
6.
Sci Rep ; 7(1): 4394, 2017 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-28663568

RESUMEN

Obesity is a genetically heterogeneous disorder. Using targeted and whole-exome sequencing, we studied 32 human and 87 rodent obesity genes in 2,548 severely obese children and 1,117 controls. We identified 52 variants contributing to obesity in 2% of cases including multiple novel variants in GNAS, which were sometimes found with accelerated growth rather than short stature as described previously. Nominally significant associations were found for rare functional variants in BBS1, BBS9, GNAS, MKKS, CLOCK and ANGPTL6. The p.S284X variant in ANGPTL6 drives the association signal (rs201622589, MAF~0.1%, odds ratio = 10.13, p-value = 0.042) and results in complete loss of secretion in cells. Further analysis including additional case-control studies and population controls (N = 260,642) did not support association of this variant with obesity (odds ratio = 2.34, p-value = 2.59 × 10-3), highlighting the challenges of testing rare variant associations and the need for very large sample sizes. Further validation in cohorts with severe obesity and engineering the variants in model organisms will be needed to explore whether human variants in ANGPTL6 and other genes that lead to obesity when deleted in mice, do contribute to obesity. Such studies may yield druggable targets for weight loss therapies.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Variación Genética , Obesidad Mórbida/genética , Obesidad Infantil/genética , Animales , Estudios de Casos y Controles , Cromograninas/química , Cromograninas/genética , Cromograninas/metabolismo , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gs/química , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Humanos , Masculino , Ratones , Modelos Moleculares , Mutación , Obesidad Mórbida/diagnóstico , Oportunidad Relativa , Obesidad Infantil/diagnóstico , Linaje , Conformación Proteica , Roedores
7.
Cell Metab ; 18(6): 908-19, 2013 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-24315374

RESUMEN

Stress-regulated signaling pathways protect mitochondrial proteostasis and function from pathologic insults. Despite the importance of stress-regulated signaling pathways in mitochondrial proteome maintenance, the molecular mechanisms by which these pathways maintain mitochondrial proteostasis remain largely unknown. We identify Tim17A as a stress-regulated subunit of the translocase of the inner membrane 23 (TIM23) mitochondrial protein import complex. We show that Tim17A protein levels are decreased downstream of stress-regulated translational attenuation induced by eukaryotic initiation factor 2α (eIF2α) phosphorylation through a mechanism dependent on the mitochondrial protease YME1L. Furthermore, we demonstrate that decreasing Tim17A attenuates TIM23-dependent protein import, promotes the induction of mitochondrial unfolded protein response (UPR)-associated proteostasis genes, and confers stress resistance in C. elegans and mammalian cells. Thus, our results indicate that Tim17A degradation is a stress-responsive mechanism by which cells adapt mitochondrial protein import efficiency and promote mitochondrial proteostasis in response to the numerous pathologic insults that induce stress-regulated translation attenuation.


Asunto(s)
Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Estrés Oxidativo , ATPasas Asociadas con Actividades Celulares Diversas , Animales , Arsénico/toxicidad , Caenorhabditis elegans/metabolismo , Línea Celular , Factor 2 Eucariótico de Iniciación/metabolismo , Células HEK293 , Células HeLa , Humanos , Metaloendopeptidasas/antagonistas & inhibidores , Metaloendopeptidasas/genética , Metaloendopeptidasas/metabolismo , Ratones , Mitocondrias/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/antagonistas & inhibidores , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales , Estrés Oxidativo/efectos de los fármacos , Paraquat/toxicidad , Fosforilación , Biosíntesis de Proteínas/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Respuesta de Proteína Desplegada/efectos de los fármacos
8.
J Biol Chem ; 279(23): 24540-51, 2004 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-15037622

RESUMEN

The plant glutathione S-transferase BI-GST has been identified as a potent inhibitor of Bax lethality in yeast, a phenotype associated with oxidative stress and disruption of mitochondrial functions. Screening of a tomato two-hybrid library for BI-GST interacting proteins identified five homologous Tau class GSTs, which readily form heterodimers between them and BI-GST. All six LeGSTUs were found to be able to protect yeast cells from prooxidant-induced cell death. The efficiency of each LeGSTU was prooxidant-specific, indicating a different role for each LeGSTU in the oxidative stress-response mechanism. The prooxidant protective effect of all six proteins was suppressed in the absence of YAP1, a transcription factor that regulates hydroperoxide homeostasis in Saccharomyces cerevisiae, suggesting a role for the LeGSTUs in the context of the YAP1-dependent stress-responsive machinery. The different LeGSTUs exhibited varied substrate specificity and showed activity against oxidative stress by-products, indicating that their prooxidant protective function is likely related to the minimization of oxidative damage. Taken together, these results indicate that Tau class GSTs participate in a broad network of catalytic and regulatory functions involved in the oxidative stress response.


Asunto(s)
Glutatión Transferasa/fisiología , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-bcl-2 , Secuencia de Aminoácidos , Catálisis , Dimerización , Relación Dosis-Respuesta a Droga , Glutatión/química , Glutatión/metabolismo , Disulfuro de Glutatión/química , Glutatión Transferasa/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Solanum lycopersicum/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Oxidantes/química , Oxidantes/metabolismo , Fenotipo , Pruebas de Precipitina , Unión Proteica , Estructura Secundaria de Proteína , Proteínas Proto-Oncogénicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Técnicas del Sistema de Dos Híbridos , Proteína X Asociada a bcl-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA