Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Pharmacol Rev ; 71(4): 520-538, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31530573

RESUMEN

Chromosome conformation capture methods have revealed the dynamics of genome architecture which is spatially organized into topologically associated domains, with gene regulation mediated by enhancer-promoter pairs in chromatin space. New evidence shows that endogenous hormones and several xenobiotics act within circumscribed topological domains of the spatial genome, impacting subsets of the chromatin contacts of enhancer-gene promoter pairs in cis and trans Results from the National Institutes of Health-funded PsychENCODE project and the study of chromatin remodeling complexes have converged to provide a clearer understanding of the organization of the neurogenic epigenome in humans. Neuropsychiatric diseases, including schizophrenia, bipolar spectrum disorder, autism spectrum disorder, attention deficit hyperactivity disorder, and other neuropsychiatric disorders are significantly associated with mutations in neurogenic transcriptional networks. In this review, we have reanalyzed the results from publications of the PsychENCODE Consortium using pharmacoinformatics network analysis to better understand druggable targets that control neurogenic transcriptional networks. We found that valproic acid and other psychotropic drugs directly alter these networks, including chromatin remodeling complexes, transcription factors, and other epigenetic modifiers. We envision a new generation of CNS therapeutics targeted at neurogenic transcriptional control networks, including druggable parts of chromatin remodeling complexes and master transcription factor-controlled pharmacogenomic networks. This may provide a route to the modification of interconnected gene pathways impacted by disease in patients with neuropsychiatric and neurodegenerative disorders. Direct and indirect therapeutic strategies to modify the master regulators of neurogenic transcriptional control networks may ultimately help extend the life span of CNS neurons impacted by disease.


Asunto(s)
Redes Reguladoras de Genes/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/fisiología , Cromatina/efectos de los fármacos , Cromatina/genética , Cromatina/metabolismo , Epigénesis Genética , Genoma Humano/efectos de los fármacos , Humanos , Receptores de Neurotransmisores/agonistas , Receptores de Neurotransmisores/antagonistas & inhibidores , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
BMC Med Imaging ; 20(1): 116, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33059612

RESUMEN

BACKGROUND: This study outlines an image processing algorithm for accurate and consistent lung segmentation in chest radiographs of critically ill adults and children typically obscured by medical equipment. In particular, this work focuses on applications in analysis of acute respiratory distress syndrome - a critical illness with a mortality rate of 40% that affects 200,000 patients in the United States and 3 million globally each year. METHODS: Chest radiographs were obtained from critically ill adults (n = 100), adults diagnosed with acute respiratory distress syndrome (ARDS) (n = 25), and children (n = 100) hospitalized at Michigan Medicine. Physicians annotated the lung field of each radiograph to establish the ground truth. A Total Variation-based Active Contour (TVAC) lung segmentation algorithm was developed and compared to multiple state-of-the-art methods including a deep learning model (U-Net), a random walker algorithm, and an active spline model, using the Sørensen-Dice coefficient to measure segmentation accuracy. RESULTS: The TVAC algorithm accurately segmented lung fields in all patients in the study. For the adult cohort, an averaged Dice coefficient of 0.86 ±0.04 (min: 0.76) was reported for TVAC, 0.89 ±0.12 (min: 0.01) for U-Net, 0.74 ±0.19 (min: 0.15) for the random walker algorithm, and 0.64 ±0.17 (min: 0.20) for the active spline model. For the pediatric cohort, a Dice coefficient of 0.85 ±0.04 (min: 0.75) was reported for TVAC, 0.87 ±0.09 (min: 0.56) for U-Net, 0.67 ±0.18 (min: 0.18) for the random walker algorithm, and 0.61 ±0.18 (min: 0.18) for the active spline model. CONCLUSION: The proposed algorithm demonstrates the most consistent performance of all segmentation methods tested. These results suggest that TVAC can accurately identify lung fields in chest radiographs in critically ill adults and children.


Asunto(s)
Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Radiografía Torácica/métodos , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Adolescente , Adulto , Anciano , Algoritmos , Niño , Preescolar , Aprendizaje Profundo , Femenino , Hospitalización , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Adulto Joven
3.
Methods ; 123: 102-118, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28385536

RESUMEN

The pharmacoepigenome can be defined as the active, noncoding province of the genome including canonical spatial and temporal regulatory mechanisms of gene regulation that respond to xenobiotic stimuli. Many psychotropic drugs that have been in clinical use for decades have ill-defined mechanisms of action that are beginning to be resolved as we understand the transcriptional hierarchy and dynamics of the nucleus. In this review, we describe spatial, temporal and biomechanical mechanisms mediated by psychotropic medications. Focus is placed on a bioinformatics pipeline that can be used both for detection of pharmacoepigenomic variants that discretize drug response and adverse events to improve pharmacogenomic testing, and for the discovery of novel CNS therapeutics. This approach integrates the functional topology and dynamics of the transcriptional hierarchy of the pharmacoepigenome, gene variant-driven identification of pharmacogenomic regulatory domains, and mesoscale mapping for the discovery of novel CNS pharmacodynamic pathways in human brain. Examples of the application of this pipeline are provided, including the discovery of valproic acid (VPA) mediated transcriptional reprogramming of neuronal cell fate following injury, and mapping of a CNS pathway glutamatergic pathway for the mood stabilizer lithium. These examples in regulatory pharmacoepigenomics illustrate how ongoing research using the 4D nucleome provides a foundation to further insight into previously unrecognized psychotropic drug pharmacodynamic pathways in the human CNS.


Asunto(s)
Biología Computacional/métodos , Genoma Humano , Proteínas del Tejido Nervioso/genética , Farmacogenética/métodos , Psicotrópicos/uso terapéutico , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatología , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Cromosomas Humanos/efectos de los fármacos , Cromosomas Humanos/metabolismo , Cromosomas Humanos/ultraestructura , Ritmo Circadiano/fisiología , Minería de Datos/métodos , Regulación de la Expresión Génica , Humanos , Litio/uso terapéutico , Proteínas del Tejido Nervioso/agonistas , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Transcripción Genética , Ácido Valproico/uso terapéutico
4.
Pharm Res ; 34(8): 1658-1672, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28271248

RESUMEN

OBJECTIVES: To determine the mechanism of action of valproic acid (VPA) in the adult central nervous system (CNS) following traumatic brain injury (TBI) and hemorrhagic shock (HS). METHODS: Data were analyzed from different sources, including experiments in a porcine model, data from postmortem human brain, published studies, public and commercial databases. RESULTS: The transcriptional program in the CNS following TBI, HS, and VPA treatment includes activation of regulatory pathways that enhance neurogenesis and suppress gliogenesis. Genes which encode the transcription factors (TFs) that specify neuronal cell fate, including MEF2D, MYT1L, NEUROD1, PAX6 and TBR1, and their target genes, are induced by VPA. VPA represses genes responsible for oligodendrogenesis, maintenance of white matter, T-cell activation, angiogenesis, and endothelial cell proliferation, adhesion and chemotaxis. NEUROD1 has regulatory interactions with 38% of the genes regulated by VPA in a swine model of TBI and HS in adult brain. Hi-C spatial mapping of a VPA pharmacogenomic SNP in the GRIN2B gene shows it is part of a transcriptional hub that contacts 12 genes that mediate chromatin-mediated neurogenesis and neuroplasticity. CONCLUSIONS: Following TBI and HS, this study shows that VPA administration acts in the adult brain through differential activation of TFs responsible for neurogenesis, genes responsible for neuroplasticity, and repression of TFs that specify oligodendrocyte cell fate, endothelial cell chemotaxis and angiogenesis. Short title: Mechanism of action of valproic acid in traumatic brain injury.


Asunto(s)
Anticonvulsivantes/farmacología , Lesiones Traumáticas del Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Redes Reguladoras de Genes , Choque Hemorrágico/metabolismo , Factores de Transcripción/metabolismo , Ácido Valproico/farmacología , Adulto , Animales , Encéfalo/metabolismo , Encéfalo/patología , Lesiones Traumáticas del Encéfalo/patología , Línea Celular Tumoral , Expresión Génica , Humanos , Neurogénesis/genética , Plasticidad Neuronal/genética , Neuronas/patología , Oligodendroglía/patología , Farmacogenética , Roedores , Choque Hemorrágico/patología , Porcinos , Factores de Transcripción/genética , Activación Transcripcional
5.
Bioinformatics ; 30(15): 2239-41, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24713438

RESUMEN

MOTIVATION: In recent years, metabolomics has emerged as an approach to perform large-scale characterization of small molecules in biological systems. Metabolomics posed a number of bioinformatics challenges associated in data analysis and interpretation. Genome-based metabolic reconstructions have established a powerful framework for connecting metabolites to genes through metabolic reactions and enzymes that catalyze them. Pathway databases and bioinformatics tools that use this framework have proven to be useful for annotating experimental metabolomics data. This framework can be used to infer connections between metabolites and diseases through annotated disease genes. However, only about half of experimentally detected metabolites can be mapped to canonical metabolic pathways. We present a new Cytoscape 3 plug-in, MetDisease, which uses an alternative approach to link metabolites to disease information. MetDisease uses Medical Subject Headings (MeSH) disease terms mapped to PubChem compounds through literature to annotate compound networks. AVAILABILITY AND IMPLEMENTATION: MetDisease can be downloaded from http://apps.cytoscape.org/apps/metdisease or installed via the Cytoscape app manager. Further information about MetDisease can be found at http://metdisease.ncibi.org CONTACT: akarnovs@med.umich.edu SUPPLEMENTARY INFORMATION: Supplementary Data are available at Bioinformatics online.


Asunto(s)
Enfermedad/genética , Metabolómica/métodos , Bases de Datos de Compuestos Químicos , Genoma Humano/genética , Humanos , Medical Subject Headings , Redes y Vías Metabólicas , Programas Informáticos
6.
Bioinformatics ; 28(10): 1408-10, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22492643

RESUMEN

SUMMARY: Progress in high-throughput genomic technologies has led to the development of a variety of resources that link genes to functional information contained in the biomedical literature. However, tools attempting to link small molecules to normal and diseased physiology and published data relevant to biologists and clinical investigators, are still lacking. With metabolomics rapidly emerging as a new omics field, the task of annotating small molecule metabolites becomes highly relevant. Our tool Metab2MeSH uses a statistical approach to reliably and automatically annotate compounds with concepts defined in Medical Subject Headings, and the National Library of Medicine's controlled vocabulary for biomedical concepts. These annotations provide links from compounds to biomedical literature and complement existing resources such as PubChem and the Human Metabolome Database.


Asunto(s)
Medical Subject Headings , Metabolómica , Bases de Datos de Compuestos Químicos , Bases de Datos Genéticas , Humanos , Neoplasias/metabolismo , Vocabulario Controlado
7.
Bioinformatics ; 28(3): 373-80, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22135418

RESUMEN

MOTIVATION: Metabolomics is a rapidly evolving field that holds promise to provide insights into genotype-phenotype relationships in cancers, diabetes and other complex diseases. One of the major informatics challenges is providing tools that link metabolite data with other types of high-throughput molecular data (e.g. transcriptomics, proteomics), and incorporate prior knowledge of pathways and molecular interactions. RESULTS: We describe a new, substantially redesigned version of our tool Metscape that allows users to enter experimental data for metabolites, genes and pathways and display them in the context of relevant metabolic networks. Metscape 2 uses an internal relational database that integrates data from KEGG and EHMN databases. The new version of the tool allows users to identify enriched pathways from expression profiling data, build and analyze the networks of genes and metabolites, and visualize changes in the gene/metabolite data. We demonstrate the applications of Metscape to annotate molecular pathways for human and mouse metabolites implicated in the pathogenesis of sepsis-induced acute lung injury, for the analysis of gene expression and metabolite data from pancreatic ductal adenocarcinoma, and for identification of the candidate metabolites involved in cancer and inflammation. AVAILABILITY: Metscape is part of the National Institutes of Health-supported National Center for Integrative Biomedical Informatics (NCIBI) suite of tools, freely available at http://metscape.ncibi.org. It can be downloaded from http://cytoscape.org or installed via Cytoscape plugin manager. CONTACT: metscape-help@umich.edu; akarnovs@umich.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Perfilación de la Expresión Génica , Metabolómica , Programas Informáticos , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animales , Humanos , Inflamación/metabolismo , Redes y Vías Metabólicas , Ratones , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteómica , Sepsis/metabolismo
8.
J Med Internet Res ; 14(3): e75, 2012 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-22668750

RESUMEN

BACKGROUND: A critical aspect of clinical and translational science (CTS) is interdisciplinary and collaborative research, which increasingly requires a wide range of computational and human resources. However, few studies have systematically analyzed such resource needs of CTS researchers. OBJECTIVE: To improve our understanding of CTS researchers' needs for computational and human resources in order to build useful and useable supporting informatics tools. METHODS: We conducted semistructured interviews of 30 CTS researchers from the University of Michigan, followed by qualitative analysis of the interview transcripts. RESULTS: The analysis identified three recurring themes: the need for the federation of information, the need to address information overload, and the need to humanize computing, including strong and well-informed views about the use of social networking tools for research collaboration. These findings helped us to narrow down the available design choices for assisting CTS researchers, and helped to identify potential deficiencies of well-known theoretical frameworks used to guide our study, with suggestions for future remedies. CONCLUSIONS: The user needs identified through the study, along with concrete design suggestions, provided key design, methodological, and theoretical insights, which are being used to guide the design and development of a CTS resource portal. The results and interview instrument should be useful to other institutions with Clinical and Translational Science Awards that face similar challenges related to helping CTS researchers make more effective use of computational and human resources.


Asunto(s)
Necesidades y Demandas de Servicios de Salud , Estudios Interdisciplinarios , Investigadores , Femenino , Humanos , Masculino
9.
Front Immunol ; 13: 1066733, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36591248

RESUMEN

COVID-19 often manifests with different outcomes in different patients, highlighting the complexity of the host-pathogen interactions involved in manifestations of the disease at the molecular and cellular levels. In this paper, we propose a set of postulates and a framework for systematically understanding complex molecular host-pathogen interaction networks. Specifically, we first propose four host-pathogen interaction (HPI) postulates as the basis for understanding molecular and cellular host-pathogen interactions and their relations to disease outcomes. These four postulates cover the evolutionary dispositions involved in HPIs, the dynamic nature of HPI outcomes, roles that HPI components may occupy leading to such outcomes, and HPI checkpoints that are critical for specific disease outcomes. Based on these postulates, an HPI Postulate and Ontology (HPIPO) framework is proposed to apply interoperable ontologies to systematically model and represent various granular details and knowledge within the scope of the HPI postulates, in a way that will support AI-ready data standardization, sharing, integration, and analysis. As a demonstration, the HPI postulates and the HPIPO framework were applied to study COVID-19 with the Coronavirus Infectious Disease Ontology (CIDO), leading to a novel approach to rational design of drug/vaccine cocktails aimed at interrupting processes occurring at critical host-coronavirus interaction checkpoints. Furthermore, the host-coronavirus protein-protein interactions (PPIs) relevant to COVID-19 were predicted and evaluated based on prior knowledge of curated PPIs and domain-domain interactions, and how such studies can be further explored with the HPI postulates and the HPIPO framework is discussed.


Asunto(s)
COVID-19 , Humanos , Interacciones Huésped-Patógeno
10.
J Biomed Semantics ; 13(1): 25, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36271389

RESUMEN

BACKGROUND: The current COVID-19 pandemic and the previous SARS/MERS outbreaks of 2003 and 2012 have resulted in a series of major global public health crises. We argue that in the interest of developing effective and safe vaccines and drugs and to better understand coronaviruses and associated disease mechenisms it is necessary to integrate the large and exponentially growing body of heterogeneous coronavirus data. Ontologies play an important role in standard-based knowledge and data representation, integration, sharing, and analysis. Accordingly, we initiated the development of the community-based Coronavirus Infectious Disease Ontology (CIDO) in early 2020. RESULTS: As an Open Biomedical Ontology (OBO) library ontology, CIDO is open source and interoperable with other existing OBO ontologies. CIDO is aligned with the Basic Formal Ontology and Viral Infectious Disease Ontology. CIDO has imported terms from over 30 OBO ontologies. For example, CIDO imports all SARS-CoV-2 protein terms from the Protein Ontology, COVID-19-related phenotype terms from the Human Phenotype Ontology, and over 100 COVID-19 terms for vaccines (both authorized and in clinical trial) from the Vaccine Ontology. CIDO systematically represents variants of SARS-CoV-2 viruses and over 300 amino acid substitutions therein, along with over 300 diagnostic kits and methods. CIDO also describes hundreds of host-coronavirus protein-protein interactions (PPIs) and the drugs that target proteins in these PPIs. CIDO has been used to model COVID-19 related phenomena in areas such as epidemiology. The scope of CIDO was evaluated by visual analysis supported by a summarization network method. CIDO has been used in various applications such as term standardization, inference, natural language processing (NLP) and clinical data integration. We have applied the amino acid variant knowledge present in CIDO to analyze differences between SARS-CoV-2 Delta and Omicron variants. CIDO's integrative host-coronavirus PPIs and drug-target knowledge has also been used to support drug repurposing for COVID-19 treatment. CONCLUSION: CIDO represents entities and relations in the domain of coronavirus diseases with a special focus on COVID-19. It supports shared knowledge representation, data and metadata standardization and integration, and has been used in a range of applications.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Coronavirus , Vacunas , Humanos , SARS-CoV-2 , Pandemias , Aminoácidos , Tratamiento Farmacológico de COVID-19
11.
BMC Bioinformatics ; 12 Suppl 1: S36, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21342567

RESUMEN

BACKGROUND: Metabolite profiles can be used for identifying molecular signatures and mechanisms underlying diseases since they reflect the outcome of complex upstream genomic, transcriptomic, proteomic and environmental events. The scarcity of publicly accessible large scale metabolome datasets related to human disease has been a major obstacle for assessing the potential of metabolites as biomarkers as well as understanding the molecular events underlying disease-related metabolic changes. The availability of metabolite and gene expression profiles for the NCI-60 cell lines offers the possibility of identifying significant metabolome and transcriptome features and discovering unique molecular processes related to different cancer types. METHODS: We utilized a combination of analytical methods in the R statistical package to evaluate metabolic features associated with cancer cell lines from different tissue origins, identify metabolite-gene correlations and detect outliers cell lines based on metabolome and transcriptome data. Statistical analysis results are integrated with metabolic pathway annotations as well as COSMIC and Tumorscape databases to explore associated molecular mechanisms. RESULTS: Our analysis reveals that although the NCI-60 metabolome dataset is quite noisy comparing with microarray-based transcriptome data, it does contain tissue origin specific signatures. We also identified biologically meaningful gene-metabolite associations. Most remarkably, several abnormal gene-metabolite relationships identified by our approach can be directly linked to known gene mutations and copy number variations in the corresponding cell lines. CONCLUSIONS: Our results suggest that integrative metabolome and transcriptome analysis is a powerful method for understanding molecular machinery underlying various pathophysiological processes. We expect the availability of large scale metabolome data in the coming years will significantly promote the discovery of novel biomarkers, which will in turn improve the understanding of molecular mechanism underlying diseases.


Asunto(s)
Bases de Datos Genéticas , Perfilación de la Expresión Génica/métodos , Metaboloma , Neoplasias/clasificación , Biomarcadores , Línea Celular Tumoral , Variaciones en el Número de Copia de ADN , Humanos , Neoplasias/genética , Especificidad de Órganos
12.
Bioinformatics ; 26(24): 3138-9, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21088028

RESUMEN

SUMMARY: GSearcher provides a highly interactive user experience in navigating attribute data associated with large and complex biological networks. The user may either perform a quick search using keywords, phrases or regular expressions, or build a complex query with a group of filters for efficient and flexible exploration of large datasets. AVAILABILITY: http://brainarray.mbni.med.umich.edu/gsearcher/.


Asunto(s)
Modelos Biológicos , Programas Informáticos , Minería de Datos , Interfaz Usuario-Computador
13.
Bioinformatics ; 26(1): 134-5, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19850754

RESUMEN

MOTIVATION: By default, the R statistical environment does not make use of parallelism. Researchers may resort to expensive solutions such as cluster hardware for large analysis tasks. Graphics processing units (GPUs) provide an inexpensive and computationally powerful alternative. Using R and the CUDA toolkit from Nvidia, we have implemented several functions commonly used in microarray gene expression analysis for GPU-equipped computers. RESULTS: R users can take advantage of the better performance provided by an Nvidia GPU. AVAILABILITY: The package is available from CRAN, the R project's repository of packages, at http://cran.r-project.org/web/packages/gputools More information about our gputools R package is available at http://brainarray.mbni.med.umich.edu/brainarray/Rgpgpu


Asunto(s)
Algoritmos , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Lenguajes de Programación , Programas Informáticos
14.
Bioinformatics ; 26(7): 971-3, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20139469

RESUMEN

SUMMARY: Metscape is a plug-in for Cytoscape, used to visualize and interpret metabolomic data in the context of human metabolic networks. We have developed a metabolite database by extracting and integrating information from several public sources. By querying this database, Metscape allows users to trace the connections between metabolites and genes, visualize compound networks and display compound structures as well as information for reactions, enzymes, genes and pathways. Applying the pathway filter, users can create subnetworks that consist of compounds and reactions from a given pathway. Metscape allows users to upload experimental data, and visualize and explore compound networks over time, or experimental conditions. Color and size of the nodes are used to visualize these dynamic changes. Metscape can display the entire metabolic network or any of the pathway-specific networks that exist in the database. AVAILABILITY: Metscape can be installed from within Cytoscape 2.6.x under 'Network and Attribute I/O' category. For more information, please visit http://metscape.ncibi.org/tryplugin.html.


Asunto(s)
Redes y Vías Metabólicas , Metabolómica/métodos , Programas Informáticos , Bases de Datos Factuales , Humanos
15.
Bioinformatics ; 26(4): 456-63, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-20007254

RESUMEN

MOTIVATION: The elucidation of biological concepts enriched with differentially expressed genes has become an integral part of the analysis and interpretation of genomic data. Of additional importance is the ability to explore networks of relationships among previously defined biological concepts from diverse information sources, and to explore results visually from multiple perspectives. Accomplishing these tasks requires a unified framework for agglomeration of data from various genomic resources, novel visualizations, and user functionality. RESULTS: We have developed ConceptGen, a web-based gene set enrichment and gene set relation mapping tool that is streamlined and simple to use. ConceptGen offers over 20,000 concepts comprising 14 different types of biological knowledge, including data not currently available in any other gene set enrichment or gene set relation mapping tool. We demonstrate the functionalities of ConceptGen using gene expression data modeling TGF-beta-induced epithelial-mesenchymal transition and metabolomics data comparing metastatic versus localized prostate cancers.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Programas Informáticos , Animales , Biología Computacional , Bases de Datos Genéticas , Redes Reguladoras de Genes , Humanos , Masculino , Metástasis de la Neoplasia/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Neoplasias Pancreáticas/genética , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
16.
J Biomed Inform ; 44(1): 137-45, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20955817

RESUMEN

The biomedical research community relies on a diverse set of resources, both within their own institutions and at other research centers. In addition, an increasing number of shared electronic resources have been developed. Without effective means to locate and query these resources, it is challenging, if not impossible, for investigators to be aware of the myriad resources available, or to effectively perform resource discovery when the need arises. In this paper, we describe the development and use of the Biomedical Resource Ontology (BRO) to enable semantic annotation and discovery of biomedical resources. We also describe the Resource Discovery System (RDS) which is a federated, inter-institutional pilot project that uses the BRO to facilitate resource discovery on the Internet. Through the RDS framework and its associated Biositemaps infrastructure, the BRO facilitates semantic search and discovery of biomedical resources, breaking down barriers and streamlining scientific research that will improve human health.


Asunto(s)
Investigación Biomédica , Sistemas de Administración de Bases de Datos , Documentación , Informática Médica , Investigación Biomédica Traslacional , Animales , Biología Computacional , Humanos , Internet , Semántica , Interfaz Usuario-Computador
17.
Nucleic Acids Res ; 37(Database issue): D642-6, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18978014

RESUMEN

Molecular interaction data exists in a number of repositories, each with its own data format, molecule identifier and information coverage. Michigan molecular interactions (MiMI) assists scientists searching through this profusion of molecular interaction data. The original release of MiMI gathered data from well-known protein interaction databases, and deep merged this information while keeping track of provenance. Based on the feedback received from users, MiMI has been completely redesigned. This article describes the resulting MiMI Release 2 (MiMIr2). New functionality includes extension from proteins to genes and to pathways; identification of highlighted sentences in source publications; seamless two-way linkage with Cytoscape; query facilities based on MeSH/GO terms and other concepts; approximate graph matching to find relevant pathways; support for querying in bulk; and a user focus-group driven interface design. MiMI is part of the NIH's; National Center for Integrative Biomedical Informatics (NCIBI) and is publicly available at: http://mimi.ncibi.org.


Asunto(s)
Bases de Datos de Proteínas , Mapeo de Interacción de Proteínas , Proteínas/metabolismo , Gráficos por Computador , Proteínas/genética , Interfaz Usuario-Computador
18.
Comput Biol Med ; 134: 104463, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33993014

RESUMEN

Acute respiratory distress syndrome (ARDS) is a life-threatening lung injury with global prevalence and high mortality. Chest x-rays (CXR) are critical in the early diagnosis and treatment of ARDS. However, imaging findings may not result in proper identification of ARDS due to a number of reasons, including nonspecific appearance of radiological features, ambiguity in a patient's case due to the pathological stage of the disease, and poor inter-rater reliability from interpretations of CXRs by multiple clinical experts. This study demonstrates the potential capability of methodologies in artificial intelligence, machine learning, and image processing to overcome these challenges and quantitatively assess CXRs for presence of ARDS. We propose and describe Directionality Measure, a novel feature engineering technique used to capture the "cloud-like" appearance of diffuse alveolar damage as a mathematical concept. This study also examines the effectiveness of using an off-the-shelf, pretrained deep learning model as a feature extractor in addition to standard features extracted from the histogram and gray-level co-occurrence matrix (GLCM). Data was collected from hospitalized patients at Michigan Medicine's intensive care unit and the cohort's inclusion criteria was specifically designed to be representative of patients at risk of developing ARDS. Multiple machine learning models were used to evaluate these features with 5-fold cross-validation and the final performance was reported on a hold-out, temporally distinct test set. With AdaBoost, Directionality Measure achieved an accuracy of 78% and AUC of 74% - outperforming classification results using features from the histogram (75% accuracy and 73% AUC), GLCM (76% accuracy and 73% AUC), and ResNet-50 (77% accuracy and 73% AUC). Further experimental results demonstrated that using all feature sets in combination achieved the best overall performance, yielding an accuracy of 83% and AUC of 79% with AdaBoost. These results demonstrate the potential capability of using the proposed methodologies to complement current clinical analysis for detection of ARDS from CXRs.


Asunto(s)
Aprendizaje Profundo , Síndrome de Dificultad Respiratoria , Inteligencia Artificial , Humanos , Reproducibilidad de los Resultados , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Rayos X
19.
Mol Biol Cell ; 32(18): 1624-1633, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-33909457

RESUMEN

Histone deacetylase inhibitors, such as valproic acid (VPA), have important clinical therapeutic and cellular reprogramming applications. They induce chromatin reorganization that is associated with altered cellular morphology. However, there is a lack of comprehensive characterization of VPA-induced changes of nuclear size and shape. Here, we quantify 3D nuclear morphology of primary human astrocyte cells treated with VPA over time (hence, 4D). We compared volumetric and surface-based representations and identified seven features that jointly discriminate between normal and treated cells with 85% accuracy on day 7. From day 3, treated nuclei were more elongated and flattened and then continued to morphologically diverge from controls over time, becoming larger and more irregular. On day 7, most of the size and shape descriptors demonstrated significant differences between treated and untreated cells, including a 24% increase in volume and 6% reduction in extent (shape regularity) for treated nuclei. Overall, we show that 4D morphometry can capture how chromatin reorganization modulates the size and shape of the nucleus over time. These nuclear structural alterations may serve as a biomarker for histone (de-)acetylation events and provide insights into mechanisms of astrocytes-to-neurons reprogramming.


Asunto(s)
Astrocitos/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Ácido Valproico/farmacología , Astrocitos/fisiología , Núcleo Celular/fisiología , Células Cultivadas , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Procesamiento de Imagen Asistido por Computador , Factores de Tiempo
20.
BMC Genomics ; 11: 155, 2010 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-20205738

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) are endogenous small RNAs that modulate gene expression at the post-transcriptional level by binding complementary sites in the 3'-UTR. In a recent genome-wide study reporting a new miRNA target class (miBridge), we identified and validated interactions between 5'-UTRs and miRNAs. Separately, upstream AUGs (uAUGs) in 5'-UTRs are known to regulate genes translationally without affecting mRNA levels, one of the mechanisms for miRNA-mediated repression. RESULTS: Using sequence data from whole-genome cDNA alignments we identified 1418 uAUG sequences on the 5'-UTR that specifically interact with 3'-ends of conserved miRNAs. We computationally identified miRNAs that can target six genes through their uAUGs that were previously reported to suppress translation. We extended this meta-analysis by confirming expression of these miRNAs in cell-lines used in the uAUG studies. Similarly, seven members of the KLF family of genes containing uAUGs were computationally identified as interacting with several miRNAs. Using KLF9 as an example (whose protein expression is limited to brain tissue despite the mRNA being expressed ubiquitously), we show computationally that miRNAs expressed only in HeLa cells and not in neuroblastoma (N2A) cells can bind the uAUGs responsible for translation inhibition. Our computed results demonstrate that tissue- or cell-line specific repression of protein translation by uAUGs can be explained by the presence or absence of miRNAs that target these uAUG sequences. We propose that these uAUGs represent a subset of miRNA interaction sites on 5'-UTRs in miBridge, whereby a miRNA binding a uAUG hinders the progression of ribosome scanning the mRNA before it reaches the open reading frame (ORF). CONCLUSIONS: While both miRNAs and uAUGs are separately known to down-regulate protein expression, we show that they may be functionally related by identifying potential interactions through a sequence-specific binding mechanism. Using prior experimental evidence that shows uAUG effects on translation repression together with miRNA expression data specific to cell lines, we demonstrate through computational analysis that cell-specific down-regulation of protein expression (while maintaining mRNA levels) correlates well with the simultaneous presence of miRNA and target uAUG sequences in one cell type and not others, suggesting tissue-specific translation repression by miRNAs through uAUGs.


Asunto(s)
Regulación de la Expresión Génica , MicroARNs/genética , Polirribonucleótidos/genética , Biosíntesis de Proteínas , Secuencia Conservada , Regulación hacia Abajo , Células HeLa , Humanos , Factores de Transcripción de Tipo Kruppel/genética , ARN Mensajero/biosíntesis , Alineación de Secuencia , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA