Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36982341

RESUMEN

Doxorubicin (DOX) is an efficacious and commonly used chemotherapeutic agent. However, its clinical use is limited due to dose-dependent cardiotoxicity. Several mechanisms have been proposed to play a role in DOX-induced cardiotoxicity, such as free radical generation, oxidative stress, mitochondrial dysfunction, altered apoptosis, and autophagy dysregulation. BGP-15 has a wide range of cytoprotective effects, including mitochondrial protection, but up to now, there is no information about any of its beneficial effects on DOX-induced cardiotoxicity. In this study, we investigated whether the protective effects of BGP-15 pretreatment are predominantly via preserving mitochondrial function, reducing mitochondrial ROS production, and if it has an influence on autophagy processes. H9c2 cardiomyocytes were pretreated with 50 µM of BGP-15 prior to different concentrations (0.1; 1; 3 µM) of DOX exposure. We found that BGP-15 pretreatment significantly improved the cell viability after 12 and 24 h DOX exposure. BGP-15 ameliorated lactate dehydrogenase (LDH) release and cell apoptosis induced by DOX. Additionally, BGP-15 pretreatment attenuated the level of mitochondrial oxidative stress and the loss of mitochondrial membrane potential. Moreover, BGP-15 further slightly modulated the autophagic flux, which was measurably decreased by DOX treatment. Hence, our findings clearly revealed that BGP-15 might be a promising agent for alleviating the cardiotoxicity of DOX. This critical mechanism appears to be given by the protective effect of BGP-15 on mitochondria.


Asunto(s)
Cardiotoxicidad , Doxorrubicina , Humanos , Cardiotoxicidad/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Línea Celular , Doxorrubicina/toxicidad , Estrés Oxidativo , Miocitos Cardíacos/metabolismo , Mitocondrias/metabolismo , Apoptosis , Antibióticos Antineoplásicos/toxicidad
2.
Molecules ; 28(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37570681

RESUMEN

This study aimed at the relationship between antioxidant capacity, antimicrobial activity, and in vitro evaluation of the wound healing effect of the extract obtained from Echinaceae purpureae folium (EPF). This study's objective was to assess the bioactive components (total phenol and flavonoid content) and antioxidant activity of EPF extracts using the DPPH test method. The antioxidant capacity and the quantities of the compounds with antioxidant capacity were evaluated by spectrophotometric methods. Antimicrobial activity has been investigated against various pathogenic microorganisms. The minimum inhibitory concentration was determined by the microdilution method. Additionally, our work used a scratch test to examine the in vitro wound healing effects of EPF extract on NHDF cells. Statistical analysis was used to quantify the rate of migration and proliferation of fibroblast cells within the wound. Microscope pictures of fibroblast cells exposed to various EPF extract dosages were processed to estimate the width of the wound, area of the wound, and cell density inside the wound. The study proved that there was a relationship between the antioxidant, antimicrobial, and wound healing ability of EPF extracts.


Asunto(s)
Antiinfecciosos , Echinacea , Antioxidantes/farmacología , Antioxidantes/análisis , Echinacea/química , Cicatrización de Heridas , Extractos Vegetales/química , Antiinfecciosos/farmacología , Antiinfecciosos/análisis , Hojas de la Planta/química
3.
Molecules ; 28(11)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37298882

RESUMEN

Nasal drug delivery has been a focus of scientific interest for decades. A number of drug delivery systems and devices are available and have been highly successful in providing better and more comfortable therapy. The benefits of nasal drug delivery are not in question. The nasal surface provides an excellent context for the targeted delivery of active substances. In addition to the large nasal surface area and intensive absorption, the active substances delivered through the nose overcome the blood-brain barrier and can be delivered directly to the central nervous system. Formulations for nasal administration are typically solutions or liquid dispersed systems such as emulsions or suspensions. Formulation techniques for nanostructures have recently undergone intensive development. Solid-phase heterogeneous dispersed systems represent a new direction in pharmaceutical formulations. The wide range of possible examples and the variety of excipients allow for the delivery of a wide range of active ingredients. The aim of our experimental work was to develop a solid drug delivery system that possesses all of the above-mentioned advantageous properties. In developing solid nanosystems, we not only exploited the advantages of size but also the adhesive and penetration-enhancing properties of excipients. During formulation, several amphiphilic compounds with adhesion properties and penetration enhancing effects were incorporated. We used chlorpromazine (CPZ), which is mainly used in the treatment of psychotic disorders such as schizophrenia and bipolar disorder. Chlorpromazine has been previously investigated by our team in other projects. With the availability of previous methods, the analytical characterization of the drug was carried out effectively. Due to the frequent and severe side effects of the drug, the need for therapeutic dose reduction is indisputable. In this series of experiments, we succeeded in constructing drug delivery systems. Finely divided Na nanoparticles were formed using a Büchi B90 nanospray dryer. An important step in the development of the drug carrier was the selection of suitable inert carrier compounds. Particle size determination and particle size distribution analysis were performed to characterize the prepared nanostructures. As safety is the most important aspect of any drug formulation, all components and systems were tested with different biocompatibility assays. The tests performed demonstrated the safe applicability of our systems. The bioavailability of chlorpromazine was studied as a function of the ratio of the active ingredient administered nasally and intravenously. As described above, most nasal formulations are liquids, but our system is solid, so there is currently no tool available to accurately target this system. As a supplement of the project, a nasal dosing device was developed, corresponding to the anatomical structure; a prototype of the device was made using 3D FDM technology. Our results lay the foundation for the design and industrial scaling of a new approach to the design and production of a high-bioavailability nasal medicinal product.


Asunto(s)
Clorpromazina , Nanopartículas , Excipientes/química , Administración Intranasal , Sistemas de Liberación de Medicamentos/métodos , Portadores de Fármacos/química , Nanopartículas/química , Tamaño de la Partícula
4.
Molecules ; 28(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37241746

RESUMEN

Taraxaci folium and Matricariae flos plant extracts contain a wide range of bioactive compounds with antioxidant and anti-inflammatory effects. The aim of the study was to evaluate the phytochemical and antioxidant profile of the two plant extracts to obtain a mucoadhesive polymeric film with beneficial properties in acute gingivitis. The chemical composition of the two plant extracts was determined by high-performance liquid chromatography coupled with mass spectrometry. To establish a favourable ratio in the combination of the two extracts, the antioxidant capacity was determined by the method of reduction of copper ions Cu2+ from neocuprein and by reduction of the compound 1.1-diphenyl-2-2picril-hydrazyl. Following preliminary analysis, we selected the plant mixture Taraxaci folium/matricariae flos in the ratio of 1:2 (m/m), having an antioxidant capacity of 83.92% ± 0.02 reduction of free nitrogen radical of 1.1-diphenyl-2-2picril-hydrazyl reagent. Subsequently, bioadhesive films of 0.2 mm thickness were obtained using various concentrations of polymer and plant extract. The mucoadhesive films obtained were homogeneous and flexible, with pH ranging from 6.634 to 7.016 and active ingredient release capacity ranging from 85.94-89.52%. Based on in vitro analysis, the film containing 5% polymer and 10% plant extract was selected for in vivo study. The study involved 50 patients undergoing professional oral hygiene followed by a 7-day treatment with the chosen mucoadhesive polymeric film. The study showed that the film used helped accelerate the healing of acute gingivitis after treatment, with anti-inflammatory and protective action.


Asunto(s)
Antioxidantes , Gingivitis , Humanos , Antioxidantes/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antiinflamatorios/farmacología , Antiinflamatorios/química
5.
Molecules ; 27(9)2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35566351

RESUMEN

Thyroid autoimmunity in Graves' disease (GD) is accompanied by Graves' orbitopathy (GO) in 40% of the cases. Orbital fibroblasts (OF) play a key role in the pathogenesis and cigarette smoking is a known deteriorating factor. Alongside conventional cigarettes (CC) new alternatives became available for smokers, including heated tobacco products (HTP) and E-cigarettes (ECIG). We aimed to study the cellular effects of smoke extracts (SE) in orbital fibroblasts. Primary OF cultures from GO and NON-GO orbits were exposed to different concentrations of SE (1%, 50%) and the changes were followed using Real Time Cell Electronic Sensing (RT-CES). Untreated GO and NON-GO cells had different maximum cell index (CI) values of 3.3 and 2.79 respectively (p < 0.0001). CC, HTP and ECIG treated NON-GO fibroblasts exhibited peak CIs of 2.62, 3.32 and 3.41 while treated GO cells' CIs were higher, 5.38, 6.25 and 6.33, respectively (p < 0.0001). The metabolic activity (MTT) decreased (p < 0.001) and hyaluronan production doubled (p < 0.02) after 50% of CC SE treatment in all cell cultures. GO fibroblasts were more sensitive to low concentration SE then NON-GO fibroblasts (p < 0.0001). The studied SEs exerted different effects. RT-CES is a sensitive technique to detect the effects of very low concentration of SE on fibroblasts.


Asunto(s)
Fumar Cigarrillos , Cigarrillo Electrónico a Vapor , Sistemas Electrónicos de Liberación de Nicotina , Oftalmopatía de Graves , Productos de Tabaco , Células Cultivadas , Fumar Cigarrillos/efectos adversos , Electrónica , Fibroblastos , Oftalmopatía de Graves/complicaciones , Oftalmopatía de Graves/metabolismo , Oftalmopatía de Graves/patología , Humanos
6.
Molecules ; 27(22)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36431844

RESUMEN

The application of 2-hydroxypropyl-beta-cyclodextrin (HPBCD) in the treatment of the rare cholesterol and lipid storage disorder Niemann-Pick disease type C opened new perspectives in the development of an efficient therapy. Even if the systemic administration of HPBCD was found to be effective, its low permeability across the blood-brain barrier (BBB) limited the positive neurological effects. Nevertheless, the cellular interactions of HPBCD with brain capillary endothelial cells have not been investigated in detail. In this study, the cytotoxicity, permeability, and cellular internalization of HPBCD on primary rat and immortalized human (hCMEC/D3) brain capillary endothelial cells were investigated. HPBCD shows no cytotoxicity on endothelial cells up to 100 µM, measured by impedance kinetics. Using a fluorescent derivative of HPBCD (FITC-HPBCD) the permeability measurements reveal that on an in vitro triple co-culture BBB model, FITC-HPBCD has low permeability, 0.50 × 10-6 cm/s, while on hCMEC/D3 cell layers, the permeability is higher, 1.86 × 10-5 cm/s. FITC-HPBCD enters brain capillary endothelial cells, is detected in cytoplasmic vesicles and rarely localized in lysosomes. The cellular internalization of HPBCD at the BBB can help to develop new strategies for improved HPBCD effects after systemic administration.


Asunto(s)
Encéfalo , Células Endoteliales , Animales , Humanos , Ratas , 2-Hidroxipropil-beta-Ciclodextrina/farmacología , Fluoresceína-5-Isotiocianato , Células Cultivadas
7.
Molecules ; 27(5)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35268690

RESUMEN

Cyclodextrins are high molecular weight, hydrophilic, cyclic, non-reducing oligosaccharides, applied as excipients for the improvement of the solubility and permeability of insoluble active pharmaceutical ingredients. On the other hand, beta-cyclodextrins are used as cholesterol sequestering agents in life sciences. Recently, we demonstrated the cellular internalization and intracellular effects of cyclodextrins on Caco-2 cells. In this study, we aimed to further investigate the endocytosis of (2-hydroxylpropyl)-beta-(HPBCD) and random methylated-beta-cyclodextrin (RAMEB) to test their cytotoxicity, NF-kappa B pathway induction, autophagy, and lysosome formation on HeLa cells. These derivatives were able to enter the cells; however, major differences were revealed in the inhibition of their endocytosis compared to Caco-2 cells. NF-kappa B p65 translocation was not detected in the cell nuclei after HPBCD or RAMEB pre-treatment and cyclodextrin treatment did not enhance the formation of autophagosomes. These cyclodextrin derivates were partially localized in lysosomes after internalization.


Asunto(s)
Ciclodextrinas , Células CACO-2 , Ciclodextrinas/farmacología , Excipientes , Células HeLa , Humanos , Solubilidad
8.
Molecules ; 27(19)2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36235189

RESUMEN

Turmeric has been used for decades for its antioxidant and anti-inflammatory effect, which is due to an active ingredient isolated from the plant, called curcumin. However, the extremely poor water-solubility of curcumin often limits the bioavailability of the drug. The aim of our experimental work was to improve the solubility and thus bioavailability of curcumin by developing self-nano/microemulsifying drug delivery systems (SN/MEDDS). Labrasol and Cremophor RH 40 as nonionic surfactants, Transcutol P as co-surfactant and isopropyl myristate as the oily phase were used during the formulation. The average droplet size of SN/MEDDS containing curcumin was between 32 and 405 nm. It was found that the higher oil content resulted in larger particle size. The drug loading efficiency was between 93.11% and 99.12% and all formulations were thermodynamically stable. The curcumin release was studied at pH 6.8, and the release efficiency ranged between 57.3% and 80.9% after 180 min. The results of the MTT cytotoxicity assay on human keratinocyte cells (HaCaT) and colorectal adenocarcinoma cells (Caco-2) showed that the curcumin-containing preparations were non-cytotoxic at 5 w/v%. According to the results of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide dismutase (SOD) assays, SNEDDS showed significantly higher antioxidant activity. The anti-inflammatory effect of the SN/MEDDS was screened by enzyme-linked immunosorbent assay (ELISA). SNEDDS formulated with Labrasol as surfactant, reduced tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1ß) levels below 60% at a concentration of 10 w/w%. Our results verified the promising use of SN/MEDDS for the delivery of curcumin. This study demonstrates that the SN/MEDDS could be promising alternatives for the formulation of poorly soluble lipophilic compounds with low bioavailability.


Asunto(s)
Curcumina , Administración Oral , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Disponibilidad Biológica , Células CACO-2 , Curcumina/química , Curcumina/farmacología , Sistemas de Liberación de Medicamentos/métodos , Emulsiones/química , Excipientes , Humanos , Interleucina-1beta , Aceites/química , Tamaño de la Partícula , Solubilidad , Superóxido Dismutasa , Tensoactivos/química , Factor de Necrosis Tumoral alfa , Agua
9.
Molecules ; 27(17)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36080266

RESUMEN

The aim of this study was to evaluate the phytochemical profile and antioxidant properties of the extracts from three Rosa species (R. canina, R. damascena, R. cairo), to develop and investigate topical formulations with lyophilized forms of extracts for the treatment of psoriasis. Phytochemical screening and in vitro total antioxidant capacity (DPPH, FRAP, CUPRAC, SOD) of studied samples were examined and compared. Lyophilized extracts of roses were dissolved in Transcutol HP and different formulations of creams were prepared. Franz diffusion method was used to evaluate the drug release and biocompatibility was tested on HaCaT cells. Rosa damascene had the best results regarding all the analyses that were conducted. After the evaluation of topical products, the formulation with Rosa damascena extract in a self-emulsifying drug delivery system was tested on a human clinical study that involved 20 patients. At the end of the clinical study an improvement in the quality of life of the patients was observed and erythema, induration and scaling were reduced. The present study indicates that our examined extracts exhibited great phenolic content, antioxidant capacity and safety profile of topical formulation and therefore can be used as a reliable source of natural antioxidants and may be used as a complementary treatment to improve the quality life of patients with psoriasis or may be tested on another diseases.


Asunto(s)
Psoriasis , Rosa , Antioxidantes/química , Humanos , Fitoquímicos/química , Proyectos Piloto , Extractos Vegetales/química , Extractos Vegetales/farmacología , Psoriasis/tratamiento farmacológico , Calidad de Vida , Rosa/química
10.
Molecules ; 27(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35566001

RESUMEN

Philadelphus coronarius is a versatile plant and its use in folk medicine has a long tradition; however, scientifically, the medical utilization of the herb is a less explored research field. The aim of our study was to identify and determine the quantity of the bioactive compounds of both the leaf and the flower and prepare a lyophilized product of them, from which medical ointments were formulated, since the topical application of P. coronarius has also not been studied. In vitro drug release, texture analysis and biocompatibility experiments were carried out, as well as the investigation of microbiological, antioxidant and anti-inflammatory properties. According to our results the composition and the selected excipients of the ointments have a great impact on the drug release, texture and bioavailability of the preparation. During the microbiological testing, the P. coronarius leaf was effective against Escherichia coli and Staphylococcus aureus, but it did not significantly decrease IL-4 production when it was tested on HaCaT cells. P. coronarius is a promising herb, and its topical application in antimicrobial therapy can be a useful addition to modern medical therapy.


Asunto(s)
Antiinfecciosos , Antioxidantes , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Flores , Pomadas , Extractos Vegetales/farmacología , Hojas de la Planta
11.
Molecules ; 27(9)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35566198

RESUMEN

Fenugreek is used as a spice and a traditional herbal medicine for a variety of purposes, given its antidiabetic and antioxidant effects. Self-emulsifying drug delivery systems (SEDDS) of herbal drugs are targets of extensive research aiming to increase bioavailability and stability. The study's objective was to formulate SEDDS containing Trigonella foenum-graecum extract to improve the stability of herbal extract and to increase their permeability through a Caco-2 monolayer. A characterized fenugreek dry extract was used for the formulations, while the SEDDS properties were examined by particle size analysis and zeta potential measurements. Permeability assays were carried out on Caco-2 cell monolayers, the integrity of which was monitored by follow-up trans-epithelial electric resistance measurements (TEER). Cytocompatibility was tested by the MTT method, and an indirect dissolution test was performed, using DPPH antioxidant reagent. Two different SEDDS compositions were formulated from a standardized fenugreek dry extract at either the micro- or the nanoemulsion scale with sufficient stability, enhanced bioavailability of the compounds, and sustained release from HPMC capsules. Based on our results, a modern, non-toxic, cytocompatible fenugreek SEDDS formulation with high antioxidant capacity was developed in order to improve the permeability and bioavailability of all components.


Asunto(s)
Trigonella , Antioxidantes/farmacología , Células CACO-2 , Sistemas de Liberación de Medicamentos/métodos , Humanos , Permeabilidad , Extractos Vegetales/química , Extractos Vegetales/farmacología , Trigonella/química
12.
Molecules ; 26(4)2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33672029

RESUMEN

Exposure to reactive oxygen species can easily result in serious diseases, such as hyperproliferative skin disorders or skin cancer. Herbal extracts are widely used as antioxidant sources in different compositions. The importance of antioxidant therapy in inflammatory conditions has increased. Innovative formulations can be used to improve the effects of these phytopharmacons. The bioactive compounds of Plantago lanceolata (PL) possess different effects, such as anti-inflammatory, antioxidant, and bactericidal pharmacological effects. The objective of this study was to formulate novel liquid crystal (LC) compositions to protect Plantago lanceolata extract from hydrolysis and to improve its effect. Since safety is an important aspect of pharmaceutical formulations, the biological properties of applied excipients and blends were evaluated using assorted in vitro methods on HaCaT cells. According to the antecedent toxicity screening evaluation, three surfactants were selected (Gelucire 44/14, Labrasol, and Lauroglycol 90) for the formulation. The dissolution rate of PL from the PL-LC systems was evaluated using a Franz diffusion chamber apparatus. The antioxidant properties of the PL-LC systems were evaluated with 2,2-diphenyl-1-picrylhydrazyl (DPPH) and malondialdehyde (MDA) assessments. Our results suggest that these compositions use a nontraditional, rapid-permeation pathway for the delivery of drugs, as the applied penetration enhancers reversibly alter the barrier properties of the outer stratum corneum. These excipients can be safe and highly tolerable thus, they could improve the patient's experience and promote adherence.


Asunto(s)
Composición de Medicamentos , Cristales Líquidos/química , Extractos Vegetales/farmacología , Plantago/química , Piel/efectos de los fármacos , Compuestos de Bifenilo/química , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Impedancia Eléctrica , Depuradores de Radicales Libres/farmacología , Células HaCaT , Humanos , Peroxidación de Lípido/efectos de los fármacos , Peroxidación de Lípido/efectos de la radiación , Malondialdehído/metabolismo , Permeabilidad , Picratos/química , Piel/efectos de la radiación , Rayos Ultravioleta
13.
AAPS PharmSciTech ; 22(5): 187, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34155595

RESUMEN

Several drugs have poor oral bioavailability due to low or incomplete absorption which is affected by various effects as pH, motility of GI, and enzyme activity. The gastroretentive drug delivery systems are able to deal with these problems by prolonging the gastric residence time, while increasing the therapeutic efficacy of drugs. Previously, we developed a novel technology to foam hot and molten dispersions on atmospheric pressure by a batch-type in-house apparatus. Our aim was to upgrade this technology by a new continuous lab-scale apparatus and confirm that our formulations are gastroretentive. At first, we designed and built the apparatus and continuous production was optimized using a Box-Behnken experimental design. Then, we formulated barium sulfate-loaded samples with the optimal production parameters, which was suitable for in vivo imaging analysis. In vitro study proved the low density, namely 507 mg/cm3, and the microCT record showed high porosity with 40 µm average size of bubbles in the molten suspension. The BaSO4-loaded samples showed hard structure at room temperature and during the wetting test, the complete wetting was detected after 120 min. During the in vivo study, the X-ray taken showed the retention of the formulation in the rat stomach after 2 h. We can conclude that with our device low-density floating formulations were prepared with prolonged gastric residence time. This study provides a promising platform for marketed active ingredients with low bioavailability.


Asunto(s)
Sulfato de Bario/síntesis química , Sulfato de Bario/farmacocinética , Sistemas de Liberación de Medicamentos/métodos , Absorción Gastrointestinal/efectos de los fármacos , Animales , Sulfato de Bario/administración & dosificación , Disponibilidad Biológica , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/síntesis química , Preparaciones de Acción Retardada/farmacocinética , Formas de Dosificación , Mucosa Gástrica/efectos de los fármacos , Mucosa Gástrica/metabolismo , Absorción Gastrointestinal/fisiología , Masculino , Porosidad , Ratas , Ratas Endogámicas F344
14.
Molecules ; 26(1)2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33374575

RESUMEN

Topical anti-inflammatory and analgesic effect for the treatment of rheumatoid arthritis is of major interest because of their fewer side effects compared to oral therapy. The purpose of this study was to prepare different types of topical formulations (ointments and gels) containing synthetic and natural anti-inflammatory agents with different excipients (e.g.,: surfactants, gel-forming) for the treatment of rheumatoid arthritis. The combination of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs), diclofenac sodium, a topical analgesic agent methyl salicylate, and a lyophilized extract of Calendula officinalis with antioxidant effect were used in our formulations. The aim was to select the appropriate excipients and dosage form for the formulation in order to enhance the diffusion of active substances and to certify the antioxidant, analgesic, and anti-inflammatory effects of these formulations. To characterize the physicochemical properties of the formulations, rheological studies, and texture profile analysis were carried out. Membrane diffusion and permeability studies were performed with Franz-diffusion method. The therapeutic properties of the formulations have been proven by an antioxidant assay and a randomized prospective study that was carried out on 115 patients with rheumatoid arthritis. The results showed that the treatment with the gel containing diclofenac sodium, methyl salicylate, and lyophilized Calendula officinalis as active ingredients, 2-propenoic acid homopolymer (Synthalen K) as gel-forming excipient, distilled water, triethanolamine, and glycerol had a beneficial analgesic and local anti-inflammatory effect.


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Diclofenaco/uso terapéutico , Excipientes/química , Geles/química , Extractos Vegetales/farmacología , Administración Tópica , Calendula/química , Femenino , Flores/química , Humanos , Masculino , Persona de Mediana Edad , Pomadas , Estudios Prospectivos
15.
Molecules ; 25(20)2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33096785

RESUMEN

Natural products used in the treatment of acne vulgaris may be promising alternative therapies with fewer side effects and without antibiotic resistance. The objective of this study was to formulate creams containing Spirulina (Arthrospira) platensis to be used in acne therapy. Spirulina platensis belongs to the group of micro algae and contains valuable active ingredients. The aim was to select the appropriate nonionic surfactants for the formulations in order to enhance the diffusion of the active substance and to certify the antioxidant and antibacterial activity of Spirulina platensis-containing creams. Lyophilized Spirulina platensis powder (SPP) was dissolved in Transcutol HP (TC) and different types of nonionic surfactants (Polysorbate 60 (P60), Cremophor A6:A25 (CR) (1:1), Tefose 63 (TFS), or sucrose ester SP 70 (SP70)) were incorporated in creams as emulsifying agents. The drug release was evaluated by the Franz diffusion method and biocompatibility was tested on HaCaT cells. In vitro antioxidant assays were also performed, and superoxide dismutase (SOD) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays were executed. Antimicrobial activities of the selected compositions were checked against Staphylococcus aureus (S. aureus) and Cutibacteriumacnes (C. acnes) (formerly Propionibacterium acnes) with the broth microdilution method. Formulations containing SP 70 surfactant with TC showed the most favorable dissolution profiles and were found to be nontoxic. This composition also showed significant increase in free radical scavenger activity compared to the blank sample and the highest SOD enzyme activity was also detected after treatment with the cream samples. In antibacterial studies, significant differences were observed between the treated and control groups after an incubation time of 6 h.


Asunto(s)
Acné Vulgar/tratamiento farmacológico , Antibacterianos/farmacología , Materiales Biocompatibles/farmacología , Productos Biológicos/farmacología , Spirulina/química , Tensoactivos/farmacología , Acné Vulgar/microbiología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Materiales Biocompatibles/química , Materiales Biocompatibles/aislamiento & purificación , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Línea Celular , Supervivencia Celular/efectos de los fármacos , Composición de Medicamentos , Humanos , Pruebas de Sensibilidad Microbiana , Polvos , Propionibacteriaceae/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Tensoactivos/química , Tensoactivos/aislamiento & purificación
16.
Molecules ; 25(2)2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-31968693

RESUMEN

BGP-15 is a new insulin sensitizer drug candidate, which was developed by Hungarian researchers. In recent years, numerous research groups have studied its beneficial effects. It is effective in the treatment of insulin resistance and it has protective effects in Duchenne muscular dystrophy, diastolic dysfunction, tachycardia, heart failure, and atrial fibrillation, and it can alleviate cardiotoxicity. BGP-15 exhibits chemoprotective properties in different cytostatic therapies, and has also proven to be photoprotective. It can additionally have advantageous effects in mitochondrial-stress-related diseases. Although the precise mechanism of the effect is still unknown to us, we know that the molecule is a PARP inhibitor, chaperone co-inducer, reduces ROS production, and is able to remodel the organization of cholesterol-rich membrane domains. In the following review, our aim was to summarize the investigated molecular mechanisms and pharmacological effects of this potential API. The main objective was to present the wide pharmacological potentials of this chemical agent.


Asunto(s)
Redes Reguladoras de Genes/efectos de los fármacos , Síndrome Metabólico/metabolismo , Oximas/farmacología , Piperidinas/farmacología , Citostáticos/farmacología , Citostáticos/uso terapéutico , Humanos , Resistencia a la Insulina , Síndrome Metabólico/tratamiento farmacológico , Oximas/uso terapéutico , Piperidinas/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico
17.
Molecules ; 25(24)2020 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-33322100

RESUMEN

One of the most promising emerging innovations in personalized medication is based on 3D printing technology. For use as authorized medications, 3D-printed products require different in vitro tests, including dissolution and biocompatibility investigations. Our objective was to manufacture implantable drug delivery systems using fused deposition modeling, and in vitro tests were performed for the assessment of these products. Polylactic acid, antibacterial polylactic acid, polyethylene terephthalate glycol, and poly(methyl methacrylate) filaments were selected, and samples with 16, 19, or 22 mm diameters and 0%, 5%, 10%, or 15% infill percentages were produced. The dissolution test was performed by a USP dissolution apparatus 1. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide dye (MTT)-based prolonged cytotoxicity test was performed on Caco-2 cells to certify the cytocompatibility properties. The implantable drug delivery systems were characterized by thermogravimetric and heatflow assay, contact angle measurement, scanning electron microscopy, microcomputed tomography, and Raman spectroscopy. Based on our results, it can be stated that the samples are considered nontoxic. The dissolution profiles are influenced by the material properties of the polymers, the diameter, and the infill percentage. Our results confirm the potential of fused deposition modeling (FDM) 3D printing for the manufacturing of different implantable drug delivery systems in personalized medicine and may be applied during surgical interventions.


Asunto(s)
Antiinflamatorios no Esteroideos , Diclofenaco , Impresión Tridimensional , Prótesis e Implantes , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/química , Tecnología Biomédica , Fenómenos Químicos , Diclofenaco/administración & dosificación , Diclofenaco/química , Fenómenos Mecánicos , Polímeros/química , Solubilidad , Termogravimetría , Microtomografía por Rayos X
18.
Molecules ; 25(11)2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32486051

RESUMEN

BACKGROUND: Equisetum arvense L., commonly known as field horsetail is a perennial fern of which extracts are rich sources of phenolic compounds, flavonoids, and phenolic acids. Activation of SIRT1 that was shown to be involved in well-known signal pathways of diabetic cardiomyopathy has a protective effect against oxidative stress, inflammatory processes, and apoptosis that are the basis of diseases such as obesity, diabetes mellitus, or cardiovascular diseases. The aim of our study was to evaluate the antidiabetic and cardioprotective effects of horsetail extract in streptozotocin induced diabetic rats. METHODS: Diabetes was induced by a single intraperitoneal injection of 45 mg/kg streptozotocin. In the control groups (healthy and diabetic), rats were administered with vehicle, whilst in the treated groups, animals were administered with 50, 100, or 200 mg/kg horsetail extract, respectively, for six weeks. Blood glucose levels, glucose tolerance, and insulin sensitivity were determined, and SIRT1 levels were measured from the cardiac muscle. RESULTS: The horsetail extract showed moderate beneficial changes in blood glucose levels and exhibited a tendency to elevate SIRT1 levels in cardiomyocytes, furthermore a 100 mg/kg dose also improved insulin sensitivity. CONCLUSIONS: Altogether our results suggest that horsetail extract might have potential in ameliorating manifested cardiomyopathy acting on SIRT1.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Cardiomiopatías Diabéticas/tratamiento farmacológico , Equisetum/química , Insulina/metabolismo , Extractos Vegetales/uso terapéutico , Sirtuina 1/metabolismo , Adiposidad , Alcaloides/química , Animales , Glucemia/análisis , Peso Corporal , Cromatografía Líquida de Alta Presión , Diabetes Mellitus Experimental/inducido químicamente , Prueba de Tolerancia a la Glucosa , Inflamación , Inyecciones Intraperitoneales , Resistencia a la Insulina , Masculino , Miocitos Cardíacos/metabolismo , Tamaño de los Órganos , Estrés Oxidativo , Fenol , Ratas , Ratas Wistar , Estreptozocina
19.
Appl Environ Microbiol ; 85(20)2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31399405

RESUMEN

Tyrosol plays a key role in fungal morphogenesis and biofilm development. Also, it has a remarkable antifungal effect at supraphysiological concentrations. However, the background of the antifungal effect remains unknown, especially in the case of non-albicans Candida species such as Candida parapsilosis We examined the effect of tyrosol on growth, adhesion, redox homeostasis, virulence, as well as fluconazole susceptibility. To gain further insights into the physiological consequences of tyrosol treatment, we also determined genome-wide gene expression changes using transcriptome sequencing (RNA-Seq). A concentration of 15 mM tyrosol caused significant growth inhibition within 2 h of the addition of tyrosol, while the adhesion of yeast cells was not affected. Tyrosol increased the production of reactive oxygen species remarkably, as revealed by a dichlorofluorescein test, and it was associated with elevated superoxide dismutase, glutathione peroxidase, and catalase activities. The interaction between fluconazole and tyrosol was antagonistic. Tyrosol exposure resulted in 261 and 181 differentially expressed genes with at least a 1.5-fold increase or decrease in expression, respectively, which were selected for further study. Genes involved in ribosome biogenesis showed downregulation, while genes related to the oxidative stress response and ethanol fermentation were upregulated. In addition, tyrosol treatment upregulated the expression of efflux pump genes, including MDR1 and CDR1, and downregulated the expression of the FAD2 and FAD3 virulence genes involved in desaturated fatty acid formation. Our data demonstrate that exogenous tyrosol significantly affects the physiology and gene expression of C. parapsilosis, which could contribute to the development of treatments targeting quorum sensing in the future.IMPORTANCECandida-secreted quorum-sensing molecules (i.e., farnesol and tyrosol) are key regulators in fungal physiology, which induce phenotypic adaptations, including morphological changes, altered biofilm formation, and synchronized expression of virulence factors. Moreover, they have a remarkable antifungal activity at supraphysiological concentrations. Limited data are available concerning the tyrosol-induced molecular and physiological effects on non-albicans Candida species such as C. parapsilosis In addition, the background of the previously observed antifungal effect caused by tyrosol remains unknown. This study reveals that tyrosol exposure enhanced the oxidative stress response and the expression of efflux pump genes, while it inhibited growth and ribosome biogenesis as well as several virulence-related genes. Metabolism was changed toward glycolysis and ethanol fermentation. Furthermore, the initial adherence was not influenced significantly in the presence of tyrosol. Our results provide several potential explanations for the previously observed antifungal effect.


Asunto(s)
Antifúngicos/farmacología , Candida parapsilosis/efectos de los fármacos , Candida parapsilosis/genética , Candida parapsilosis/fisiología , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Alcohol Feniletílico/farmacología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Biopelículas/efectos de los fármacos , Células CACO-2 , Catalasa/metabolismo , Antagonismo de Drogas , Fluconazol/farmacología , Glutatión Peroxidasa/metabolismo , Humanos , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Pruebas de Sensibilidad Microbiana , Estrés Oxidativo , Alcohol Feniletílico/análogos & derivados , Percepción de Quorum , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Activación Transcripcional/efectos de los fármacos , Transcriptoma , Virulencia/efectos de los fármacos , Virulencia/genética , Factores de Virulencia/genética
20.
Molecules ; 24(9)2019 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-31035502

RESUMEN

The application of natural plant extracts in UV-protection is popular and intensively studied. Silymarin (from Silibum marianum), a naturally occurring polyphenol, has recently received attention due to its antioxidant, anti-inflammatory and anti-apoptotic effects. However, its role in the UV-mediated keratinocyte cell response is still controversial. In this study, we investigated the effects of Silibum marianum extracts with different origins and formulations on UVA-exposed HaCaT keratinocytes in vitro. Our results show, that silymarin treatment caused an inverse dose-dependent photosensitivity relationship (at higher doses, a decrease in cell viability and ROS production) after UVA exposure. The attenuation of the UVA-induced ROS generation after silymarin treatment was also observed. Moreover, silymarin pre-treatment increased the cyclobutane pyrimidine dimer photolesions in keratinocytes after UVA exposure. These results indicated the dual role of silymarin in UVA-exposed keratinocytes. It scavenges ROS but still induces phototoxicity. Based on our results dermatological applications of silymarin and related compounds should be considered very carefully.


Asunto(s)
Queratinocitos/efectos de los fármacos , Queratinocitos/efectos de la radiación , Silimarina/química , Silimarina/farmacología , Rayos Ultravioleta , Antioxidantes/química , Antioxidantes/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Humanos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Especies Reactivas de Oxígeno/metabolismo , Rayos Ultravioleta/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA