RESUMEN
A facile synthesis of a binuclear AgI complex 2 of a bis(carbone) ligand L and its application as a carbone-transfer agent for the generation of other transition-metal complexes of AuI (3), NiII (4), and PdII (5) is presented. Complex 2 was synthesized through multiple synthetic routes under mild reaction conditions using the tetracationic [LH4][OTf·Cl]2 precursor salt, the dicationic [LH2][OTf]2 ylide salt, and the free ligand L. The first two synthesis routes require no prior isolation of the air-, moisture-, and temperature-sensitive free ligand L, thus affording complex 2 with high yield and purity. Multinuclear NMR techniques, high-resolution mass spectrometry, and single-crystal X-ray diffraction analysis confirmed the identity of complex 2 as a binuclear AgI complex of L with a molecular formula of [L2Ag2][OTf]2 and a 16-membered-ring metallomacrocyclic structure. During the transmetalation reaction with AuI, the binuclear nature of complex 2 remains intact to give analogous complex 3 ([L2Au2][OTf]2). However, the dimeric structure was disrupted upon the carbone-transfer reaction with NiII and PdII, yielding mononuclear C-N-C pincer-type complexes 4 ([LNiCl][OTf]) and 5 ([LPdCl][OTf]), respectively. These results demonstrated the versatile use of complex 2 as a carbone-transfer agent to other transition metals regardless of the type or size of the metals or the geometry they prefer.
RESUMEN
Carbones are divalent carbon(0) species that contain two lone pairs of electrons. Herein, we have prepared the first known stable and isolable free bis-(carbone) pincer framework with a well-defined solid-state structure. This bis-(carbone) ligand is an effective scaffold for forming monometallic (Ni and Pd) and trinuclear heterometallic complexes with Au-Pd-Au, Au-Ni-Au, and Cu-Ni-Cu configurations. Sophisticated quantum-theoretical analyses found that the metal-metal interactions are too weak to play a significant role in upholding these multi-metallic configurations; rather, the four lone pairs of electrons within the bis-(carbone) framework are the main contributors to the stability of the complexes.