Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Acta Haematol ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38471491

RESUMEN

Introduction Pre exposure prophylaxis with monoclonal antibodies (mAbs) were developed in addition to COVID19 vaccine for immunocompromised and those with insufficient immune response, among them patients with CLL. Omicron variant and its sublineages evolved mutations that escape mAbs neutralizing effect, yet the extent of which was not studied. Methods We evaluated anti-spike titters and neutralization activity of COVID-19 wild type (WT) , Delta , Omicron, BA2, BA4 and BA5 before and after tixagevimab-cilgavimab (TGM/CGM) dose of 150/150mg or 300/300mg in patients with CLL. Results 70 patients were tested 2 weeks before and 4 weeks after receiving TGM/CGM mAbs. After TGM/CGM anti-spike ab level increased 170 folds from 13.6 BAU/ml (IQR, 0.4-288) to 2328 BAU/ml (IQR, 1681-3500). Neutralization activity increased in all variants, and was 176 folds higher in WT and 55 folds higher in Delta compared to 10 folds higher in Omicron and its sublineages (BA2 x11, BA4 x4 , BA5 x18). Over follow-up period of 3 months, 20 patients (29%) with CLL acquired COVID-19 infection, all recovered uneventfully. In a multivariate analysis anti-spike antibody titer was found a significant predictor for post TGM/CGM COVID19 infection. Conclusion Efficacy of preexposure prophylaxis with TGM/CGM in patients with CLL is significantly reduced in era of Omicron and its sublineages BA2, BA4 and BA5.

2.
J Med Virol ; 95(2): e28498, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36653733

RESUMEN

Community surveillance found the 2019-2020 A(H1N1)pdm09 predominant influenza season in Israel to be a high-intensity season with an early and steep morbidity peak. To further characterize disease severity in the 2019-2020 season, we analyzed a cohort of hospitalized patients with laboratory-confirmed influenza from this season (n = 636). Quantitative polymerase chain reaction was performed on clinical samples to detect the presence of influenza. Demographic, clinical, and laboratory data were retrieved via electronic health records and MDClone. Electronic health records were accessed to obtain data on intensive care unit patients, missing data and for data verification purposes. Univariate analysis was performed to compare demographic, comorbidity, and clinical characteristics across the three influenza strains. The A(H1N1)pdm09 predominant 2019-2020 influenza season in Israel was characterized by an early and steep morbidity peak, vaccine delays and shortages, and with the A(H3N2) and B/Victoria strains disproportionately targeting children and young adults, most probably due to reduced immunity to these strains. A greater proportion of children <5 years infected with A(H3N2) and B/Victoria developed severe influenza compared with those infected with A(H1N1)pdm09. Our study emphasizes the vulnerability of infants and young children in the face of rapidly evolving influenza strains and underscores the importance of influenza prevention measures in this population.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Niño , Lactante , Adulto Joven , Humanos , Preescolar , Gripe Humana/epidemiología , Subtipo H3N2 del Virus de la Influenza A , Estaciones del Año , Israel , Morbilidad , Virus de la Influenza B
3.
Clin Transplant ; 37(11): e15091, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37572313

RESUMEN

BACKGROUND: Defining immune correlates of protection against COVID-19 is pivotal for optimizing the use of COVID-19 vaccines, predicting the impact of novel variants on clinical outcomes, and advancing the development of immunotherapies and next-generation vaccines. We aimed to identify vaccine-induced immune correlates of protection against COVID-19-related hospitalizations in a highly vaccinated heart transplant (HT) cohort. METHODS: In a case-control study of HT recipients vaccinated with the BNT162b2 vaccine, patients were prospectively assessed for vaccine-induced neutralization of the wild-type virus, and the Delta and Omicron BA.1, BA.2, BA.4, and BA.5 variants. Comparative analyses with controls were conducted to identify correlates of protection against COVID-19 hospitalization. ROC analyses were performed. Primary outcomes were COVID-19 hospitalizations and severity of SARS-CoV-2 breakthrough infection. RESULTS: The study cohort comprised 59 HT recipients aged 58 (49,65) years with breakthrough infections after three or four monovalent BNT162b2 doses; 41 (69.5%) were men. Thirty-six (61%) patients with COVID-19 were hospitalized; most cases were non-severe (58, 98%). For hospitalized (vs. non-hospitalized) COVID-19 patients, vaccine-induced neutralization titers were significantly lower against all SARS-CoV-2 variants (p < .005). Vaccine-induced neutralization of the wild-type virus and delta and omicron BA.1, BA.2, BA.4, and BA.5 variants was associated with a reduced risk for COVID-19-related hospitalization. The optimal neutralization titer thresholds that were predictive of COVID-19 hospitalizations were 96 (wild-type), 48 (delta), 12 (BA.1), 96 (BA.2), 96 (BA.4), and 48 (BA.5). CONCLUSIONS: BNT162b2-vaccine-induced neutralization responses are immune correlates of protection and confer clinical protection against COVID-19 hospitalizations.


Asunto(s)
COVID-19 , Trasplante de Corazón , Vacunas , Femenino , Humanos , Masculino , Anticuerpos Antivirales , Vacuna BNT162 , Estudios de Casos y Controles , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19 , SARS-CoV-2 , Persona de Mediana Edad , Anciano
4.
Euro Surveill ; 27(44)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36330820

RESUMEN

We evaluated neutralising antibody titres against wild type (WT) SARS-CoV-2 and four Omicron variants (BA.1, BA.2, BA.5 and BA.2.75) in fully vaccinated (three doses of Comirnaty vaccine) healthcare workers (HCW) in Israel who had breakthrough BA.1/BA5 infections. Omicron breakthrough infections in vaccinated individuals resulted in increased neutralising antibodies against the WT and Omicron variants compared with vaccinated uninfected HCW. HCW who recovered from BA.1 or BA.5 infections showed similar neutralising antibodies levels against BA.2.75.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Israel/epidemiología , SARS-CoV-2/genética , Anticuerpos Neutralizantes , Anticuerpos Antivirales
5.
Euro Surveill ; 27(30)2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35904058

RESUMEN

This work evaluated neutralising antibody titres against wild type (WT) SARS-CoV-2 and four Omicron variants (BA.1, BA.2, BA.4 and BA.5) in healthcare workers who had breakthrough BA.1 infection. Omicron breakthrough infection in individuals vaccinated three or four times before infection resulted in increased neutralising antibodies against the WT virus. The fourth vaccine dose did not further improve the neutralising efficiency over the third dose against all Omicron variants, especially BA.4 and BA.5. An Omicron-specific vaccine may be indicated.


Asunto(s)
COVID-19 , Vacunas , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Israel/epidemiología , SARS-CoV-2/genética , Vacunación/métodos
6.
Euro Surveill ; 26(26)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34212838

RESUMEN

SARS-CoV-2 Delta (B.1.617.2) variant of concern (VOC) and other VOCs are spreading in Europe. Micro-neutralisation assays with sera obtained after Comirnaty (BNT162b2, BioNTech/Pfizer) vaccination in 36 healthcare workers (31 female) demonstrated significant fold change reduction in neutralising titres compared with the original virus: Gamma (P.1) 2.3, Beta (B.1.351) 10.4, Delta 2.1 and 2.6. The reduction of the Alpha (B.1.1.7) variant was not significant. Despite being lower, remaining neutralisation capacity conferred by Comirnaty against Delta and other VOCs is probably protective.


Asunto(s)
COVID-19 , SARS-CoV-2 , Vacuna BNT162 , Vacunas contra la COVID-19 , Europa (Continente) , Femenino , Personal de Salud , Humanos , Israel , Vacunación
7.
Euro Surveill ; 26(45)2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34763751

RESUMEN

The SARS-CoV-2 Lambda (Pango lineage designation C.37) variant of interest, initially identified in Peru, has spread to additional countries. First detected in Israel in April 2021 following importations from Argentina and several European countries, the Lambda variant infected 18 individuals belonging to two main transmission chains without further spread. Micro-neutralisation assays following Comirnaty (BNT162b2 mRNA, BioNTech-Pfizer) vaccination demonstrated a significant 1.6-fold reduction in neutralising titres compared with the wild type virus, suggesting increased susceptibility of vaccinated individuals to infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Vacuna BNT162 , Vacunas contra la COVID-19 , Humanos , Israel/epidemiología , Vacunación
9.
J Heart Lung Transplant ; 43(7): 1188-1192, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38522765

RESUMEN

Continued circulation of severe acute respiratory syndrome coronavirus 2 has driven the selection of variants with improved ability to escape preexisting vaccine-induced responses, posing a persistent threat to heart transplant recipients (HTRs). The immunogenicity and safety of the updated XBB.1.5-containing monovalent vaccines are unknown. We prospectively enrolled 52 HTRs who had previously received a 5-dose ancestral-derived monovalent and bivalent messenger RNA (mRNA) vaccination schedule to receive the monovalent XBB.1.5 vaccine. Immunogenicity was evaluated using live virus microneutralization assays. The XBB.1.5 monovalent vaccine elicited potent and diverse neutralizing responses and broadened the reactivity spectrum to encompass newer strains, with the highest increase in neutralization activity being more pronounced against XBB.1.5 (15.8-fold) and JN.1 (13.3-fold) than against BA.5 (6.7-fold) and wild-type (4-fold). Notably, XBB.1.5 and JN.1 were resistant to neutralization by prevaccination sera. There were no safety concerns. Our findings support the updating of coronavirus disease 2019 vaccines to match antigenically divergent variants and exclude ancestral spike-antigen to protect HTRs.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Trasplante de Corazón , SARS-CoV-2 , Humanos , Masculino , Persona de Mediana Edad , Femenino , COVID-19/prevención & control , COVID-19/inmunología , Vacunas contra la COVID-19/inmunología , SARS-CoV-2/inmunología , Estudios Prospectivos , Adulto , Anciano , Anticuerpos Antivirales/sangre , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Receptores de Trasplantes , Inmunogenicidad Vacunal
10.
Sci Rep ; 13(1): 8229, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217554

RESUMEN

UV irradiation is an efficient tool for the disinfection of viruses in general and coronavirus specifically. This study explores the disinfection kinetics of SARS-CoV-2 variants wild type (similar to the Wuhan strain) and three variants (Alpha, Delta, and Omicron) by 267 nm UV-LED. All variants showed more than 5 logs average reduction in copy number at 5 mJ/cm2 but inconsistency was evident, especially for the Alpha variant. Increasing the dose to 7 mJ/cm2 did not increase average inactivation but did result in a dramatic decrease in the inactivation inconsistency making this dose the recommended minimum. Sequence analysis suggests that the difference between the variants is likely due to small differences in the frequency of specific UV extra-sensitive nucleotide sequence motifs although this hypothesis requires further experimental testing. In summary, the use of UV-LED with their simple electricity need (can be operated from a battery or photovoltaic panel) and geometrical flexibility could offer many advantages in the prevention of SARS-CoV-2 spread, but minimal UV dose should be carefully considered.


Asunto(s)
COVID-19 , Virus , Humanos , SARS-CoV-2 , COVID-19/prevención & control , Desinfección , Rayos Ultravioleta
11.
Front Microbiol ; 14: 1113697, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152730

RESUMEN

The positive-sense single-stranded (ss) RNA viruses of the Betacoronavirus (beta-CoV) genus can spillover from mammals to humans and are an ongoing threat to global health and commerce, as demonstrated by the current zoonotic pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Current anti-viral strategies focus on vaccination or targeting key viral proteins with antibodies and drugs. However, the ongoing evolution of new variants that evade vaccination or may become drug-resistant is a major challenge. Thus, antiviral compounds that circumvent these obstacles are needed. Here we describe an innovative antiviral modality based on in silico designed fully synthetic mRNA that is replication incompetent in uninfected cells (termed herein PSCT: parasitic anti-SARS-CoV-2 transcript). The PSCT sequence was engineered to include key untranslated cis-acting regulatory RNA elements of the SARS-CoV-2 genome, so as to effectively compete for replication and packaging with the standard viral genome. Using the Vero E6 cell-culture based SARS-CoV-2 infection model, we determined that the intracellular delivery of liposome-encapsulated PSCT at 1 hour post infection significantly reduced intercellular SARS-CoV-2 replication and release into the extracellular milieu as compared to mock treatment. In summary, our findings are a proof-of-concept for the therapeutic feasibility of in silico designed mRNA compounds formulated to hinder the replication and packaging of ssRNA viruses sharing a comparable genomic-structure with beta-CoVs.

12.
Heliyon ; 9(6): e16750, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37292300

RESUMEN

The rapid spread and dominance of the Omicron SARS-CoV-2 lineages have posed severe health challenges worldwide. While extensive research on the role of the Receptor Binding Domain (RBD) in promoting viral infectivity and vaccine sensitivity has been well documented, the functional significance of the 681PRRAR/SV687 polybasic motif of the viral spike is less clear. In this work, we monitored the infectivity levels and neutralization potential of the wild-type human coronavirus 2019 (hCoV-19), Delta, and Omicron SARS-CoV-2 pseudoviruses against sera samples drawn four months post administration of a third dose of the BNT162b2 mRNA vaccine. Our findings show that in comparison to hCoV-19 and Delta SARS-CoV-2, Omicron lineages BA.1 and BA.2 exhibit enhanced infectivity and a sharp decline in their sensitivity to vaccine-induced neutralizing antibodies. Interestingly, P681 mutations within the viral spike do not play a role in the neutralization potential or infectivity of SARS Cov-2 pseudoviruses carrying mutations in this position. The P681 residue however, dictates the ability of the spike protein to promote fusion and syncytia formation between infected cells. While spike from hCoV-19 (P681) and Omicron (H681) promote only modest cell fusion and formation of syncytia between cells that express the spike-protein, Delta spike (R681) displays enhanced fusogenic activity and promotes syncytia formation. Additional analysis shows that a single P681R mutation within the hCoV-19 spike, or H681R within the Omicron spike, restores fusion potential to similar levels observed for the Delta R681 spike. Conversely, R681P point mutation within the spike of Delta pseudovirus abolishes efficient fusion and syncytia formation. Our investigation also demonstrates that spike proteins from hCoV-19 and Delta SARS-CoV-2 are efficiently incorporated into viral particles relative to the spike of Omicron lineages. We conclude that the third dose of the Pfizer-BNT162b2 provides appreciable protection against the newly emerged Omicron sub-lineages. However, the neutralization sensitivity of these new variants is diminished relative to that of the hCoV-19 or Delta SARS-CoV-2. We further show that the P681 residue within spike dictates cell fusion and syncytia formation with no effects on the infectivity of the specific viral variant and on its sensitivity to vaccine-mediated neutralization.

13.
Transplantation ; 107(1): 192-203, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36367927

RESUMEN

BACKGROUND: The effectiveness of the fourth BNT162b2 vaccination in reducing the rate and severity of coronavirus disease 2019 (COVID-19) caused by the Omicron variant in renal transplant recipients (RTRs) is unknown. METHODS: Interviews were conducted with 447 RTRs regarding the status and timing of the fourth vaccination, prior vaccinations, and preceding COVID-19 infection. RTRs with polymerase chain reaction-confirmed COVID-19 infection from December 1, 2021, to the end of March 2022 were considered to have been infected with the Omicron variant and were interviewed to determine their disease severity. In a subgroup of 74 RTRs, the humoral response to the fourth dose was analyzed. In 30 RTRs, microneutralization assays were performed to reveal the humoral response to wild-type, Delta, and Omicron variant isolates before and after the fourth dose. RESULTS: Of 447 RTRs, 144 (32.2%) were infected with the Omicron variant, with 71 (49.3%) of the infected RTRs having received the fourth vaccine dose. RTRs who did not receive the fourth dose before the infection had more serious illness. In a subgroup of 74 RTRs, the fourth dose elicited a positive humoral response in 94.6% (70/74), with a significant increase in geometric mean titer for receptor-binding domain immunoglobulin G and neutralizing antibodies ( P < 0.001). The humoral responses to the Omicron variant before and after the fourth dose were significantly lower than the responses to the wild-type and the Delta variants. CONCLUSIONS: Overall, the fourth BNT162b2 dose was effective in reducing the rate and severity of Omicron disease in RTRs, despite the reduced humoral response to the variant.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Trasplante de Riñón , Humanos , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/prevención & control , Trasplante de Riñón/efectos adversos , Gravedad del Paciente , SARS-CoV-2 , Vacunación , Vacunas contra la COVID-19/efectos adversos
14.
J Heart Lung Transplant ; 42(8): 1054-1058, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37084801

RESUMEN

In 2022, the antigenically divergent SARS-CoV-2 omicron variants (BA.1, BA.2, BA.4, BA.5) outcompeted previous variants and continued to cause substantial numbers of illnesses and deaths. We evaluated the safety and immunogenicity of the bivalent original/omicron BA.4/BA.5 Pfizer/BioNTech vaccine administered as a fifth dose to heart transplant recipients (HTxRs). We compared neutralization (using live virus assays) of SARS-CoV-2-infected cells in serum samples from HTxRs who had previously received 4 doses of the monovalent BNT162b2 vaccine with samples from HTxRs with breakthrough infection after 4 monovalent BNT162b2 doses. The fifth vaccination induced high neutralization efficiency against the wild-type virus and omicron BA.1, BA.2, BA.4, and BA.5 variants, with significantly higher neutralization efficiency being induced in HTxRs with breakthrough infection than in those without. Neutralizing titers in those with breakthrough infection were sustained above the level induced by the fifth dose in the uninfected. We conclude that the fifth bivalent vaccine is immunogenic, including to variants, with higher vaccine immunogenicity conferred by breakthrough infection. Nevertheless, the clinical protection conferred by the fifth dose is yet to be determined. The sustained neutralization responses in those with breakthrough infection support the notion of delaying booster in those with natural breakthrough infection.


Asunto(s)
COVID-19 , Trasplante de Corazón , Humanos , Vacuna BNT162 , COVID-19/prevención & control , SARS-CoV-2 , Vacunación , Infección Irruptiva , Anticuerpos Antivirales
15.
Vaccines (Basel) ; 11(10)2023 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-37897026

RESUMEN

Vaccination against COVID-19 and influenza provides the best defense against morbidity and mortality. Administering both vaccines concurrently may increase vaccination rates and reduce the burden on the healthcare system. This study evaluated the immunogenicity of healthcare workers in Israel who were co-administered with the Omicron BA.4/BA.5 bivalent COVID-19 vaccine and the 2022-2023 quadrivalent influenza vaccine. SARS-CoV-2 neutralizing antibody titers were measured via microneutralization while influenza antibody titers were measured via hemagglutination inhibition. No immunogenic interference was observed by either vaccine when co-administered. Antibody titers against SARS-CoV-2 variants increased significantly in the cohort receiving the COVID-19 vaccine alone and in combination with the influenza vaccine. Antibody titers against the A/H1N1 influenza strain increased significantly in the cohort receiving the influenza vaccine alone and in combination with the COVID-19 vaccine. Antibody titers against B/Victoria increased significantly in the cohort that received both vaccines. This study has important public health implications for the 2023-2024 winter season, and supports co-administration of both vaccines as a viable immunization strategy.

16.
Front Microbiol ; 14: 1296179, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38322758

RESUMEN

Introduction: Following the significant decrease in SARS-CoV-2 cases worldwide, Israel, as well as other countries, have again been faced with a rise in seasonal influenza. This study compared circulating influenza A and B in hospitalized patients in Israel with the influenza strains in the vaccine following the 2021-2022 winter season which was dominated by the omicron variant. Methods: Nasopharyngeal samples of 16,325 patients were examined for the detection of influenza A(H1N1)pdm09, influenza A(H1N1)pdm09 and influenza B. Phylogenetic trees of hemagglutinin were then prepared using sanger sequencing. Vaccine immunogenicity was also performed using the hemagglutination inhibition test. Results: Of the 16,325 nasopharyngeal samples collected from hospitalized patients between September 2021 (Week 40) and April 2023 (Week 15), 7.5% were found to be positive for influenza. Phylogenetic analyses show that in the 2021-2022 winter season, the leading virus subtype was influenza A(H3N2), belonging to clade 3C.2a1b.2a.2. However, the following winter season was dominated by influenza A(H1N1)pdm09, which belongs to clade 6B.aA.5a.2. The circulating influenza A(H1N1)pdm09 strain showed a shift from the vaccine strain, while the co-circulating influenza A(H3N2) and influenza B strains were similar to those of the vaccine. Antigenic analysis coincided with the sequence analysis. Discussion: Influenza prevalence during 2022-2023 returned to typical levels as seen prior to the emergence of SARS-CoV-2, which may suggest a gradual viral adaptation to SARS-CoV-2 variants. Domination of influenza A(H1N1)pdm09 was observed uniquely in Israel compared to Europe and USA and phylogenetic and antigenic analysis showed lower recognition of the vaccine with the circulating influenza A(H1N1)pdm09 in Israel compared to the vaccine.

17.
Int J Infect Dis ; 132: 72-79, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37072052

RESUMEN

OBJECTIVES: The predictors of SARS-CoV-2 reinfection are unclear. We examined predictors of reinfection with pre-Omicron and Omicron variants among COVID-19-recovered individuals. METHODS: Randomly selected COVID-19-recovered patients (N = 1004) who donated convalescent plasma during 2020 were interviewed between August 2021 and March 2022 regarding COVID-19 vaccination and laboratory-proven reinfection. The sera from 224 (22.3%) participants were tested for antispike (anti-S) immunoglobulin G and neutralizing antibodies. RESULTS: The participants' median age was 31.1 years (78.6% males). The overall reinfection incidence rate was 12.8%; 2.7% versus 21.6% for the pre-Omicron (mostly Delta) versus Omicron variants. Negative associations were found between fever during the first illness and pre-Omicron reinfection: relative risk 0.29 (95% confidence interval 0.09-0.94), high anti-N level at first illness and Omicron reinfection: 0.53 (0.33-0.85), and overall reinfection: 0.56 (0.37-0.84), as well as between subsequent COVID-19 vaccination with the BNT162b2 vaccine and pre-Omicron 0.15 (0.07-0.32), Omicron 0.48 (0.25-0.45), and overall reinfections 0.38 (0.25-0.58). These variables significantly correlated with immunoglobulin G anti-S follow-up levels. High pre-existing anti-S binding and neutralizing antibody levels against the SARS-CoV-2 Wuhan and Alpha strains predicted protection against Omicron reinfections. CONCLUSION: Strong immune responses after the first COVID-19 infection and subsequent vaccination with the BNT162b2 vaccine provided cross-protection against reinfections with the Delta and Omicron variants.


Asunto(s)
COVID-19 , Masculino , Humanos , Adulto , Femenino , COVID-19/epidemiología , SARS-CoV-2 , Pandemias , Vacuna BNT162 , Reinfección/epidemiología , Vacunas contra la COVID-19 , Sueroterapia para COVID-19 , Anticuerpos Neutralizantes , Inmunoglobulina G , Anticuerpos Antivirales
18.
Front Microbiol ; 14: 1296558, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38094629

RESUMEN

Coronaviruses are the causative agents of several recent outbreaks, including the COVID-19 pandemic. One therapeutic approach is blocking viral binding to the host receptor. As binding largely depends on electrostatic interactions, we hypothesized possible inhibition of viral infection through application of electric fields, and tested the effectiveness of Tumor Treating Fields (TTFields), a clinically approved cancer treatment based on delivery of electric fields. In preclinical models, TTFields were found to inhibit coronavirus infection and replication, leading to lower viral secretion and higher cell survival, and to formation of progeny virions with lower infectivity, overall demonstrating antiviral activity. In a pilot clinical study (NCT04953234), TTFields therapy was safe for patients with severe COVID-19, also demonstrating preliminary effectiveness data, that correlated with higher device usage.

19.
Elife ; 122023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36705566

RESUMEN

Background: Viral infection is associated with a significant rewire of the host metabolic pathways, presenting attractive metabolic targets for intervention. Methods: We chart the metabolic response of lung epithelial cells to SARS-CoV-2 infection in primary cultures and COVID-19 patient samples and perform in vitro metabolism-focused drug screen on primary lung epithelial cells infected with different strains of the virus. We perform observational analysis of Israeli patients hospitalized due to COVID-19 and comparative epidemiological analysis from cohorts in Italy and the Veteran's Health Administration in the United States. In addition, we perform a prospective non-randomized interventional open-label study in which 15 patients hospitalized with severe COVID-19 were given 145 mg/day of nanocrystallized fenofibrate added to the standard of care. Results: SARS-CoV-2 infection produced transcriptional changes associated with increased glycolysis and lipid accumulation. Metabolism-focused drug screen showed that fenofibrate reversed lipid accumulation and blocked SARS-CoV-2 replication through a PPARα-dependent mechanism in both alpha and delta variants. Analysis of 3233 Israeli patients hospitalized due to COVID-19 supported in vitro findings. Patients taking fibrates showed significantly lower markers of immunoinflammation and faster recovery. Additional corroboration was received by comparative epidemiological analysis from cohorts in Europe and the United States. A subsequent prospective non-randomized interventional open-label study was carried out on 15 patients hospitalized with severe COVID-19. The patients were treated with 145 mg/day of nanocrystallized fenofibrate in addition to standard-of-care. Patients receiving fenofibrate demonstrated a rapid reduction in inflammation and a significantly faster recovery compared to patients admitted during the same period. Conclusions: Taken together, our data suggest that pharmacological modulation of PPARα should be strongly considered as a potential therapeutic approach for SARS-CoV-2 infection and emphasizes the need to complete the study of fenofibrate in large randomized controlled clinical trials. Funding: Funding was provided by European Research Council Consolidator Grants OCLD (project no. 681870) and generous gifts from the Nikoh Foundation and the Sam and Rina Frankel Foundation (YN). The interventional study was supported by Abbott (project FENOC0003). Clinical trial number: NCT04661930.


Asunto(s)
COVID-19 , Fenofibrato , Humanos , Fenofibrato/uso terapéutico , Lípidos , PPAR alfa , Estudios Prospectivos , SARS-CoV-2 , Resultado del Tratamiento
20.
Int J Infect Dis ; 120: 205-209, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35472530

RESUMEN

OBJECTIVES: To compare infection rates and circulating subtypes of human metapneumovirus (hMPV) before (2019-2020) and after the emergence of coronavirus disease 2019 (COVID-19) (2021) in Israel. METHODS: In total, 12,718 respiratory samples were collected from hospitalized patients of all ages during the years 2019 to 2021 at the Sheba Medical Center in Israel and subjected to reverse transcription-polymerase chain reaction analysis. In addition, whole-genome sequencing was performed to characterize the subtypes of hMPV circulating in Israel between 2019 and 2021. RESULTS: A total of 481 samples were found positive for hMPV. Before the emergence of COVID-19, hMPV peaked in winter months and declined thereafter. In sharp contrast, during the COVID-19 pandemic, we observed a delayed peak in hMPV infection cases and higher infection of young children. Viral sequencing showed a shift in the most prevalent circulating hMPV strain from A2b to B1 during the years 2019, 2020, and 2021. CONCLUSION: Compared with the years before the COVID-19 pandemic, in 2021, hMPV mostly affected young children, and the most prevalent circulating subtype shifted from A2b in 2019 to B1.


Asunto(s)
COVID-19 , Metapneumovirus , Infecciones por Paramyxoviridae , Infecciones del Sistema Respiratorio , COVID-19/epidemiología , Niño , Preescolar , Genotipo , Humanos , Lactante , Israel/epidemiología , Metapneumovirus/genética , Pandemias , Infecciones por Paramyxoviridae/epidemiología , Filogenia , Prevalencia , Infecciones del Sistema Respiratorio/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA