Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Anat ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39022807

RESUMEN

Recent evidence suggests that the invasive air sac system evolved at least three times independently in avemetatarsalians: in pterosaurs, sauropodomorphs and theropods. Data from sauropodomorphs showed that the pneumatic architecture in vertebrae first developed in camellate-like trabeculae in the Triassic, later in camerate systems in Jurassic neosauropods, and finally camellate tissue in Cretaceous titanosaurs. This evolutionary trajectory has support from a considerable sampling of sauropodomorph taxa. However, the evolution of pneumatic bone tissues in Theropoda is less understood. We analyzed the computed tomography of Majungasaurus and Rahonavis, using densitometry rendering to differentiate the microarchitecture along the presacral axial skeleton of late Ceratosaurians and early Paravians. We also compared these results with scans of other theropod clades. Our analysis revealed an increase in pneumatic complexity in early paravians compared to the ceratosaurians. Majungasaurus presents some apneumatic neural spines, a condition also observed in Allosaurus. Majungasaurus also features some apneumatic centra despite the presence of lateral pneumatic fossae. This raises caution when evaluating PSP solely based on external morphology. We also found evidence of distinct patterns of PSP in maniraptorans. Considering that Majungasaurus, a late abelisaurid, inherited from their ceratosaurian ancestors, some apneumatic elements such as the neural spine and some centra, Rahonavis, an early paravian, took a different trajectory toward the full pneumatization of the axial skeleton. This characteristic provided paravians an advantage in gliding and flying. Also, unlike Sauropoda, pneumaticity in Theropoda apparently developed by increasing chamber volumes toward paravians. Similar studies on early Theropoda are needed to elucidate their condition and better describe the evolutionary trajectory of different groups.

2.
Sci Rep ; 14(1): 6528, 2024 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-38499621

RESUMEN

The Serrote do Letreiro Site, found on the northwest periphery of the Sousa Basin, Brazil, presents a remarkable convergence of paleontological and archaeological elements. It is constituted of sub-horizontal "lajeiros", or rock outcrops, intermingled with endemic Caatinga vegetation. The three prominent outcrops feature fossilized footprints of theropod, sauropod, and iguanodontian dinosaurs from the Early Cretaceous Period. Adjacent to these dinosaur tracks, indigenous petroglyphs adorn the surface. The petroglyphs, mainly characterized by circular motifs, maintain a striking resemblance to other petroglyphs found in the states of Paraíba and Rio Grande do Norte. This study primarily endeavors to delineate the site's major characteristics while concentrating on the relationship between the dinosaur footprints and the petroglyphs. It concurrently assesses the preservation status of this invaluable record, shedding light on its implications for the realms of paleontology, archaeology, and cultural heritage studies.


Asunto(s)
Dinosaurios , Delfines , Animales , Dinosaurios/anatomía & histología , Brasil , Paleontología , Arqueología , Fósiles
3.
Anat Rec (Hoboken) ; 307(4): 1084-1092, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36971057

RESUMEN

One of the most remarkable features in sauropod dinosaurs relates to their pneumatized skeletons permeated by a bird-like air sac system. Many studies described the late evolution and diversification of this trait in mid to late Mesozoic forms but few focused on the origin of the invasive respiratory diverticula in sauropodomorphs. Fortunately, it is possible to solve this thanks to the boom of new species described in the last decade as well as the broad accessibility of new technologies. Here we analyze the unaysaurid sauropodomorph Macrocollum itaquii from the Late Triassic (early Norian) of southern Brazil using micro-computed tomography. We describe the chronologically oldest and phylogenetically earliest unambiguous evidence of an invasive air sac system in a dinosaur. Surprisingly, this species presented a unique pattern of pneumatization in non-sauropod sauropodomorphs, with pneumatic foramina in posterior cervical and anterior dorsal vertebrae. This suggests that patterns of pneumatization were not cladistically consistent prior to the arrival of Jurassic eusauropods. Additionally, we describe the protocamerae tissue, a new type of pneumatic tissue with properties of both camellae and camerae. This reverts the previous hypothesis which stated that the skeletal pneumatization first evolved into camarae, and derived into delicate trabecular arrangements. This tissue is evidence of thin camellate-like tissue developing into larger chambers. Finally, Macrocollum is an example of the gradual evolution of skeletal tissues responding to the fastly specializing Respiratory System of saurischian dinosaurs.


Asunto(s)
Sacos Aéreos , Dinosaurios , Animales , Evolución Biológica , Dinosaurios/anatomía & histología , Microtomografía por Rayos X , Fósiles , Filogenia
4.
Sci Rep ; 12(1): 20844, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36494410

RESUMEN

The origin of the air sac system present in birds has been an enigma for decades. Skeletal pneumaticity related to an air sac system is present in both derived non-avian dinosaurs and pterosaurs. But the question remained open whether this was a shared trait present in the common avemetatarsalian ancestor. We analyzed three taxa from the Late Triassic of South Brazil, which are some of the oldest representatives of this clade (233.23 ± 0.73 Ma), including two sauropodomorphs and one herrerasaurid. All three taxa present shallow lateral fossae in the centra of their presacral vertebrae. Foramina are present in many of the fossae but at diminutive sizes consistent with neurovascular rather than pneumatic origin. Micro-tomography reveals a chaotic architecture of dense apneumatic bone tissue in all three taxa. The early sauropodomorphs showed more complex vascularity, which possibly served as the framework for the future camerate and camellate pneumatic structures of more derived saurischians. Finally, the evidence of the absence of postcranial skeletal pneumaticity in the oldest dinosaurs contradicts the homology hypothesis for an invasive diverticula system and suggests that this trait evolved independently at least 3 times in pterosaurs, theropods, and sauropodomorphs.


Asunto(s)
Dinosaurios , Animales , Dinosaurios/anatomía & histología , Sacos Aéreos , Columna Vertebral/anatomía & histología , Aves , Huesos , Fósiles , Evolución Biológica , Filogenia
5.
Sci Rep ; 11(1): 24207, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34921226

RESUMEN

This study reports the occurrence of pneumosteum (osteohistological structure related to an avian-like air sac system) in a nanoid (5.7-m-long) saltasaurid titanosaur from Upper Cretaceous Brazil. We corroborate the hypothesis of the presence of an air sac system in titanosaurians based upon vertebral features identified through external observation and computed tomography. This is the fifth non-avian dinosaur taxon in which histological traces of air sacs have been found. We provided a detailed description of pneumatic structures from external osteology and CT scan data as a parameter for comparison with other taxa. The camellate pattern found in the vertebral centrum (ce) of this taxon and other titanosaurs shows distinct architectures. This might indicate whether cervical or lung diverticula pneumatized different elements. A cotylar internal plate of bone tissue sustains radial camellae (rad) in a condition similar to Alamosaurus and Saltasaurus. Moreover, circumferential chambers (cc) near the cotyle might be an example of convergence between diplodocoids and titanosaurs. Finally, we also register for the first time pneumatic foramina (fo) and fossae connecting camellate structures inside the neural canal in Titanosauria and the second published case in non-avian dinosaurs. The extreme pneumaticity observed in this nanoid titanosaur contrasts with previous assumptions that this feature correlates with the evolution of gigantic sizes in sauropodomorphs. This study reinforces that even small-bodied sauropod clades could present a hyperpneumatized postcranial skeleton, a character inherited from their large-bodied ancestors.


Asunto(s)
Huesos/ultraestructura , Dinosaurios/anatomía & histología , Fósiles/ultraestructura , Animales , Brasil
7.
PLoS One ; 10(2): e0117944, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25689140

RESUMEN

Purussaurus brasiliensis thrived in the northwestern portion of South America during the Late Miocene. Although substantial material has been recovered since its early discovery, this fossil crocodilian can still be considered as very poorly understood. In the present work, we used regression equations based on modern crocodilians to present novel details about the morphometry, bite-force and paleobiology of this species. According to our results, an adult Purussaurus brasiliensis was estimated to reach around 12.5 m in length, weighing around 8.4 metric tons, with a mean daily food intake of 40.6 kg. It was capable of generating sustained bite forces of 69,000 N (around 7 metric tons-force). The extreme size and strength reached by this animal seems to have allowed it to include a wide range of prey in its diet, making it a top predator in its ecosystem. As an adult, it would have preyed upon large to very large vertebrates, and, being unmatched by any other carnivore, it avoided competition. The evolution of a large body size granted P. brasiliensis many advantages, but it may also have led to its vulnerability. The constantly changing environment on a large geological scale may have reduced its long-term survival, favoring smaller species more resilient to ecological shifts.


Asunto(s)
Caimanes y Cocodrilos/anatomía & histología , Evolución Biológica , Fuerza de la Mordida , Conducta Alimentaria/fisiología , Conducta Predatoria/fisiología , Caimanes y Cocodrilos/fisiología , Animales , Tamaño Corporal/fisiología , Dieta , Ecosistema , Fósiles , Maxilares/anatomía & histología , Maxilares/fisiología , América del Sur
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA