Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Adv Exp Med Biol ; 1210: 185-237, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31900911

RESUMEN

Cancers must alter their metabolism to satisfy the increased demand for energy and to produce building blocks that are required to create a rapidly growing tumor. Further, for cancer cells to thrive, they must also adapt to an often changing tumor microenvironment, which can present new metabolic challenges (ex. hypoxia) that are unfavorable for most other cells. As such, altered metabolism is now considered an emerging hallmark of cancer. Like many other malignancies, the metabolism of prostate cancer is considerably different compared to matched benign tissue. However, prostate cancers exhibit distinct metabolic characteristics that set them apart from many other tumor types. In this chapter, we will describe the known alterations in prostate cancer metabolism that occur during initial tumorigenesis and throughout disease progression. In addition, we will highlight upstream regulators that control these metabolic changes. Finally, we will discuss how this new knowledge is being leveraged to improve patient care through the development of novel biomarkers and metabolically targeted therapies.


Asunto(s)
Metabolismo Energético , Neoplasias de la Próstata/metabolismo , Hipoxia de la Célula , Humanos , Masculino , Neoplasias de la Próstata/terapia , Microambiente Tumoral
2.
J Biol Chem ; 291(47): 24747-24755, 2016 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-27758866

RESUMEN

The acquisition of beige adipocyte features by white fat cells corresponds to protection against obesity-induced metabolic diseases in humans and animal models of type 2 diabetes. In adipose tissue, expression of the E2 small ubiquitin-like modifier ligase ubiquitin carrier protein 9 (Ubc9) is positively correlated with markers of insulin resistance and corresponds with impaired browning of human white adipocytes. However, the molecular regulation of Ubc9 expression in adipocytes and other cells remains unclear. In this study, we demonstrate that the mRNA and protein expression of Ubc9 are regulated by the microRNA miRNA-30a (miR-30a) in human subcutaneous adipocytes. Ubc9 and miR-30a exhibit inverse expression in adipose tissue, with miR-30a robustly elevated in brown fat. Depletion of Ubc9 by siRNA or enforced expression of a miR-30a mimic augments mitochondrial volume and respiration in human white adipocytes, reflecting features of brown fat cells. Furthermore, Ubc9 depletion induces a brown fat gene program in human subcutaneous adipocytes. Induction of the beige-selective gene program corresponds to stabilization of the PR domain-containing 16 (PRDM16) protein, an obligate transcriptional regulator of the brown/beige fat metabolic program in white adipocytes that interacts with Ubc9. Taken together, our data demonstrate a previously unappreciated molecular axis that controls browning of human white adipocytes.


Asunto(s)
Adipocitos Blancos/metabolismo , Regulación de la Expresión Génica/fisiología , MicroARNs/biosíntesis , Mitocondrias/metabolismo , Enzimas Ubiquitina-Conjugadoras/biosíntesis , Adipocitos Blancos/citología , Animales , Proteínas de Unión al ADN/metabolismo , Humanos , Masculino , Ratones , Factores de Transcripción/metabolismo
3.
PLoS Genet ; 9(2): e1003251, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23408900

RESUMEN

Deletion of tumor suppressor genes in stromal fibroblasts induces epithelial cancer development, suggesting an important role of stroma in epithelial homoeostasis. However, the underlying mechanisms remain to be elucidated. Here we report that deletion of the gene encoding TGFß receptor 2 (Tgfbr2) in the stromal fibroblasts (Tgfbr2(fspKO)) induces inflammation and significant DNA damage in the neighboring epithelia of the forestomach. This results in loss or down-regulation of cyclin-dependent kinase inhibitors p15, p16, and p21, which contribute to the development of invasive squamous cell carcinoma (SCC). Anti-inflammation treatment restored p21 expression, delayed tumorigenesis, and increased survival of Tgfbr2(fspKO) mice. Our data demonstrate for the first time that inflammation is a critical player in the epigenetic silencing of p21 in tumor progression. Examination of human esophageal SCC showed a down-regulation of TGFß receptor 2 (TßRII) in the stromal fibroblasts, as well as increased inflammation, DNA damage, and loss or decreased p15/p16 expression. Our study suggests anti-inflammation may be a new therapeutic option in treating human SCCs with down-regulation of TßRII in the stroma.


Asunto(s)
Neoplasias de la Mama , Carcinoma de Células Escamosas , Transformación Celular Neoplásica/genética , Neoplasias Esofágicas , Proteínas Serina-Treonina Quinasas , Receptores de Factores de Crecimiento Transformadores beta , Factor de Crecimiento Transformador beta , Animales , Apoptosis/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/genética , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación hacia Abajo , Epigénesis Genética , Células Epiteliales/metabolismo , Células Epiteliales/patología , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago , Femenino , Fibroblastos , Humanos , Inflamación/genética , Ratones , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal , Células del Estroma/citología , Células del Estroma/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
4.
Cell Metab ; 34(12): 1932-1946.e7, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36243005

RESUMEN

Low-grade, sustained inflammation in white adipose tissue (WAT) characterizes obesity and coincides with type 2 diabetes mellitus (T2DM). However, pharmacological targeting of inflammation lacks durable therapeutic effects in insulin-resistant conditions. Through a computational screen, we discovered that the FDA-approved rheumatoid arthritis drug auranofin improved insulin sensitivity and normalized obesity-associated abnormalities, including hepatic steatosis and hyperinsulinemia in mouse models of T2DM. We also discovered that auranofin accumulation in WAT depleted inflammatory responses to a high-fat diet without altering body composition in obese wild-type mice. Surprisingly, elevated leptin levels and blunted beta-adrenergic receptor activity achieved by leptin receptor deletion abolished the antidiabetic effects of auranofin. These experiments also revealed that the metabolic benefits of leptin reduction were superior to immune impacts of auranofin in WAT. Our studies uncover important metabolic properties of anti-inflammatory treatments and contribute to the notion that leptin reduction in the periphery can be accomplished to treat obesity and T2DM.


Asunto(s)
Artritis Reumatoide , Diabetes Mellitus Tipo 2 , Animales , Ratones , Ratones Obesos , Hipoglucemiantes , Auranofina/farmacología , Auranofina/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Obesidad/tratamiento farmacológico
5.
Autophagy ; 17(5): 1205-1221, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32400277

RESUMEN

Although macroautophagy/autophagy deficiency causes degenerative diseases, the deletion of essential autophagy genes in adipocytes paradoxically reduces body weight. Brown adipose tissue (BAT) plays an important role in body weight regulation and metabolic control. However, the key cellular mechanisms that maintain BAT function remain poorly understood. in this study, we showed that global or brown adipocyte-specific deletion of pink1, a Parkinson disease-related gene involved in selective mitochondrial autophagy (mitophagy), induced BAT dysfunction, and obesity-prone type in mice. Defective mitochondrial function is among the upstream signals that activate the NLRP3 inflammasome. NLRP3 was induced in brown adipocyte precursors (BAPs) from pink1 knockout (KO) mice. Unexpectedly, NLRP3 induction did not induce canonical inflammasome activity. Instead, NLRP3 induction led to the differentiation of pink1 KO BAPs into white-like adipocytes by increasing the expression of white adipocyte-specific genes and repressing the expression of brown adipocyte-specific genes. nlrp3 deletion in pink1 knockout mice reversed BAT dysfunction. Conversely, adipose tissue-specific atg7 KO mice showed significantly lower expression of Nlrp3 in their BAT. Overall, our data suggest that the role of mitophagy is different from general autophagy in regulating adipose tissue and whole-body energy metabolism. Our results uncovered a new mitochondria-NLRP3 pathway that induces BAT dysfunction. The ability of the nlrp3 knockouts to rescue BAT dysfunction suggests the transcriptional function of NLRP3 as an unexpected, but a quite specific therapeutic target for obesity-related metabolic diseases.Abbreviations: ACTB: actin, beta; BAPs: brown adipocyte precursors; BAT: brown adipose tissue; BMDMs: bone marrow-derived macrophages; CASP1: caspase 1; CEBPA: CCAAT/enhancer binding protein (C/EBP), alpha; ChIP: chromatin immunoprecipitation; EE: energy expenditure; HFD: high-fat diet; IL1B: interleukin 1 beta; ITT: insulin tolerance test; KO: knockout; LPS: lipopolysaccharide; NLRP3: NLR family, pyrin domain containing 3; PINK1: PTEN induced putative kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; RD: regular diet; ROS: reactive oxygen species; RT: room temperature; UCP1: uncoupling protein 1 (mitochondrial, proton carrier); WT: wild-type.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Autofagia/fisiología , Inflamasomas/metabolismo , Mitofagia/fisiología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Adipocitos/metabolismo , Animales , Metabolismo Energético/fisiología , Ratones Noqueados , Mitocondrias/metabolismo , Mitofagia/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Especies Reactivas de Oxígeno/metabolismo
6.
Nat Rev Urol ; 17(4): 214-231, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32112053

RESUMEN

Anabolic metabolism mediated by aberrant growth factor signalling fuels tumour growth and progression. The first biochemical descriptions of the altered metabolic nature of solid tumours were reported by Otto Warburg almost a century ago. Now, the study of tumour metabolism is being redefined by the development of new molecular tools, tumour modelling systems and precise instrumentation together with important advances in genetics, cell biology and spectroscopy. In contrast to Warburg's original hypothesis, accumulating evidence demonstrates a critical role for mitochondrial metabolism and substantial variation in the way in which different tumours metabolize nutrients to generate biomass. Furthermore, computational and experimental approaches suggest a dominant influence of the tissue-of-origin in shaping the metabolic reprogramming that enables tumour growth. For example, the unique metabolic properties of prostate adenocarcinoma are likely to stem from the distinct metabolism of the prostatic epithelium from which it emerges. Normal prostatic epithelium employs comparatively glycolytic metabolism to sustain physiological citrate secretion, whereas prostate adenocarcinoma consumes citrate to power oxidative phosphorylation and fuel lipogenesis, enabling tumour progression through metabolic reprogramming. Current data suggest that the distinct metabolic aberrations in prostate adenocarcinoma are driven by the androgen receptor, providing opportunities for functional metabolic imaging and novel therapeutic interventions that will be complementary to existing diagnostic and treatment options.


Asunto(s)
Adenocarcinoma/metabolismo , Próstata/metabolismo , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/metabolismo , Proliferación Celular , Ácido Cítrico/metabolismo , Ciclo del Ácido Cítrico , Glucólisis , Humanos , Lipogénesis , Masculino , Redes y Vías Metabólicas , Fosforilación Oxidativa , Microambiente Tumoral
7.
Diabetes ; 69(12): 2630-2641, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32994273

RESUMEN

Obesity fosters low-grade inflammation in white adipose tissue (WAT) that may contribute to the insulin resistance that characterizes type 2 diabetes. However, the causal relationship of these events remains unclear. The established dominance of STAT1 function in the immune response suggests an obligate link between inflammation and the comorbidities of obesity. To this end, we sought to determine how STAT1 activity in white adipocytes affects insulin sensitivity. STAT1 expression in WAT inversely correlated with fasting plasma glucose in both obese mice and humans. Metabolomic and gene expression profiling established STAT1 deletion in adipocytes (STAT1 a-KO ) enhanced mitochondrial function and accelerated tricarboxylic acid cycle flux coupled with reduced fat cell size in subcutaneous WAT depots. STAT1 a-KO reduced WAT inflammation, but insulin resistance persisted in obese mice. Rather, elimination of type I cytokine interferon-γ activity enhanced insulin sensitivity in diet-induced obesity. Our findings reveal a permissive mechanism that bridges WAT inflammation to whole-body insulin sensitivity.


Asunto(s)
Tejido Adiposo/metabolismo , Regulación de la Expresión Génica/fisiología , Inflamación/metabolismo , Resistencia a la Insulina/fisiología , Factor de Transcripción STAT1/metabolismo , Adipocitos/metabolismo , Animales , Metabolismo Energético/genética , Metabolismo Energético/fisiología , Femenino , Glucosa/metabolismo , Homeostasis/fisiología , Humanos , Interferón gamma/genética , Interferón gamma/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/metabolismo , Interferencia de ARN , Receptores de Interferón/genética , Receptores de Interferón/metabolismo , Factor de Transcripción STAT1/genética , Receptor de Interferón gamma
8.
Oncogene ; 39(40): 6387-6392, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32820250

RESUMEN

After publication of this Article, the Authors noticed errors in some of the Figures. In Figures 2e, 2f-g, 4a, 4j, 5a and 6b, unmatched ß-actin was inadvertently used as loading control for the immunoblots. These have been corrected using repeat data from a similar set of samples and the revised Figures containing matched ß-actin and their respective quantification data are included below. In Figure 7a, the same image was inadvertently used to represent tumors 3 and 5 in the control group. This error has been corrected using original images of tumors 3 and 5 in the control group. Additional corrections have been made in the Article and Figure legends to enhance the clarity of the description. NAD was replaced by NADP. NAD/NADP was replaced by NADP/NADPH. The description of the antibody source and dilution for the antigens PFKFB4 (Abcam, 1:1000), G6PD, and HK1 (Cell Signaling, 1:1,000) have been included in the Methods section for Western Blot. The legend for Figure 4e and 4j has been updated. The HTML and PDF versions of this Article have been corrected. The scientific conclusions of this paper have not been affected.

9.
Oncogene ; 39(40): 6265-6285, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31383940

RESUMEN

Advanced Bladder Cancer (BLCA) remains a clinical challenge that lacks effective therapeutic measures. Here, we show that distinct, stage-wise metabolic alterations in BLCA are associated with the loss of function of aldehyde oxidase (AOX1). AOX1 associated metabolites have a high predictive value for advanced BLCA and our findings demonstrate that AOX1 is epigenetically silenced during BLCA progression by the methyltransferase activity of EZH2. Knockdown (KD) of AOX1 in normal bladder epithelial cells re-wires the tryptophan-kynurenine pathway resulting in elevated NADP levels which may increase metabolic flux through the pentose phosphate (PPP) pathway, enabling increased nucleotide synthesis, and promoting cell invasion. Inhibition of NADP synthesis rescues the metabolic effects of AOX1 KD. Ectopic AOX1 expression decreases NADP production, PPP flux and nucleotide synthesis, while decreasing invasion in cell line models and suppressing growth in tumor xenografts. Further gain and loss of AOX1 confirm the EZH2-dependent activation, metabolic deregulation, and tumor growth in BLCA. Our findings highlight the therapeutic potential of AOX1 and provide a basis for the development of prognostic markers for advanced BLCA.


Asunto(s)
Aldehído Oxidasa/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Vejiga Urinaria/patología , Aldehído Oxidasa/metabolismo , Animales , Línea Celular Tumoral , Progresión de la Enfermedad , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Quinurenina/metabolismo , Masculino , Metabolómica , Ratones , NADP/metabolismo , Invasividad Neoplásica , Estadificación de Neoplasias , Nucleótidos/biosíntesis , Vía de Pentosa Fosfato/genética , RNA-Seq , Análisis de Matrices Tisulares , Triptófano/metabolismo , Neoplasias de la Vejiga Urinaria/patología , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Nat Metab ; 1(1): 70-85, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-31198906

RESUMEN

Specific metabolic underpinnings of androgen receptor (AR)-driven growth in prostate adenocarcinoma (PCa) are largely undefined, hindering the development of strategies to leverage the metabolic dependencies of this disease when hormonal manipulations fail. Here we show that the mitochondrial pyruvate carrier (MPC), a critical metabolic conduit linking cytosolic and mitochondrial metabolism, is transcriptionally regulated by AR. Experimental MPC inhibition restricts proliferation and metabolic outputs of the citric acid cycle (TCA) including lipogenesis and oxidative phosphorylation in AR-driven PCa models. Mechanistically, metabolic disruption resulting from MPC inhibition activates the eIF2α/ATF4 integrated stress response (ISR). ISR signaling prevents cell cycle progression while coordinating salvage efforts, chiefly enhanced glutamine assimilation into the TCA, to regain metabolic homeostasis. We confirm that MPC function is operant in PCa tumors in-vivo using isotopomeric metabolic flux analysis. In turn, we apply a clinically viable small molecule targeting the MPC, MSDC0160, to pre-clinical PCa models and find that MPC inhibition suppresses tumor growth in hormone-responsive and castrate-resistant conditions. Collectively, our findings characterize the MPC as a tractable therapeutic target in AR-driven prostate tumors.


Asunto(s)
Mitocondrias/metabolismo , Neoplasias de la Próstata/etiología , Neoplasias de la Próstata/metabolismo , Ácido Pirúvico/metabolismo , Receptores Androgénicos/metabolismo , Animales , Transporte Biológico , Línea Celular Tumoral , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Glutamina/metabolismo , Humanos , Masculino , Redes y Vías Metabólicas , Ratones , Ratones Transgénicos , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neoplasias de la Próstata/mortalidad , Neoplasias de la Próstata/patología , Neoplasias de la Próstata Resistentes a la Castración/etiología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Unión Proteica , Transducción de Señal
11.
J Exp Med ; 215(9): 2355-2377, 2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-30108137

RESUMEN

The progression of tau pathology in Alzheimer's disease follows a stereotyped pattern, and recent evidence suggests a role of synaptic connections in this process. Astrocytes are well positioned at the neuronal synapse to capture and degrade extracellular tau as it transits the synapse and hence could potentially have the ability to inhibit tau spreading and delay disease progression. Our study shows increased expression and activity of Transcription Factor EB (TFEB), a master regulator of lysosomal biogenesis, in response to tau pathology in both human brains with dementia and transgenic mouse models. Exogenous TFEB expression in primary astrocytes enhances tau fibril uptake and lysosomal activity, while TFEB knockout has the reverse effect. In vivo, induced TFEB expression in astrocytes reduces pathology in the hippocampus of PS19 tauopathy mice, as well as prominently attenuates tau spreading from the ipsilateral to the contralateral hippocampus in a mouse model of tau spreading. Our study suggests that astrocytic TFEB plays a functional role in modulating extracellular tau and the propagation of neuronal tau pathology in tauopathies such as Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Astrocitos/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Hipocampo/metabolismo , Sinapsis/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Astrocitos/patología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Hipocampo/patología , Lisosomas/genética , Lisosomas/metabolismo , Lisosomas/patología , Ratones , Sinapsis/genética , Sinapsis/patología , Proteínas tau/genética
12.
Diabetes ; 67(12): 2541-2553, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30002134

RESUMEN

Chronic inflammation accompanies obesity and limits subcutaneous white adipose tissue (WAT) expandability, accelerating the development of insulin resistance and type 2 diabetes mellitus. MicroRNAs (miRNAs) influence expression of many metabolic genes in fat cells, but physiological roles in WAT remain poorly characterized. Here, we report that expression of the miRNA miR-30a in subcutaneous WAT corresponds with insulin sensitivity in obese mice and humans. To examine the hypothesis that restoration of miR-30a expression in WAT improves insulin sensitivity, we injected adenovirus (Adv) expressing miR-30a into the subcutaneous fat pad of diabetic mice. Exogenous miR-30a expression in the subcutaneous WAT depot of obese mice coupled improved insulin sensitivity and increased energy expenditure with decreased ectopic fat deposition in the liver and reduced WAT inflammation. High-throughput proteomic profiling and RNA-Seq suggested that miR-30a targets the transcription factor STAT1 to limit the actions of the proinflammatory cytokine interferon-γ (IFN-γ) that would otherwise restrict WAT expansion and decrease insulin sensitivity. We further demonstrated that miR-30a opposes the actions of IFN-γ, suggesting an important role for miR-30a in defending adipocytes against proinflammatory cytokines that reduce peripheral insulin sensitivity. Together, our data identify a critical molecular signaling axis, elements of which are involved in uncoupling obesity from metabolic dysfunction.


Asunto(s)
Resistencia a la Insulina/fisiología , Hígado/metabolismo , MicroARNs/metabolismo , Obesidad/metabolismo , Grasa Subcutánea/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético/fisiología , Ratones , MicroARNs/genética , Obesidad/etiología , Obesidad/genética , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo
13.
Neoplasia ; 18(6): 356-70, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27292025

RESUMEN

MicroRNA (miRNA) deregulation in prostate cancer (PCa) contributes to PCa initiation and metastatic progression. To comprehensively define the cancer-associated changes in miRNA targeting and function in commonly studied models of PCa, we performed photoactivatable ribonucleoside-enhanced cross-linking immunoprecipitation of the Argonaute protein in a panel of PCa cell lines modeling different stages of PCa progression. Using this comprehensive catalogue of miRNA targets, we analyzed miRNA targeting on known drivers of PCa and examined tissue-specific and stage-specific pathway targeting by miRNAs. We found that androgen receptor is the most frequently targeted PCa oncogene and that miR-148a targets the largest number of known PCa drivers. Globally, tissue-specific and stage-specific changes in miRNA targeting are driven by homeostatic response to active oncogenic pathways. Our findings indicate that, even in advanced PCa, the miRNA pool adapts to regulate continuing alterations in the cancer genome to balance oncogenic molecular changes. These findings are important because they are the first to globally characterize miRNA changes in PCa and demonstrate how the miRNA target spectrum responds to staged tumorigenesis.


Asunto(s)
Proteínas Argonautas/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , MicroARNs/genética , Proteínas de Microfilamentos/metabolismo , Neoplasias de la Próstata/genética , Receptores Androgénicos/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transformación Celular Neoplásica/patología , Proteínas Cromosómicas no Histona/genética , Humanos , Masculino , Proteínas de Microfilamentos/genética , Invasividad Neoplásica/genética , Neoplasias de la Próstata/patología , Interferencia de ARN , ARN Interferente Pequeño/genética
14.
Nat Commun ; 7: 11612, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27194471

RESUMEN

The precise molecular alterations driving castration-resistant prostate cancer (CRPC) are not clearly understood. Using a novel network-based integrative approach, here, we show distinct alterations in the hexosamine biosynthetic pathway (HBP) to be critical for CRPC. Expression of HBP enzyme glucosamine-phosphate N-acetyltransferase 1 (GNPNAT1) is found to be significantly decreased in CRPC compared with localized prostate cancer (PCa). Genetic loss-of-function of GNPNAT1 in CRPC-like cells increases proliferation and aggressiveness, in vitro and in vivo. This is mediated by either activation of the PI3K-AKT pathway in cells expressing full-length androgen receptor (AR) or by specific protein 1 (SP1)-regulated expression of carbohydrate response element-binding protein (ChREBP) in cells containing AR-V7 variant. Strikingly, addition of the HBP metabolite UDP-N-acetylglucosamine (UDP-GlcNAc) to CRPC-like cells significantly decreases cell proliferation, both in-vitro and in animal studies, while also demonstrates additive efficacy when combined with enzalutamide in-vitro. These observations demonstrate the therapeutic value of targeting HBP in CRPC.


Asunto(s)
Hexosaminas/biosíntesis , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Línea Celular , Humanos , Masculino , Ratones , Ratones SCID , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo
15.
Trends Endocrinol Metab ; 26(12): 733-745, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26492831

RESUMEN

Global expression analyses demonstrate that alterations in miRNA levels correlate with various metabolic diseases. miRNAs regulate central metabolic pathways and thus play vital roles in maintaining organismal energy balance and metabolic homeostasis. Here we highlight novel sequencing technologies used to comprehensively define the target spectrum of miRNAs in metabolic disease that complement recent literature reporting physiologic roles for miRNAs in the regulation of glucose and lipid metabolism in peripheral tissues of animal models of metabolic dysfunction. These emerging technologies help decipher the complexity of the miRNA interactome and enrich our understanding of how miRNAs mediate physiologic effects by targeting a spectrum of gene transcripts simultaneously. miRNA-based therapeutics emerge as a viable strategy for treating metabolic diseases.


Asunto(s)
Homeostasis/genética , Metabolismo de los Lípidos/genética , Enfermedades Metabólicas/metabolismo , MicroARNs/metabolismo , Animales , Metabolismo Energético/genética , Humanos , Enfermedades Metabólicas/genética , Redes y Vías Metabólicas/genética , MicroARNs/genética
16.
Mol Endocrinol ; 29(9): 1320-33, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26192107

RESUMEN

Insulin resistance and type 2 diabetes mellitus (T2DM) result from an inability to efficiently store and catabolize surplus energy in adipose tissue. Subcutaneous adipocytes protect against insulin resistance and T2DM by coupling differentiation with the induction of brown fat gene programs for efficient energy metabolism. Mechanisms that disrupt these programs in adipocytes are currently poorly defined, but represent therapeutic targets for the treatment of T2DM. To gain insight into these mechanisms, we performed a high-throughput microscopy screen that identified ubiquitin carrier protein 9 (Ubc9) as a negative regulator of energy storage in human sc adipocytes. Ubc9 depletion enhanced energy storage and induced the brown fat gene program in human sc adipocytes. Induction of adipocyte differentiation resulted in decreased Ubc9 expression commensurate with increased brown fat gene expression. Thiazolidinedione treatment reduced the interaction between Ubc9 and peroxisome proliferator-activated receptor (PPAR)γ, suggesting a mechanism by which Ubc9 represses PPARγ activity. In support of this hypothesis, Ubc9 overexpression remodeled energy metabolism in human sc adipocytes by selectively inhibiting brown adipocyte-specific function. Further, Ubc9 overexpression decreased uncoupling protein 1 expression by disrupting PPARγ binding at a critical uncoupling protein 1 enhancer region. Last, Ubc9 is significantly elevated in sc adipose tissue isolated from mouse models of insulin resistance as well as diabetic and insulin-resistant humans. Taken together, our findings demonstrate a critical role for Ubc9 in the regulation of sc adipocyte energy homeostasis.


Asunto(s)
Adipocitos Blancos/metabolismo , Tejido Adiposo Pardo/metabolismo , Metabolismo Energético/fisiología , PPAR gamma/antagonistas & inhibidores , Enzimas Ubiquitina-Conjugadoras/metabolismo , Animales , Diabetes Mellitus Tipo 2/fisiopatología , Modelos Animales de Enfermedad , Ensayos Analíticos de Alto Rendimiento , Humanos , Hipoglucemiantes/farmacología , Resistencia a la Insulina/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Interferencia de ARN , ARN Interferente Pequeño , Rosiglitazona , Tiazolidinedionas/farmacología , Enzimas Ubiquitina-Conjugadoras/genética
18.
BMC Res Notes ; 5: 341, 2012 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-22747589

RESUMEN

BACKGROUND: Accurate and efficient RNA secondary structure prediction remains an important open problem in computational molecular biology. Historically, advances in computing technology have enabled faster and more accurate RNA secondary structure predictions. Previous parallelized prediction programs achieved significant improvements in runtime, but their implementations were not portable from niche high-performance computers or easily accessible to most RNA researchers. With the increasing prevalence of multi-core desktop machines, a new parallel prediction program is needed to take full advantage of today's computing technology. FINDINGS: We present here the first implementation of RNA secondary structure prediction by thermodynamic optimization for modern multi-core computers. We show that GTfold predicts secondary structure in less time than UNAfold and RNAfold, without sacrificing accuracy, on machines with four or more cores. CONCLUSIONS: GTfold supports advances in RNA structural biology by reducing the timescales for secondary structure prediction. The difference will be particularly valuable to researchers working with lengthy RNA sequences, such as RNA viral genomes.


Asunto(s)
Algoritmos , Biología Computacional/métodos , ARN/química , Programas Informáticos , Biología Computacional/instrumentación , Conformación de Ácido Nucleico , Análisis de Secuencia de ARN , Termodinámica
19.
PLoS One ; 6(8): e22483, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21887219

RESUMEN

Maximum parsimony (MP) methods aim to reconstruct the phylogeny of extant species by finding the most parsimonious evolutionary scenario using the species' genome data. MP methods are considered to be accurate, but they are also computationally expensive especially for a large number of species. Several disk-covering methods (DCMs), which decompose the input species to multiple overlapping subgroups (or disks), have been proposed to solve the problem in a divide-and-conquer way. We design a new DCM based on the spectral method and also develop the COGNAC (Comparing Orders of Genes using Novel Algorithms and high-performance Computers) software package. COGNAC uses the new DCM to reduce the phylogenetic tree search space and selects an output tree from the reduced search space based on the MP principle. We test the new DCM using gene order data and inversion distance. The new DCM not only reduces the number of candidate tree topologies but also excludes erroneous tree topologies which can be selected by original MP methods. Initial labeling of internal genomes affects the accuracy of MP methods using gene order data, and the new DCM enables more accurate initial labeling as well. COGNAC demonstrates superior accuracy as a consequence. We compare COGNAC with FastME and the combination of the state of the art DCM (Rec-I-DCM3) and GRAPPA. COGNAC clearly outperforms FastME in accuracy. COGNAC--using the new DCM--also reconstructs a much more accurate tree in significantly shorter time than GRAPPA with Rec-I-DCM3.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Filogenia , Genoma/genética , Modelos Genéticos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA