Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 602(7895): 135-141, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34987223

RESUMEN

The discovery of antibiotics more than 80 years ago has led to considerable improvements in human and animal health. Although antibiotic resistance in environmental bacteria is ancient, resistance in human pathogens is thought to be a modern phenomenon that is driven by the clinical use of antibiotics1. Here we show that particular lineages of methicillin-resistant Staphylococcus aureus-a notorious human pathogen-appeared in European hedgehogs in the pre-antibiotic era. Subsequently, these lineages spread within the local hedgehog populations and between hedgehogs and secondary hosts, including livestock and humans. We also demonstrate that the hedgehog dermatophyte Trichophyton erinacei produces two ß-lactam antibiotics that provide a natural selective environment in which methicillin-resistant S. aureus isolates have an advantage over susceptible isolates. Together, these results suggest that methicillin resistance emerged in the pre-antibiotic era as a co-evolutionary adaptation of S. aureus to the colonization of dermatophyte-infected hedgehogs. The evolution of clinically relevant antibiotic-resistance genes in wild animals and the connectivity of natural, agricultural and human ecosystems demonstrate that the use of a One Health approach is critical for our understanding and management of antibiotic resistance, which is one of the biggest threats to global health, food security and development.


Asunto(s)
Antibacterianos/historia , Arthrodermataceae/metabolismo , Erizos/metabolismo , Erizos/microbiología , Resistencia a la Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/genética , Selección Genética/genética , Animales , Antibacterianos/metabolismo , Arthrodermataceae/genética , Dinamarca , Europa (Continente) , Evolución Molecular , Mapeo Geográfico , Historia del Siglo XX , Humanos , Staphylococcus aureus Resistente a Meticilina/metabolismo , Nueva Zelanda , Salud Única , Penicilinas/biosíntesis , Filogenia , beta-Lactamas/metabolismo
2.
PLoS Genet ; 18(3): e1009776, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35286304

RESUMEN

Shotgun metagenomics is a powerful tool to identify antimicrobial resistance (AMR) genes in microbiomes but has the limitation that extrachromosomal DNA, such as plasmids, cannot be linked with the host bacterial chromosome. Here we present a comprehensive laboratory and bioinformatics pipeline HAM-ART (Hi-C Assisted Metagenomics for Antimicrobial Resistance Tracking) optimised for the generation of metagenome-assembled genomes including both chromosomal and extrachromosomal AMR genes. We demonstrate the performance of the pipeline in a study comparing 100 pig faecal microbiomes from low- and high-antimicrobial use pig farms (organic and conventional farms). We found significant differences in the distribution of AMR genes between low- and high-antimicrobial use farms including a plasmid-borne lincosamide resistance gene exclusive to high-antimicrobial use farms in three species of Lactobacilli. The bioinformatics pipeline code is available at https://github.com/lkalmar/HAM-ART.


Asunto(s)
Antiinfecciosos , Microbiota , Animales , Antibacterianos , Antiinfecciosos/farmacología , Farmacorresistencia Bacteriana/genética , Metagenómica , Porcinos
3.
Antimicrob Agents Chemother ; 67(11): e0056323, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37902403

RESUMEN

Daptomycin (DAP) is effective against methicillin-resistant Staphylococcus aureus (MRSA). However, reduced susceptibility to DAP in MRSA may lead to treatment failures. We aim to determine the distribution of DAP minimum inhibitory concentrations (MICs) and DAP heteroresistance (hDAP) among MRSA lineages in China. A total of 472 clinical MRSA isolates collected from 2015 to 2017 in China were examined for DAP susceptibility. All isolates (n = 472) were found to be DAP susceptible, but 35.17% (166/472) of them exhibited a high DAP MIC (MIC >0.5 µg/mL). The high DAP MIC group contained a larger proportion of isolates with a higher vancomycin or teicoplanin MIC (>1.5 µg/mL) than the low DAP MIC group (19.3% vs 7.8%, P < 0.001; 22.3% vs 8.2%, P < 0.001). We compared the clonal complex (CC) distributions and clinical characteristics in MRSA isolates stratified by DAP MIC. CC5 isolates were less susceptible to DAP (MIC50 = 1 µg/mL) than CC59 isolates (MIC50 = 0.5 µg/mL, P < 0.001). Population analysis profiling revealed that 5 of 10 ST5 and ST59 DAP-susceptible MRSA isolates investigated exhibited hDAP. The results also showed that CC5 MRSA with an agrA mutation (I238K) had a higher DAP MIC than those with a wild-type agrA (P < 0.001). The agrA-I238K mutation was found to be associated with agr dysfunction as indicated by the loss of δ-hemolysin production. In addition, agr/psmα defectiveness was associated with hDAP in MRSA. Whole-genome sequencing analysis revealed mutations in mprF and walR/walK in DAP-resistant subpopulations, and most DAP-resistant subpopulations (6/8, 75%) were stable. Our study suggests that the increased DAP resistance and hDAP in MRSA may threaten the effectiveness against MRSA infections.


Asunto(s)
Daptomicina , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Daptomicina/farmacología , Daptomicina/uso terapéutico , Staphylococcus aureus Resistente a Meticilina/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/epidemiología , Vancomicina/farmacología , Pruebas de Sensibilidad Microbiana
4.
J Environ Sci (China) ; 122: 62-71, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35717091

RESUMEN

Antibiotic resistance is a sword of Damocles that hangs over humans. In regards to airborne antibiotic resistance genes (AARGs), critical knowledge gaps still exist in the identification of hotspots and quantification of exposure levels in different environments. Here, we have studied the profiles of AARGs, mobile genetic elements (MGEs) and bacterial communities in various atmospheric environments by high throughput qPCR and 16S rRNA gene sequencing. We propose a new AARGs exposure dose calculation that uses short-term inhalation (STI). Swine farms and hospitals were high-risk areas where AARGs standardised abundance was more abundant than suburbs and urban areas. Additionally, resistance gene abundance in swine farm worker sputum was higher than that in healthy individuals in other environments. The correlation between AARGs with MGEs and bacteria was strong in suburbs but weak in livestock farms and hospitals. STI exposure analysis revealed that occupational intake of AARGs (via PM10) in swine farms and hospitals were 110 and 29 times higher than in suburbs, were 1.5 × 104, 5.6 × 104 and 5.1 × 102 copies, i.e., 61.9%, 75.1% and 10.7% of the overall daily inhalation intake, respectively. Our study comprehensively compares environmental differences in AARGs to identify high-risk areas, and forwardly proposes the STI exposure dose of AARGs to guide risk assessment.


Asunto(s)
Antibacterianos , Genes Bacterianos , Animales , Antibacterianos/análisis , Bacterias/genética , Farmacorresistencia Microbiana/genética , Exposición por Inhalación , ARN Ribosómico 16S/genética , Porcinos
5.
J Antimicrob Chemother ; 74(5): 1182-1191, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30759229

RESUMEN

OBJECTIVES: High-level ß-lactam resistance in MRSA is mediated in the majority of strains by a mecA or mecC gene. In this study, we identified 10 mec gene-negative MRSA human isolates from Austria and 11 bovine isolates from the UK showing high levels of ß-lactam resistance and sought to understand the molecular basis of the resistance observed. METHODS: Different antimicrobial resistance testing methods (disc diffusion, Etest and VITEK® 2) were used to establish the ß-lactam resistance profiles for the isolates and the isolates were further investigated by WGS. RESULTS: A number of mutations (including novel ones) in PBPs, AcrB, YjbH and the pbp4 promoter were identified in the resistant isolates, but not in closely related susceptible isolates. Importantly, a truncation in the cyclic diadenosine monophosphate phosphodiesterase enzyme, GdpP, was identified in 7 of the 10 Austrian isolates and 10 of the 11 UK isolates. Complementation of four representative isolates with an intact copy of the gdpP gene restored susceptibility to penicillins and abolished the growth defects caused by the truncation. CONCLUSIONS: This study reports naturally occurring inactivation of GdpP protein in Staphylococcus aureus of both human origin and animal origin, and demonstrates clinical relevance to a previously reported association between this truncation and increased ß-lactam resistance and impaired bacterial growth in laboratory-generated mutants. It also highlights possible limitations of genomic determination of antibiotic susceptibility based on single gene presence or absence when choosing the appropriate antimicrobial treatment for patients.


Asunto(s)
Enfermedades de los Bovinos/microbiología , Hidrolasas Diéster Fosfóricas/genética , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Resistencia betalactámica , beta-Lactamas/farmacología , Alelos , Sustitución de Aminoácidos , Animales , Bovinos , Genoma Bacteriano , Genómica , Genotipo , Humanos , Pruebas de Sensibilidad Microbiana , Fenotipo , Hidrolasas Diéster Fosfóricas/metabolismo , Eliminación de Secuencia , Staphylococcus aureus/aislamiento & purificación
6.
Antimicrob Agents Chemother ; 59(12): 7396-404, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26392513

RESUMEN

ß-Lactam resistance in methicillin-resistant Staphylococcus aureus (MRSA) is mediated by the expression of an alternative penicillin-binding protein 2a (PBP2a) (encoded by mecA) with a low affinity for ß-lactam antibiotics. Recently, a novel variant of mecA, known as mecC, was identified in MRSA isolates from both humans and animals. In this study, we demonstrate that mecC-encoded PBP2c does not mediate resistance to penicillin. Rather, broad-spectrum ß-lactam resistance in MRSA strains carrying mecC (mecC-MRSA strains) is mediated by a combination of both PBP2c and the distinct ß-lactamase encoded by the blaZ gene of strain LGA251 (blaZLGA251), which is part of mecC-encoding staphylococcal cassette chromosome mec (SCCmec) type XI. We further demonstrate that mecC-MRSA strains are susceptible to the combination of penicillin and the ß-lactam inhibitor clavulanic acid in vitro and that the same combination is effective in vivo for the treatment of experimental mecC-MRSA infection in wax moth larvae. Thus, we demonstrate how the distinct biological differences between mecA- and mecC-encoded PBP2a and PBP2c have the potential to be exploited as a novel approach for the treatment of mecC-MRSA infections.


Asunto(s)
Ácido Clavulánico/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Proteínas de Unión a las Penicilinas/genética , Penicilinas/farmacología , Animales , Proteínas Bacterianas/genética , Interacciones Farmacológicas , Larva/efectos de los fármacos , Larva/microbiología , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/microbiología , Mutación , Resistencia a las Penicilinas/efectos de los fármacos , Resistencia a las Penicilinas/genética , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/genética
7.
J Antimicrob Chemother ; 69(3): 594-7, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24216768

RESUMEN

OBJECTIVES: Methicillin-resistant Staphylococcus aureus (MRSA) is an important global health problem. MRSA resistance to ß-lactam antibiotics is mediated by the mecA or mecC genes, which encode an alternative penicillin-binding protein (PBP) 2a that has a low affinity to ß-lactam antibiotics. Detection of mec genes or PBP2a is regarded as the gold standard for the diagnosis of MRSA. We identified four MRSA isolates that lacked mecA or mecC genes, but were still phenotypically resistant to pencillinase-resistant ß-lactam antibiotics. METHODS: The four human S. aureus isolates were investigated by whole genome sequencing and a range of phenotypic assays. RESULTS: We identified a number of amino acid substitutions present in the endogenous PBPs 1, 2 and 3 that were found in the resistant isolates but were absent in closely related susceptible isolates and which may be the basis of resistance. Of particular interest are three identical amino acid substitutions in PBPs 1, 2 and 3, occurring independently in isolates from at least two separate multilocus sequence types. Two different non-conservative substitutions were also present in the same amino acid of PBP1 in two isolates from two different sequence types. CONCLUSIONS: This work suggests that phenotypically resistant MRSA could be misdiagnosed using molecular methods alone and provides evidence of alternative mechanisms for ß-lactam resistance in MRSA that may need to be considered by diagnostic laboratories.


Asunto(s)
Resistencia a la Meticilina , Staphylococcus aureus Resistente a Meticilina/enzimología , Staphylococcus aureus Resistente a Meticilina/genética , Proteínas de Unión a las Penicilinas/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Genoma Bacteriano , Humanos , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Proteínas Mutantes/genética , Análisis de Secuencia de ADN , Infecciones Estafilocócicas/microbiología
8.
J Antimicrob Chemother ; 69(4): 911-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24302651

RESUMEN

OBJECTIVES: Methicillin resistance in Staphylococcus spp. results from the expression of an alternative penicillin-binding protein 2a (encoded by mecA) with a low affinity for ß-lactam antibiotics. Recently, a novel variant of mecA known as mecC (formerly mecALGA251) was identified in Staphylococcus aureus isolates from both humans and animals. In this study, we identified two Staphylococcus sciuri subsp. carnaticus isolates from bovine infections that harbour three different mecA homologues: mecA, mecA1 and mecC. METHODS: We subjected the two isolates to whole-genome sequencing to further understand the genetic context of the mec-containing region. We also used PCR and RT-PCR to investigate the excision and expression of the SCCmec element and mec genes, respectively. RESULTS: Whole-genome sequencing revealed a novel hybrid SCCmec region at the orfX locus consisting of a class E mec complex (mecI-mecR1-mecC1-blaZ) located immediately downstream of a staphylococcal cassette chromosome mec (SCCmec) type VII element. A second SCCmec attL site (attL2), which was imperfect, was present downstream of the mecC region. PCR analysis of stationary-phase cultures showed that both the SCCmec type VII element and a hybrid SCCmec-mecC element were capable of excision from the genome and forming a circular intermediate. Transcriptional analysis showed that mecC and mecA, but not mecA1, were both expressed in liquid culture supplemented with oxacillin. CONCLUSIONS: Overall, this study further highlights that a range of staphylococcal species harbour the mecC gene and furthers the view that coagulase-negative staphylococci associated with animals may act as reservoirs of antibiotic resistance genes for more pathogenic staphylococcal species.


Asunto(s)
Genes Bacterianos , Infecciones Estafilocócicas/veterinaria , Staphylococcus/genética , Animales , Bovinos , ADN Bacteriano/química , ADN Bacteriano/genética , Perfilación de la Expresión Génica , Orden Génico , Genoma Bacteriano , Genotipo , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Infecciones Estafilocócicas/microbiología , Staphylococcus/aislamiento & purificación
9.
Nat Commun ; 15(1): 494, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216585

RESUMEN

Carbapenem-resistant Escherichia coli (CREC) ST410 has recently emerged as a major global health problem. Here, we report a shift in CREC prevalence in Chinese hospitals between 2017 and 2021 with ST410 becoming the most commonly isolated sequence type. Genomic analysis identifies a hypervirulent CREC ST410 clone, B5/H24RxC, which caused two separate outbreaks in a children's hospital. It may have emerged from the previously characterised B4/H24RxC in 2006 and has been isolated in ten other countries from 2015 to 2021. Compared with B4/H24RxC, B5/H24RxC lacks the blaOXA-181-bearing X3 plasmid, but carries a F-type plasmid containing blaNDM-5. Most of B5/H24RxC also carry a high pathogenicity island and a novel O-antigen gene cluster. We find that B5/H24RxC grew faster in vitro and is more virulent in vivo. The identification of this newly emerged but already globally disseminated hypervirulent CREC clone, highlights the ongoing evolution of ST410 towards increased resistance and virulence.


Asunto(s)
Enterobacteriaceae Resistentes a los Carbapenémicos , Infecciones por Escherichia coli , Niño , Humanos , Escherichia coli/genética , Infecciones por Escherichia coli/epidemiología , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Células Clonales , Carbapenémicos/farmacología , Antibacterianos/farmacología , beta-Lactamasas/genética , Pruebas de Sensibilidad Microbiana
10.
Microbiol Spectr ; : e0507422, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36916926

RESUMEN

Over a 3-month period, we monitored the population of extended-spectrum ß-lactam-resistant Escherichia coli (ESBL-EC) associated with the patients, staff, and environment of an intensive care unit (ICU) in Guangzhou, China. Thirty-four clinical isolates were obtained from the same hospital 12 months later. A total of 165 isolates were characterized and whole-genome sequenced, with 24 isolates subjected to long-read sequencing. The diverse population included representatives of 59 different sequence types (STs). ICU patient and environmental isolates were largely distinct from staff isolates and clinical isolates. We observed five instances of highly similar isolates (0 to 13 single nucleotide polymorphisms [SNPs]) being obtained from different patients or bed unit environments. ESBL resistance in this collection was largely conferred by blaCTX-M genes, which were found in 96.4% of all isolates. The contexts of blaCTX-M genes were diverse, situated in multiple chromosomal positions and in various plasmids. We identified blaCTX-M-bearing plasmid lineages that were present in multiple STs across the surveillance, staff, and clinical collections. Closer examination of ISEcp1-blaCTX-M transposition units shed light on the dynamics of their transmission, with evidence for the acquisition of chromosomal copies of blaCTX-M genes from specific plasmid lineages and for the movement of blaCTX-M-55 from a ST1193 chromosome to a small mobilizable plasmid. A carbapenem-resistant ST167 strain isolated from a patient that had been treated with meropenem and piperacillin-tazobactam contained seven copies of blaCMY-146, which appears to have been amplified by IS1. Our data revealed limited persistence and movement of ESBL-EC strains in the ICU environment, but we observed circulating plasmid lineages playing an essential and ongoing role in shaping the cephalosporin-resistance landscape in the population examined. IMPORTANCE ESBL resistance significantly impacts clinical management of E. coli infections in hospitals globally. It is important to understand the structures of ESBL-EC populations carried by hospital patients and staff, their capacity to persist in hospital environments, and the dynamics of mobile genes that drive the spread of ESBL resistance. In our 3-month study, ESBL-EC strains found in the ICU environment were strongly associated with patient carriage but distinct from strains found in staff. However, plasmid lineages carrying blaCTX-M genes were found across the ICU populations and in a collection of clinical isolates obtained 1 year later. By examining their content and contexts, we have traced the recent histories of chromosomal and plasmid-borne ISEcp1-blaCTX-M transposition units in the ICU population. This information allowed us to implicate specific plasmid lineages in the acquisition of chromosomal blaCTX-M genes, even when the plasmids were no longer present, and to detect recent transposition of blaCTX-M-55 from a chromosome to a mobilizable plasmid. Similar high-resolution approaches to the study of mobile genetic elements will be essential if the transmission routes associated with the spread of ESBL resistance are to be understood and subjected to interventions.

11.
Lancet Planet Health ; 7(8): e649-e659, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37558346

RESUMEN

BACKGROUND: Antibiotic resistance is an increasing global issue, causing millions of deaths worldwide every year. Particulate matter (PM)2·5 has diverse elements of antibiotic resistance that increase its spread after inhalation. However, understanding of the contribution of PM2·5 to global antibiotic resistance is poor. Through univariate and multivariable analysis, we aimed to present the first global estimates of antibiotic resistance and burden of premature deaths attributable to antibiotic resistance resulting from PM2·5 pollution. METHODS: For this global analysis, data on multiple potential predictors (ie, air pollution, antibiotic use, sanitation services, economics, health expenditure, population, education, climate, year, and region) were collected in 116 countries from 2000 to 2018 to estimate the effect of PM2·5 on antibiotic resistance via univariate and multivariable analysis. Data were obtained from ResistanceMap, European Centre for Disease Prevention and Control Surveillance Atlas (antimicrobial-resistance sources), and PLISA Health Information Platform for the Americas. Future global aggregate antibiotic resistance and premature mortality trends derived from PM2·5 in different scenarios (eg, 50% reduced antibiotic use or PM2·5 controlled to 5 µg/m3) were projected until 2050. FINDINGS: The final dataset included more than 11·5 million tested isolates. Raw antibiotic-resistance data included nine pathogens and 43 types of antibiotic agents. Significant correlations between PM2·5 and antibiotic resistance were consistent globally in most antibiotic-resistant bacteria (R2=0·42-0·76, p<0·0001), and correlations have strengthened over time. Antibiotic resistance derived from PM2·5 caused an estimated 0·48 (95% CI 0·34-0·60) million premature deaths and 18·2 (13·4-23·0) million years of life lost in 2018 worldwide, corresponding to an annual welfare loss of US$395 (290-500) billion due to premature deaths. The 5 µg/m3 target of concentration of PM2·5 in the air quality guidelines set by WHO, if reached in 2050, was estimated to reduce antibiotic resistance by 16·8% (95% CI 15·3-18·3) and avoid 23·4% (21·2-25·6) of premature deaths attributable to antibiotic resistance, equivalent to a saving of $640 (580-671) billion. INTERPRETATION: This analysis is the first to describe the association between PM2·5 and clinical antibiotic resistance globally. Results provide new pathways for antibiotic-resistance control from an environmental perspective. FUNDING: National Natural Science Foundation of China, Fundamental Research Funds for the Central Universities, Zhejiang University Global Partnership Fund, and China Postdoctoral Science Foundation.


Asunto(s)
Contaminación del Aire , Material Particulado , Humanos , Material Particulado/efectos adversos , Material Particulado/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Mortalidad Prematura , China , Farmacorresistencia Microbiana
12.
Nat Commun ; 14(1): 6479, 2023 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-37838722

RESUMEN

Global spread of multidrug-resistant, hospital-adapted Staphylococcus epidermidis lineages underscores the need for new therapeutic strategies. Here we show that many S. epidermidis isolates belonging to these lineages display cryptic susceptibility to penicillin/ß-lactamase inhibitor combinations under in vitro conditions, despite carrying the methicillin resistance gene mecA. Using a mouse thigh model of S. epidermidis infection, we demonstrate that single-dose treatment with amoxicillin/clavulanic acid significantly reduces methicillin-resistant S. epidermidis loads without leading to detectable resistance development. On the other hand, we also show that methicillin-resistant S. epidermidis is capable of developing increased resistance to amoxicillin/clavulanic acid during long-term in vitro exposure to these drugs. These findings suggest that penicillin/ß-lactamase inhibitor combinations could be a promising therapeutic candidate for treatment of a high proportion of methicillin-resistant S. epidermidis infections, although the in vivo risk of resistance development needs to be further addressed before they can be incorporated into clinical trials.


Asunto(s)
Penicilinas , Infecciones Estafilocócicas , Humanos , Penicilinas/farmacología , Penicilinas/uso terapéutico , Inhibidores de beta-Lactamasas/farmacología , Staphylococcus epidermidis , Infecciones Estafilocócicas/tratamiento farmacológico , Ácido Clavulánico/farmacología , Ácido Clavulánico/uso terapéutico , Amoxicilina/farmacología , Amoxicilina/uso terapéutico , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
13.
Microbiol Spectr ; : e0421322, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36815781

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) clonal-complex 398 (CC398) is the dominant livestock-associated (LA) MRSA lineage in European livestock and an increasing cause of difficult-to-treat human disease. LA-CC398 MRSA evolved from a diverse human-associated methicillin-sensitive population, and this transition from humans to livestock was associated with three mobile genetic elements (MGEs). In this study, we apply transposon-directed insertion site sequencing (TraDIS), a high-throughput transposon mutagenesis approach, to investigate genetic signatures that contribute to LA-CC398 causing disease in humans. We identified 26 genes associated with LA-CC398 survival in human blood and 47 genes in porcine blood. We carried out phylogenetic reconstruction on 1,180 CC398 isolates to investigate the genetic context of all identified genes. We found that all genes associated with survival in human blood were part of the CC398 core genome, while 2/47 genes essential for survival in porcine blood were located on MGEs. Gene SAPIG0966 was located on the previously identified Tn916 transposon carrying a tetracycline resistance gene, which has been shown to be stably inherited within LA-CC398. Gene SAPIG1525 was carried on a phage element, which in part, matched phiSa2wa_st1, a previously identified bacteriophage carrying the Panton-Valentine leucocidin (PVL) virulence factor. Gene deletion mutants constructed in two LA-CC398 strains confirmed that the SAPIG0966 carrying Tn916 and SAPIG1525 were important for CC398 survival in porcine blood. Our study shows that MGEs that carry antimicrobial resistance and virulence genes could have a secondary function in bacterial survival in blood and may be important for host adaptation. IMPORTANCE CC398 is the dominant type of methicillin-resistant Staphylococcus aureus (MRSA) in European livestock and a growing cause of human infections. Previous studies have suggested MRSA CC398 evolved from human-associated methicillin-sensitive Staphylococcus aureus and is capable of rapidly readapting to human hosts while maintaining antibiotic resistance. Using high-throughput transposon mutagenesis, our study identified 26 and 47 genes important for MRSA CC398 survival in human and porcine blood, respectively. Two of the genes important for MRSA CC398 survival in porcine blood were located on mobile genetic elements (MGEs) carrying resistance or virulence genes. Our study shows that these MGEs carrying antimicrobial resistance and virulence genes could have a secondary function in bacterial survival in blood and may be important for blood infection and host adaptation.

14.
Lancet Reg Health West Pac ; 37: 100780, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37693864

RESUMEN

Background: Carbapenem-resistant Acinetobacter baumannii (CRAB) is a major public health concern globally. Often studied in the context of hospital outbreaks, little is known about the persistence and evolutionary dynamics of endemic CRAB populations. Methods: A three-month cross-sectional observational study was conducted in a 28-bed intensive care unit (ICU) in Hangzhou, China. A total of 5068 samples were collected from the hospital environment (n = 3985), patients (n = 964) and staff (n = 119). CRAB isolates were obtained from 10.5% of these samples (n = 532). All of these isolates, plus an additional 19 from clinical infections, were characterised through whole-genome sequencing. Findings: The ICU CRAB population was dominated by OXA-23-producing global clone 2 isolates (99.3% of all isolates) that could be divided into 20 distinct clusters, defined through genome sequencing. CRAB was persistently present in the ICU, driven by regular introductions of distinct clusters. The hospital environment was heavily contaminated, with CRAB isolated from bed units on 183/335 (54.6%) sampling occasions but from patients on only 72/299 (24.1%) occasions. CRAB was spread to adjacent bed units and rooms, and following re-location of patients within the ICU. We also observed three horizontal gene transfer events between CRAB strains in the ICU, involving three different plasmids. Interpretation: The epidemiology of CRAB in this setting contrasted with previously described clonal outbreaks in high-income countries, highlighting the importance of environmental CRAB reservoirs in ICU epidemiology and the unique challenges in containing the spread of CRAB in ICUs where this important multidrug-resistant pathogen is endemic. Funding: This work was undertaken as part of the DETECTIVE research project funded by the Medical Research Council (MR/S013660/1), National Natural Science Foundation of China (81861138054, 32011530116, 31970128, 31770142), Zhejiang Province Medical Platform Backbone Talent Plan (2020RC075), and the National Key Research and Development Program of China grant (2018YFE0102100). W.v.S was also supported by a Wolfson Research Merit Award (WM160092).

15.
Elife ; 112022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35762208

RESUMEN

Mobile genetic elements (MGEs) are agents of horizontal gene transfer in bacteria, but can also be vertically inherited by daughter cells. Establishing the dynamics that led to contemporary patterns of MGEs in bacterial genomes is central to predicting the emergence and evolution of novel and resistant pathogens. Methicillin-resistant Staphylococcus aureus (MRSA) clonal-complex (CC) 398 is the dominant MRSA in European livestock and a growing cause of human infections. Previous studies have identified three categories of MGEs whose presence or absence distinguishes livestock-associated CC398 from a closely related and less antibiotic-resistant human-associated population. Here, we fully characterise the evolutionary dynamics of these MGEs using a collection of 1180 CC398 genomes, sampled from livestock and humans, over 27 years. We find that the emergence of livestock-associated CC398 coincided with the acquisition of a Tn916 transposon carrying a tetracycline resistance gene, which has been stably inherited for 57 years. This was followed by the acquisition of a type V SCCmec that carries methicillin, tetracycline, and heavy metal resistance genes, which has been maintained for 35 years, with occasional truncations and replacements with type IV SCCmec. In contrast, a class of prophages that carry a human immune evasion gene cluster and that are largely absent from livestock-associated CC398 have been repeatedly gained and lost in both human- and livestock-associated CC398. These contrasting dynamics mean that when livestock-associated MRSA is transmitted to humans, adaptation to the human host outpaces loss of antibiotic resistance. In addition, the stable inheritance of resistance-associated MGEs suggests that the impact of ongoing reductions in antibiotic and zinc oxide use in European farms on livestock-associated MRSA will be slow to be realised.


Antibiotic-resistant infections are a growing threat to human health. In 2019, these hard-to-treat infections resulted in 4.95 million deaths making them the third leading cause of death that year. Excessive use of antibiotics in humans is likely driving the emergence of drug-resistant bacteria. But there is a concern that use of antibiotics on livestock farms is also contributing. A type of bacteria traced back to livestock is a growing cause of human infections that do not respond to treatment with the antibiotic methicillin in Europe. It is called livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA). Bacteria can share genes that make them drug resistant or more deadly. These genes are often carried on mobile genetic elements that promote their movement from one bacterial cell to another. The most common type of LA-MRSA in Europe is clonal-complex 398 (CC398). It has two mobile genetic elements carrying antibiotic-resistance genes, but generally lacks a mobile genetic element that helps the bacterium escape the human immune system. Learning more about how LA-MRSA acquired these genetic changes may help scientists develop better strategies to protect the public. Matuszewska, Murray et al. analyzed the genomes of more than 1,000 samples of CC398 collected from humans, pigs and 13 other animal species in 28 countries over 27 years. They used this data to reconstruct the bacteria's evolutionary history. Matuszewska, Murray et al. show that two mobile elements containing antibiotic resistance genes in CC398 were gained decades ago. One is more than 50 years old and was likely acquired around the time antibiotic use in livestock became common. While most CC398 in livestock do not have a mobile element that helps LA-MRSA evade the human immune system, they often gain it when they infect humans. This leads to highly drug-resistant human MRSA infections. The results of this study suggest that LA-MRSA is a serious threat to human health. The resistance of this bacterium has persisted for decades, spreading across different livestock species and different countries. These drug-resistant bacteria in livestock readily infect humans. Current efforts to reduce antibiotic use in farms may take decades to mitigate these risks. Additionally, the ban on zinc-oxide use on livestock in the European Union (coming into force June 2022) may not help reduce LA-MRSA, because the genes conferring resistance to bacteria and zinc treatment are not always linked.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , Antibacterianos/farmacología , Farmacorresistencia Microbiana , Humanos , Ganado/microbiología , Staphylococcus aureus Resistente a Meticilina/genética , Infecciones Estafilocócicas/microbiología
16.
J Med Microbiol ; 71(7)2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35867942

RESUMEN

Introduction. We recently revealed that a significant proportion of clinical methicillin-resistant Staphylococcus aureus (MRSA) isolates are susceptible to pencillins and clavulanic acid (potentiated penicillins), including widely available combinations such as co-amoxiclav. These isolates also showed increased susceptibility to oxacillin on Iso-Sensitest Agar (ISA).Hypothesis/Gap Statement. The increased susceptibility to oxacillin displayed on ISA by these MRSA isolates may be used to distinguish them from the resistant ones.Aim. We aimed to develop a method to simultaneously screen a S. aureus clinical isolate for its susceptibility to methicillin and potentiated penicillins.Methodology. A double-disc diffusion method using 10 µg cefoxitin and 1 µg oxacillin discs on ISA was developed and tested against a panel of 120 whole genome-sequenced MRSA isolates. The sensitivity of the method was compared with that of previously published genotypic and phenotypic methods. In addition, double-disc diffusion was performed for all isolates on Müller-Hinton agar (MHA) following the European Committee on Antimicrobial Susceptibility Testing (EUCAST) protocol.Results. All isolates (120/120) were reconfirmed to be phenotypically MRSA, as indicated by the result of cefoxitin disc diffusion testing. All isolates (40/40) that had a pencillins and clavulanic acid (Pen-Clav)-resistant genotype were not inhibited by oxacillin, while 77/80 (96.3 %) isolates that had a Pen-Clav-susceptible genotype were inhibited by oxacillin on ISA. The results also showed that the EUCAST method using MHA correctly identified all isolates as MRSA but failed to distinguish the Pen-Clav-susceptible isolates from the Pen-Clav-resistant isolates.Conclusions. This double-disc diffusion method using ISA could be used to accurately screen for clinical MRSA isolates and determine their susceptibility to Pen-Clav simultaneously, rapidly identifying MRSA infections that might be suitable for treatment with potentiated penicillins.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Agar , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Cefoxitina/farmacología , Ácido Clavulánico , Humanos , Pruebas de Sensibilidad Microbiana , Oxacilina/farmacología , Staphylococcus aureus
17.
Clin Microbiol Infect ; 28(1): 85-92, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34022399

RESUMEN

OBJECTIVES: The aim of this study was to investigate the genomic epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) in China to identify predominant lineages and their associations with clinical data and antimicrobial resistance profiles. METHODS: We performed a national prevalence study of patients with S. aureus infections in 22 tertiary hospitals in China from 2015 to 2017. Clinical data from patients and the antimicrobial phenotypes were collected for each isolate. Genome sequencing was performed on a proportion of isolates and a phylogenetic analysis was undertaken. Genotypic and phenotypic ß-lactam susceptibilities were compared. RESULTS: A total of 1900 patients with S. aureus infections were included, of which 40% involved MRSA. Community-associated MRSA (CA-MRSA) infections were 24% of the total isolates. Genomic data showed that more than three-quarters of the MRSA were from three dominant lineages CC239 (25%, 116/471), CC5 (21%, 96/471) and CC59 (33%, 154/471) with CC59 accounting for more than half of the CA-MRSA isolates. Penicillin susceptibility genomic features were observed in 53% (251/470) of MRSA, including almost all of the CC59 (152/154) lineage, and 96% (242/251) of these isolates demonstrated in vitro susceptibility to penicillin or amoxicillin combined with clavulanic acid. Phylogenetic analysis indicated that the CC59 lineage can be divided into six lineages with all Asian CC59 isolates likely arising from an ancestral Mainland China lineage. CONCLUSIONS: This study showed a high prevalence of CA-MRSA in China, largely due to the widespread presence of CC59. As almost all isolates in this lineage possess genetic variants leading to increased ß-lactam susceptibility, we suggest that to improve antibiotic stewardship combinations of penicillins and ß-lactamase inhibitors should be included in the antibiotic susceptibility testing panels used to inform treatment decisions and research undertaken on this combination therapy.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Antibacterianos/uso terapéutico , China/epidemiología , Evolución Molecular , Humanos , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana , Penicilinas , Filogenia , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/epidemiología , Staphylococcus aureus
18.
Adv Sci (Weinh) ; 9(4): e2103388, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34894204

RESUMEN

There has been increasing concern that the overuse of antibiotics in livestock farming is contributing to the burden of antimicrobial resistance in people. Farmed animals in Europe and North America, particularly pigs, provide a reservoir for livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA ST398 lineage) found in people. This study is designed to investigate the contribution of MRSA from Chinese pig farms to human infection. A collection of 483 MRSA are isolated from 55 farms and 4 hospitals in central China, a high pig farming density area. CC9 MRSA accounts for 97.2% of all farm isolates, but is not present in hospital isolates. ST398 isolates are found on farms and hospitals, but none of them formed part of the "LA-MRSA ST398 lineage" present in Europe and North America. The hospital ST398 MRSA isolate form a clade that is clearly separate from the farm ST398 isolates. Despite the presence of high levels of MRSA found on Chinese pig farms, the authors find no evidence of them spilling over to the human population. Nevertheless, the ST398 MRSA obtained from hospitals appear to be part of a widely distributed lineage in China. The new animal-adapted ST398 lineage that has emerged in China is of concern.


Asunto(s)
Granjas/estadística & datos numéricos , Ganado/microbiología , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Infecciones Estafilocócicas/epidemiología , Enfermedades de los Porcinos/epidemiología , Grupos de Población Animal , Animales , China/epidemiología , Humanos , Porcinos
20.
JAC Antimicrob Resist ; 3(1): dlaa125, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34223074

RESUMEN

OBJECTIVES: To evaluate the current prevalence status of mecC MRSA among dairy farms in England and Wales 5 years after a previous survey conducted in 2011-12. METHODS: A convenience sample of 697 dairy farms in England and Wales was used for the study, conducted in 2017-18, testing bulk tank milk samples for the presence of mecC MRSA using high salt broth enrichment and chromogenic MRSA agar selection. All putative MRSA isolates were screened by PCR for the presence of mecA and mecC genes and subjected to antimicrobial susceptibility testing using both the disc diffusion method and VITEK® 2. MRSA isolates were also sequenced for genomic characterization. RESULTS: mecC MRSA were detected on 4 out of 697 dairy farms in England and Wales (prevalence 0.57%, 95% CI 0.16%-1.46%). Three of the mecC isolates were ST425 and one was ST4652 (in the CC130 lineage). Two mecA MRSA were also isolated: one ST5 and one ST398. CONCLUSIONS: These results indicate that there has been a substantial reduction in the prevalence of mecC MRSA in England and Wales with a 72% reduction (2.15% to 0.57%) compared with a previous study. While the levels of mecA MRSA remain very low the continued presence of ST398, a livestock-associated MRSA, suggests that this lineage is established in the UK.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA