Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 176(5): 1098-1112.e18, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30794774

RESUMEN

Increased levels of intestinal bile acids (BAs) are a risk factor for colorectal cancer (CRC). Here, we show that the convergence of dietary factors (high-fat diet) and dysregulated WNT signaling (APC mutation) alters BA profiles to drive malignant transformations in Lgr5-expressing (Lgr5+) cancer stem cells and promote an adenoma-to-adenocarcinoma progression. Mechanistically, we show that BAs that antagonize intestinal farnesoid X receptor (FXR) function, including tauro-ß-muricholic acid (T-ßMCA) and deoxycholic acid (DCA), induce proliferation and DNA damage in Lgr5+ cells. Conversely, selective activation of intestinal FXR can restrict abnormal Lgr5+ cell growth and curtail CRC progression. This unexpected role for FXR in coordinating intestinal self-renewal with BA levels implicates FXR as a potential therapeutic target for CRC.


Asunto(s)
Neoplasias Intestinales/metabolismo , Células Madre Neoplásicas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Ácidos y Sales Biliares/metabolismo , Línea Celular , Proliferación Celular/genética , Neoplasias Colorrectales/metabolismo , Ácido Desoxicólico/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Intestinales/genética , Intestinos , Hígado , Ratones , Ratones Endogámicos C57BL , Células Madre Neoplásicas/fisiología , Organoides/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Factores de Riesgo , Transducción de Señal , Ácido Taurocólico/análogos & derivados , Ácido Taurocólico/metabolismo , Vía de Señalización Wnt/genética , Vía de Señalización Wnt/fisiología
2.
Cell ; 173(5): 1135-1149.e15, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29754817

RESUMEN

A primary cause of disease progression in type 2 diabetes (T2D) is ß cell dysfunction due to inflammatory stress and insulin resistance. However, preventing ß cell exhaustion under diabetic conditions is a major therapeutic challenge. Here, we identify the vitamin D receptor (VDR) as a key modulator of inflammation and ß cell survival. Alternative recognition of an acetylated lysine in VDR by bromodomain proteins BRD7 and BRD9 directs association to PBAF and BAF chromatin remodeling complexes, respectively. Mechanistically, ligand promotes VDR association with PBAF to effect genome-wide changes in chromatin accessibility and enhancer landscape, resulting in an anti-inflammatory response. Importantly, pharmacological inhibition of BRD9 promotes PBAF-VDR association to restore ß cell function and ameliorate hyperglycemia in murine T2D models. These studies reveal an unrecognized VDR-dependent transcriptional program underpinning ß cell survival and identifies the VDR:PBAF/BAF association as a potential therapeutic target for T2D.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Receptores de Calcitriol/metabolismo , Factores de Transcripción/metabolismo , Vitamina D/farmacología , Animales , Calcitriol/análogos & derivados , Calcitriol/farmacología , Ensamble y Desensamble de Cromatina , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Humanos , Insulina/sangre , Insulina/metabolismo , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Mutagénesis Sitio-Dirigida , Fosforilación Oxidativa/efectos de los fármacos , Unión Proteica , Interferencia de ARN , ARN Guía de Kinetoplastida/genética , ARN Interferente Pequeño/metabolismo , Receptores de Calcitriol/antagonistas & inhibidores , Receptores de Calcitriol/genética , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Transcripción Genética/efectos de los fármacos
3.
Cell ; 165(7): 1644-1657, 2016 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-27238018

RESUMEN

Defects in circadian rhythm influence physiology and behavior with implications for the treatment of sleep disorders, metabolic disease, and cancer. Although core regulatory components of clock rhythmicity have been defined, insight into the mechanisms underpinning amplitude is limited. Here, we show that REV-ERBα, a core inhibitory component of clock transcription, is targeted for ubiquitination and subsequent degradation by the F-box protein FBXW7. By relieving REV-ERBα-dependent repression, FBXW7 provides an unrecognized mechanism for enhancing the amplitude of clock gene transcription. Cyclin-dependent kinase 1 (CDK1)-mediated phosphorylation of REV-ERBα is necessary for FBXW7 recognition. Moreover, targeted hepatic disruption of FBXW7 alters circadian expression of core clock genes and perturbs whole-body lipid and glucose levels. This CDK1-FBXW7 pathway controlling REV-ERBα repression defines an unexpected molecular mechanism for re-engaging the positive transcriptional arm of the clock, as well as a potential route to manipulate clock amplitude via small molecule CDK1 inhibition.


Asunto(s)
Ritmo Circadiano , Proteínas F-Box/metabolismo , Hígado/metabolismo , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Relojes Circadianos , Proteínas F-Box/genética , Proteína 7 que Contiene Repeticiones F-Box-WD , Técnicas de Inactivación de Genes , Humanos , Metabolismo de los Lípidos , Ratones , Fosforilación , Procesamiento Proteico-Postraduccional , Transcriptoma , Ubiquitina-Proteína Ligasas/genética
4.
Cell ; 159(1): 80-93, 2014 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-25259922

RESUMEN

The poor clinical outcome in pancreatic ductal adenocarcinoma (PDA) is attributed to intrinsic chemoresistance and a growth-permissive tumor microenvironment. Conversion of quiescent to activated pancreatic stellate cells (PSCs) drives the severe stromal reaction that characterizes PDA. Here, we reveal that the vitamin D receptor (VDR) is expressed in stroma from human pancreatic tumors and that treatment with the VDR ligand calcipotriol markedly reduced markers of inflammation and fibrosis in pancreatitis and human tumor stroma. We show that VDR acts as a master transcriptional regulator of PSCs to reprise the quiescent state, resulting in induced stromal remodeling, increased intratumoral gemcitabine, reduced tumor volume, and a 57% increase in survival compared to chemotherapy alone. This work describes a molecular strategy through which transcriptional reprogramming of tumor stroma enables chemotherapeutic response and suggests vitamin D priming as an adjunct in PDA therapy. PAPERFLICK:


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Antineoplásicos/farmacología , Calcitriol/análogos & derivados , Carcinoma Ductal Pancreático/tratamiento farmacológico , Neoplasias Pancreáticas/tratamiento farmacológico , Receptores de Calcitriol/metabolismo , Adenocarcinoma/patología , Animales , Calcitriol/farmacología , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Humanos , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Neoplasias Pancreáticas/patología , Pancreatitis/tratamiento farmacológico , Pancreatitis/prevención & control , Transducción de Señal , Células del Estroma/patología
5.
Cell ; 153(3): 601-13, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23622244

RESUMEN

Liver fibrosis is a reversible wound-healing response involving TGFß1/SMAD activation of hepatic stellate cells (HSCs). It results from excessive deposition of extracellular matrix components and can lead to impairment of liver function. Here, we show that vitamin D receptor (VDR) ligands inhibit HSC activation by TGFß1 and abrogate liver fibrosis, whereas Vdr knockout mice spontaneously develop hepatic fibrosis. Mechanistically, we show that TGFß1 signaling causes a redistribution of genome-wide VDR-binding sites (VDR cistrome) in HSCs and facilitates VDR binding at SMAD3 profibrotic target genes via TGFß1-dependent chromatin remodeling. In the presence of VDR ligands, VDR binding to the coregulated genes reduces SMAD3 occupancy at these sites, inhibiting fibrosis. These results reveal an intersecting VDR/SMAD genomic circuit that regulates hepatic fibrogenesis and define a role for VDR as an endocrine checkpoint to modulate the wound-healing response in liver. Furthermore, the findings suggest VDR ligands as a potential therapy for liver fibrosis.


Asunto(s)
Redes Reguladoras de Genes , Hígado/metabolismo , Hígado/patología , Receptores de Calcitriol/metabolismo , Transducción de Señal , Animales , Calcitriol/análogos & derivados , Fibrosis/prevención & control , Estudio de Asociación del Genoma Completo , Células Estrelladas Hepáticas , Hígado/lesiones , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas , Receptores de Calcitriol/agonistas , Proteína smad3/metabolismo , Transcriptoma , Factor de Crecimiento Transformador beta1/metabolismo
6.
Nature ; 604(7905): 337-342, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35355021

RESUMEN

Decades of work have elucidated cytokine signalling and transcriptional pathways that control T cell differentiation and have led the way to targeted biologic therapies that are effective in a range of autoimmune, allergic and inflammatory diseases. Recent evidence indicates that obesity and metabolic disease can also influence the immune system1-7, although the mechanisms and effects on immunotherapy outcomes remain largely unknown. Here, using two models of atopic dermatitis, we show that lean and obese mice mount markedly different immune responses. Obesity converted the classical type 2 T helper (TH2)-predominant disease associated with atopic dermatitis to a more severe disease with prominent TH17 inflammation. We also observed divergent responses to biologic therapies targeting TH2 cytokines, which robustly protected lean mice but exacerbated disease in obese mice. Single-cell RNA sequencing coupled with genome-wide binding analyses revealed decreased activity of nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ) in TH2 cells from obese mice relative to lean mice. Conditional ablation of PPARγ in T cells revealed that PPARγ is required to focus the in vivo TH response towards a TH2-predominant state and prevent aberrant non-TH2 inflammation. Treatment of obese mice with a small-molecule PPARγ agonist limited development of TH17 pathology and unlocked therapeutic responsiveness to targeted anti-TH2 biologic therapies. These studies reveal the effects of obesity on immunological disease and suggest a precision medicine approach to target the immune dysregulation caused by obesity.


Asunto(s)
Dermatitis Atópica , PPAR gamma , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Inflamación/metabolismo , Ratones , Obesidad/metabolismo , PPAR gamma/agonistas , PPAR gamma/metabolismo , Medicina de Precisión , Análisis de Secuencia de ARN , Células Th2/metabolismo
7.
Proc Natl Acad Sci U S A ; 121(9): e2320129121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38377195

RESUMEN

Despite numerous female contraceptive options, nearly half of all pregnancies are unintended. Family planning choices for men are currently limited to unreliable condoms and invasive vasectomies with questionable reversibility. Here, we report the development of an oral contraceptive approach based on transcriptional disruption of cyclical gene expression patterns during spermatogenesis. Spermatogenesis involves a continuous series of self-renewal and differentiation programs of spermatogonial stem cells (SSCs) that is regulated by retinoic acid (RA)-dependent activation of receptors (RARs), which control target gene expression through association with corepressor proteins. We have found that the interaction between RAR and the corepressor silencing mediator of retinoid and thyroid hormone receptors (SMRT) is essential for spermatogenesis. In a genetically engineered mouse model that negates SMRT-RAR binding (SMRTmRID mice), the synchronized, cyclic expression of RAR-dependent genes along the seminiferous tubules is disrupted. Notably, the presence of an RA-resistant SSC population that survives RAR de-repression suggests that the infertility attributed to the loss of SMRT-mediated repression is reversible. Supporting this notion, we show that inhibiting the action of the SMRT complex with chronic, low-dose oral administration of a histone deacetylase inhibitor reversibly blocks spermatogenesis and fertility without affecting libido. This demonstration validates pharmacologic targeting of the SMRT repressor complex for non-hormonal male contraception.


Asunto(s)
Proteínas de Unión al ADN , Proteínas Represoras , Humanos , Femenino , Masculino , Animales , Ratones , Proteínas de Unión al ADN/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas Co-Represoras/genética , Co-Represor 2 de Receptor Nuclear/genética , Tretinoina/farmacología , Anticoncepción , Co-Represor 1 de Receptor Nuclear
8.
Nature ; 586(7830): 606-611, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32814902

RESUMEN

Islets derived from stem cells hold promise as a therapy for insulin-dependent diabetes, but there remain challenges towards achieving this goal1-6. Here we generate human islet-like organoids (HILOs) from induced pluripotent stem cells and show that non-canonical WNT4 signalling drives the metabolic maturation necessary for robust ex vivo glucose-stimulated insulin secretion. These functionally mature HILOs contain endocrine-like cell types that, upon transplantation, rapidly re-establish glucose homeostasis in diabetic NOD/SCID mice. Overexpression of the immune checkpoint protein programmed death-ligand 1 (PD-L1) protected HILO xenografts such that they were able to restore glucose homeostasis in immune-competent diabetic mice for 50 days. Furthermore, ex vivo stimulation with interferon-γ induced endogenous PD-L1 expression and restricted T cell activation and graft rejection. The generation of glucose-responsive islet-like organoids that are able to avoid immune detection provides a promising alternative to cadaveric and device-dependent therapies in the treatment of diabetes.


Asunto(s)
Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Experimental/patología , Evasión Inmune , Islotes Pancreáticos/citología , Islotes Pancreáticos/inmunología , Organoides/citología , Organoides/inmunología , Animales , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Línea Celular , Epigénesis Genética , Femenino , Glucosa/metabolismo , Rechazo de Injerto , Xenoinjertos , Homeostasis , Humanos , Tolerancia Inmunológica , Secreción de Insulina , Trasplante de Islotes Pancreáticos , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Organoides/trasplante , Linfocitos T/citología , Linfocitos T/inmunología , Vía de Señalización Wnt/efectos de los fármacos , Proteína Wnt4/metabolismo , Proteína Wnt4/farmacología
9.
Proc Natl Acad Sci U S A ; 120(21): e2217826120, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37192160

RESUMEN

Molecular classification of gastric cancer (GC) identified a subgroup of patients showing chemoresistance and poor prognosis, termed SEM (Stem-like/Epithelial-to-mesenchymal transition/Mesenchymal) type in this study. Here, we show that SEM-type GC exhibits a distinct metabolic profile characterized by high glutaminase (GLS) levels. Unexpectedly, SEM-type GC cells are resistant to glutaminolysis inhibition. We show that under glutamine starvation, SEM-type GC cells up-regulate the 3 phosphoglycerate dehydrogenase (PHGDH)-mediated mitochondrial folate cycle pathway to produce NADPH as a reactive oxygen species scavenger for survival. This metabolic plasticity is associated with globally open chromatin structure in SEM-type GC cells, with ATF4/CEBPB identified as transcriptional drivers of the PHGDH-driven salvage pathway. Single-nucleus transcriptome analysis of patient-derived SEM-type GC organoids revealed intratumoral heterogeneity, with stemness-high subpopulations displaying high GLS expression, a resistance to GLS inhibition, and ATF4/CEBPB activation. Notably, coinhibition of GLS and PHGDH successfully eliminated stemness-high cancer cells. Together, these results provide insight into the metabolic plasticity of aggressive GC cells and suggest a treatment strategy for chemoresistant GC patients.


Asunto(s)
Fosfoglicerato-Deshidrogenasa , Neoplasias Gástricas , Humanos , Fosfoglicerato-Deshidrogenasa/genética , Fosfoglicerato-Deshidrogenasa/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Línea Celular Tumoral , Glutamina/metabolismo , Nutrientes
10.
Nature ; 569(7754): 131-135, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30996350

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis largely owing to inefficient diagnosis and tenacious drug resistance. Activation of pancreatic stellate cells (PSCs) and consequent development of dense stroma are prominent features accounting for this aggressive biology1,2. The reciprocal interplay between PSCs and pancreatic cancer cells (PCCs) not only enhances tumour progression and metastasis but also sustains their own activation, facilitating a vicious cycle to exacerbate tumorigenesis and drug resistance3-7. Furthermore, PSC activation occurs very early during PDAC tumorigenesis8-10, and activated PSCs comprise a substantial fraction of the tumour mass, providing a rich source of readily detectable factors. Therefore, we hypothesized that the communication between PSCs and PCCs could be an exploitable target to develop effective strategies for PDAC therapy and diagnosis. Here, starting with a systematic proteomic investigation of secreted disease mediators and underlying molecular mechanisms, we reveal that leukaemia inhibitory factor (LIF) is a key paracrine factor from activated PSCs acting on cancer cells. Both pharmacologic LIF blockade and genetic Lifr deletion markedly slow tumour progression and augment the efficacy of chemotherapy to prolong survival of PDAC mouse models, mainly by modulating cancer cell differentiation and epithelial-mesenchymal transition status. Moreover, in both mouse models and human PDAC, aberrant production of LIF in the pancreas is restricted to pathological conditions and correlates with PDAC pathogenesis, and changes in the levels of circulating LIF correlate well with tumour response to therapy. Collectively, these findings reveal a function of LIF in PDAC tumorigenesis, and suggest its translational potential as an attractive therapeutic target and circulating marker. Our studies underscore how a better understanding of cell-cell communication within the tumour microenvironment can suggest novel strategies for cancer therapy.


Asunto(s)
Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Factor Inhibidor de Leucemia/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Comunicación Paracrina , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Carcinogénesis/genética , Carcinoma Ductal Pancreático/diagnóstico , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/inmunología , Línea Celular Tumoral , Progresión de la Enfermedad , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal , Femenino , Humanos , Factor Inhibidor de Leucemia/antagonistas & inhibidores , Factor Inhibidor de Leucemia/sangre , Masculino , Espectrometría de Masas , Ratones , Neoplasias Pancreáticas/diagnóstico , Comunicación Paracrina/efectos de los fármacos , Receptores OSM-LIF/deficiencia , Receptores OSM-LIF/genética , Receptores OSM-LIF/metabolismo , Microambiente Tumoral
11.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34446564

RESUMEN

In macrophages, homeostatic and immune signals induce distinct sets of transcriptional responses, defining cellular identity and functional states. The activity of lineage-specific and signal-induced transcription factors are regulated by chromatin accessibility and other epigenetic modulators. Glucocorticoids are potent antiinflammatory drugs; however, the mechanisms by which they selectively attenuate inflammatory genes are not yet understood. Acting through the glucocorticoid receptor (GR), glucocorticoids directly repress inflammatory responses at transcriptional and epigenetic levels in macrophages. A major unanswered question relates to the sequence of events that result in the formation of repressive regions. In this study, we identify bromodomain containing 9 (BRD9), a component of SWI/SNF chromatin remodeling complex, as a modulator of glucocorticoid responses in macrophages. Inhibition, degradation, or genetic depletion of BRD9 in bone marrow-derived macrophages significantly attenuated their responses to both liposaccharides and interferon inflammatory stimuli. Notably, BRD9-regulated genes extensively overlap with those regulated by the synthetic glucocorticoid dexamethasone. Pharmacologic inhibition of BRD9 potentiated the antiinflammatory responses of dexamethasone, while the genetic deletion of BRD9 in macrophages reduced high-fat diet-induced adipose inflammation. Mechanistically, BRD9 colocalized at a subset of GR genomic binding sites, and depletion of BRD9 enhanced GR occupancy primarily at inflammatory-related genes to potentiate GR-induced repression. Collectively, these findings establish BRD9 as a genomic antagonist of GR at inflammatory-related genes in macrophages, and reveal a potential for BRD9 inhibitors to increase the therapeutic efficacies of glucocorticoids.


Asunto(s)
Ensamble y Desensamble de Cromatina , Dexametasona/farmacología , Regulación de la Expresión Génica , Macrófagos/inmunología , Receptores de Glucocorticoides/metabolismo , Factores de Transcripción/metabolismo , Animales , Antiinflamatorios/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Dominios Proteicos , Receptores de Glucocorticoides/antagonistas & inhibidores , Receptores de Glucocorticoides/genética , Factores de Transcripción/genética
12.
Gastroenterology ; 163(1): 239-256, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35461826

RESUMEN

BACKGROUND & AIMS: Mitochondrial dysfunction disrupts the synthesis and secretion of digestive enzymes in pancreatic acinar cells and plays a primary role in the etiology of exocrine pancreas disorders. However, the transcriptional mechanisms that regulate mitochondrial function to support acinar cell physiology are poorly understood. Here, we aim to elucidate the function of estrogen-related receptor γ (ERRγ) in pancreatic acinar cell mitochondrial homeostasis and energy production. METHODS: Two models of ERRγ inhibition, GSK5182-treated wild-type mice and ERRγ conditional knock-out (cKO) mice, were established to investigate ERRγ function in the exocrine pancreas. To identify the functional role of ERRγ in pancreatic acinar cells, we performed histologic and transcriptome analysis with the pancreas isolated from ERRγ cKO mice. To determine the relevance of these findings for human disease, we analyzed transcriptome data from multiple independent human cohorts and conducted genetic association studies for ESRRG variants in 2 distinct human pancreatitis cohorts. RESULTS: Blocking ERRγ function in mice by genetic deletion or inverse agonist treatment results in striking pancreatitis-like phenotypes accompanied by inflammation, fibrosis, and cell death. Mechanistically, loss of ERRγ in primary acini abrogates messenger RNA expression and protein levels of mitochondrial oxidative phosphorylation complex genes, resulting in defective acinar cell energetics. Mitochondrial dysfunction due to ERRγ deletion further triggers autophagy dysfunction, endoplasmic reticulum stress, and production of reactive oxygen species, ultimately leading to cell death. Interestingly, ERRγ-deficient acinar cells that escape cell death acquire ductal cell characteristics, indicating a role for ERRγ in acinar-to-ductal metaplasia. Consistent with our findings in ERRγ cKO mice, ERRγ expression was significantly reduced in patients with chronic pancreatitis compared with normal subjects. Furthermore, candidate locus region genetic association studies revealed multiple single nucleotide variants for ERRγ that are associated with chronic pancreatitis. CONCLUSIONS: Collectively, our findings highlight an essential role for ERRγ in maintaining the transcriptional program that supports acinar cell mitochondrial function and organellar homeostasis and provide a novel molecular link between ERRγ and exocrine pancreas disorders.


Asunto(s)
Páncreas Exocrino , Pancreatitis Crónica , Células Acinares/patología , Animales , Estrógenos/metabolismo , Humanos , Ratones , Ratones Noqueados , Páncreas/patología , Páncreas Exocrino/metabolismo , Pancreatitis Crónica/patología
15.
Proc Natl Acad Sci U S A ; 116(37): 18528-18536, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31455731

RESUMEN

T helper 17 (Th17) cells produce interleukin-17 (IL-17) cytokines and drive inflammatory responses in autoimmune diseases such as multiple sclerosis. The differentiation of Th17 cells is dependent on the retinoic acid receptor-related orphan nuclear receptor RORγt. Here, we identify REV-ERBα (encoded by Nr1d1), a member of the nuclear hormone receptor family, as a transcriptional repressor that antagonizes RORγt function in Th17 cells. REV-ERBα binds to ROR response elements (RORE) in Th17 cells and inhibits the expression of RORγt-dependent genes including Il17a and Il17f Furthermore, elevated REV-ERBα expression or treatment with a synthetic REV-ERB agonist significantly delays the onset and impedes the progression of experimental autoimmune encephalomyelitis (EAE). These results suggest that modulating REV-ERBα activity may be used to manipulate Th17 cells in autoimmune diseases.


Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , Esclerosis Múltiple/inmunología , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Células Th17/inmunología , Secuencias de Aminoácidos/genética , Secuencias de Aminoácidos/inmunología , Animales , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/genética , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/inmunología , Sitios Genéticos , Células HEK293 , Humanos , Interleucina-17/genética , Interleucina-17/inmunología , Interleucina-17/metabolismo , Ratones , Ratones Transgénicos , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/genética , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/agonistas , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/inmunología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/inmunología , Pirrolidinas/farmacología , Pirrolidinas/uso terapéutico , RNA-Seq , Elementos de Respuesta/genética , Células Th17/metabolismo , Tiofenos/farmacología , Tiofenos/uso terapéutico
16.
Nature ; 528(7580): 137-41, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26580014

RESUMEN

Age-associated insulin resistance (IR) and obesity-associated IR are two physiologically distinct forms of adult-onset diabetes. While macrophage-driven inflammation is a core driver of obesity-associated IR, the underlying mechanisms of the obesity-independent yet highly prevalent age-associated IR are largely unexplored. Here we show, using comparative adipo-immune profiling in mice, that fat-resident regulatory T cells, termed fTreg cells, accumulate in adipose tissue as a function of age, but not obesity. Supporting the existence of two distinct mechanisms underlying IR, mice deficient in fTreg cells are protected against age-associated IR, yet remain susceptible to obesity-associated IR and metabolic disease. By contrast, selective depletion of fTreg cells via anti-ST2 antibody treatment increases adipose tissue insulin sensitivity. These findings establish that distinct immune cell populations within adipose tissue underlie ageing- and obesity-associated IR, and implicate fTreg cells as adipo-immune drivers and potential therapeutic targets in the treatment of age-associated IR.


Asunto(s)
Tejido Adiposo/citología , Tejido Adiposo/inmunología , Envejecimiento/inmunología , Resistencia a la Insulina/inmunología , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/inmunología , Animales , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , Macrófagos/inmunología , Masculino , Síndrome Metabólico/inmunología , Síndrome Metabólico/metabolismo , Ratones , Obesidad/metabolismo
17.
Nature ; 513(7518): 436-9, 2014 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-25043058

RESUMEN

Fibroblast growth factor 1 (FGF1) is an autocrine/paracrine regulator whose binding to heparan sulphate proteoglycans effectively precludes its circulation. Although FGF1 is known as a mitogenic factor, FGF1 knockout mice develop insulin resistance when stressed by a high-fat diet, suggesting a potential role in nutrient homeostasis. Here we show that parenteral delivery of a single dose of recombinant FGF1 (rFGF1) results in potent, insulin-dependent lowering of glucose levels in diabetic mice that is dose-dependent but does not lead to hypoglycaemia. Chronic pharmacological treatment with rFGF1 increases insulin-dependent glucose uptake in skeletal muscle and suppresses the hepatic production of glucose to achieve whole-body insulin sensitization. The sustained glucose lowering and insulin sensitization attributed to rFGF1 are not accompanied by the side effects of weight gain, liver steatosis and bone loss associated with current insulin-sensitizing therapies. We also show that the glucose-lowering activity of FGF1 can be dissociated from its mitogenic activity and is mediated predominantly via FGF receptor 1 signalling. Thus we have uncovered an unexpected, neomorphic insulin-sensitizing action for exogenous non-mitogenic human FGF1 with therapeutic potential for the treatment of insulin resistance and type 2 diabetes.


Asunto(s)
Factor 1 de Crecimiento de Fibroblastos/farmacología , Glucosa/metabolismo , Insulina/metabolismo , Animales , Glucemia/metabolismo , Peso Corporal/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Relación Dosis-Respuesta a Droga , Factor 1 de Crecimiento de Fibroblastos/administración & dosificación , Factor 1 de Crecimiento de Fibroblastos/efectos adversos , Prueba de Tolerancia a la Glucosa , Humanos , Resistencia a la Insulina , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Mitógenos/farmacología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo
18.
Proc Natl Acad Sci U S A ; 114(47): 12542-12547, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29109251

RESUMEN

The metabolic programs of functionally distinct T cell subsets are tailored to their immunologic activities. While quiescent T cells use oxidative phosphorylation (OXPHOS) for energy production, and effector T cells (Teffs) rely on glycolysis for proliferation, the distinct metabolic features of regulatory T cells (Tregs) are less well established. Here we show that the metabolic sensor LKB1 is critical to maintain cellular metabolism and energy homeostasis in Tregs. Treg-specific deletion of Lkb1 in mice causes loss of Treg number and function, leading to a fatal, early-onset autoimmune disorder. Tregs lacking Lkb1 have defective mitochondria, compromised OXPHOS, depleted cellular ATP, and altered cellular metabolism pathways that compromise their survival and function. Furthermore, we demonstrate that the function of LKB1 in Tregs is largely independent of the AMP-activated protein kinase, but is mediated by the MAP/microtubule affinity-regulating kinases and salt-inducible kinases. Our results define a metabolic checkpoint in Tregs that couples metabolic regulation to immune homeostasis and tolerance.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Metabolismo Energético/inmunología , Homeostasis/inmunología , Tolerancia Inmunológica , Proteínas Serina-Treonina Quinasas/inmunología , Linfocitos T Reguladores/inmunología , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/inmunología , Animales , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/metabolismo , Enfermedades Autoinmunes/patología , Recuento de Linfocito CD4 , Proliferación Celular , Supervivencia Celular , Metabolismo Energético/genética , Regulación de la Expresión Génica/inmunología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Ganglios Linfáticos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/inmunología , Mitocondrias/patología , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/inmunología , Transducción de Señal , Bazo/inmunología , Bazo/metabolismo , Bazo/patología , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/metabolismo , Linfocitos T Citotóxicos/patología , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/patología
19.
Proc Natl Acad Sci U S A ; 114(5): 1129-1134, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28096419

RESUMEN

A fibroinflammatory stromal reaction cooperates with oncogenic signaling to influence pancreatic ductal adenocarcinoma (PDAC) initiation, progression, and therapeutic outcome, yet the mechanistic underpinning of this crosstalk remains poorly understood. Here we show that stromal cues elicit an adaptive response in the cancer cell including the rapid mobilization of a transcriptional network implicated in accelerated growth, along with anabolic changes of an altered metabolome. The close overlap of stroma-induced changes in vitro with those previously shown to be regulated by oncogenic Kras in vivo suggests that oncogenic Kras signaling-a hallmark and key driver of PDAC-is contingent on stromal inputs. Mechanistically, stroma-activated cancer cells show widespread increases in histone acetylation at transcriptionally enhanced genes, implicating the PDAC epigenome as a presumptive point of convergence between these pathways and a potential therapeutic target. Notably, inhibition of the bromodomain and extraterminal (BET) family of epigenetic readers, and of Bromodomain-containing protein 2 (BRD2) in particular, blocks stroma-inducible transcriptional regulation in vitro and tumor progression in vivo. Our work suggests the existence of a molecular "AND-gate" such that tumor activation is the consequence of mutant Kras and stromal cues, providing insight into the role of the tumor microenvironment in the origin and treatment of Ras-driven tumors.


Asunto(s)
Carcinoma Ductal Pancreático/fisiopatología , Fibroblastos/fisiología , Regulación Neoplásica de la Expresión Génica/genética , Código de Histonas , Metaboloma , Neoplasias Pancreáticas/fisiopatología , Células del Estroma/fisiología , Microambiente Tumoral/fisiología , Acetilación , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Citocinas/metabolismo , Metabolismo Energético , Elementos de Facilitación Genéticos , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/fisiología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Células Estrelladas Pancreáticas/fisiología , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/fisiología , Factores de Transcripción , Células Tumorales Cultivadas
20.
Proc Natl Acad Sci U S A ; 114(13): E2563-E2570, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28320959

RESUMEN

The peroxisome proliferator-activated receptor (PPAR) family comprises three subtypes: PPARα, PPARγ, and PPARδ. PPARδ transcriptionally modulates lipid metabolism and the control of energy homeostasis; therefore, PPARδ agonists are promising agents for treating a variety of metabolic disorders. In the present study, we develop a panel of rationally designed PPARδ agonists. The modular motif affords efficient syntheses using building blocks optimized for interactions with subtype-specific residues in the PPARδ ligand-binding domain (LBD). A combination of atomic-resolution protein X-ray crystallographic structures, ligand-dependent LBD stabilization assays, and cell-based transactivation measurements delineate structure-activity relationships (SARs) for PPARδ-selective targeting and structural modulation. We identify key ligand-induced conformational transitions of a conserved tryptophan side chain in the LBD that trigger reorganization of the H2'-H3 surface segment of PPARδ. The subtype-specific conservation of H2'-H3 sequences suggests that this architectural remodeling constitutes a previously unrecognized conformational switch accompanying ligand-dependent PPARδ transcriptional regulation.


Asunto(s)
PPAR delta/química , Sitios de Unión , Cristalografía por Rayos X , Humanos , Ligandos , Modelos Moleculares , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA