Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(43): e2211317119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36252005

RESUMEN

Grazing by mammalian herbivores can be a climate mitigation strategy as it influences the size and stability of a large soil carbon (soil-C) pool (more than 500 Pg C in the world's grasslands, steppes, and savannas). With continuing declines in the numbers of large mammalian herbivores, the resultant loss in grazer functions can be consequential for this soil-C pool and ultimately for the global carbon cycle. While herbivore effects on the size of the soil-C pool and the conditions under which they lead to gain or loss in soil-C are becoming increasingly clear, their effect on the equally important aspect of stability of soil-C remains unknown. We used a replicated long-term field experiment in the Trans-Himalayan grazing ecosystem to evaluate the consequences of herbivore exclusion on interannual fluctuations in soil-C (2006 to 2021). Interannual fluctuations in soil-C and soil-N were 30 to 40% higher after herbivore exclusion than under grazing. Structural equation modeling suggested that grazing appears to mediate the stabilizing versus destabilizing influences of nitrogen (N) on soil-C. This may explain why N addition stimulates soil-C loss in the absence of herbivores around the world. Herbivore loss, and the consequent decline in grazer functions, can therefore undermine the stability of soil-C. Soil-C is not inert but a very dynamic pool. It can provide nature-based climate solutions by conserving and restoring a functional role of large mammalian herbivores that extends to the stoichiometric coupling between soil-C and soil-N.


Asunto(s)
Herbivoria , Suelo , Animales , Carbono , Ecosistema , Pradera , Mamíferos , Nitrógeno , Suelo/química
2.
Glob Chang Biol ; 29(8): 2141-2155, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36732877

RESUMEN

Grazing by large mammalian herbivores impacts climate as it can favor the size and stability of a large carbon (C) pool in the soils of grazing ecosystems. As native herbivores in the world's grasslands, steppes, and savannas are progressively being displaced by livestock, it is important to ask whether livestock can emulate the functional roles of their native counterparts. While livestock and native herbivores can have remarkable similarity in their traits, they can differ greatly in their impacts on vegetation composition which can affect soil-C. It is uncertain how these similarities and differences impact soil-C via their influence on microbial decomposers. We test competing alternative hypotheses with a replicated, long-term, landscape-level, grazing-exclusion experiment to ask whether livestock in the Trans-Himalayan ecosystem of northern India can match decadal-scale (2005-2016) soil-C stocks under native herbivores. We evaluate multiple lines of evidence from 17 variables that influence soil-C (quantity and quality of C-input from plants, microbial biomass and metabolism, microbial community composition, eDNA, veterinary antibiotics in soil), and assess their inter-relationships. Livestock and native herbivores differed in their effects on several soil microbial processes. Microbial carbon use efficiency (CUE) was 19% lower in soils under livestock. Compared to native herbivores, areas used by livestock contained 1.5 kg C m-2 less soil-C. Structural equation models showed that alongside the effects arising from plants, livestock alter soil microbial communities which is detrimental for CUE, and ultimately also for soil-C. Supporting evidence pointed toward a link between veterinary antibiotics used on livestock, microbial communities, and soil-C. Overcoming the challenges of sequestering antibiotics to minimize their potential impacts on climate, alongside microbial rewilding under livestock, may reconcile the conflicting demands from food-security and ecosystem services. Conservation of native herbivores and alternative management of livestock is crucial for soil-C stewardship to envision and achieve natural climate solutions.


Asunto(s)
Ecosistema , Herbivoria , Animales , Carbono , Ganado , Suelo/química , Plantas , Pradera , Mamíferos
3.
Glob Chang Biol ; 28(8): 2678-2688, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35038782

RESUMEN

Nutrients and herbivores are well-known drivers of grassland diversity and stability in local communities. However, whether they interact to impact the stability of aboveground biomass and whether these effects depend on spatial scales remain unknown. It is also unclear whether nutrients and herbivores impact stability via different facets of plant diversity including species richness, evenness, and changes in community composition through time and space. We used a replicated experiment adding nutrients and excluding herbivores for 5 years in 34 global grasslands to explore these questions. We found that both nutrient addition and herbivore exclusion alone reduced stability at the larger spatial scale (aggregated local communities; gamma stability), but through different pathways. Nutrient addition reduced gamma stability primarily by increasing changes in local community composition over time, which was mainly driven by species replacement. Herbivore exclusion reduced gamma stability primarily by decreasing asynchronous dynamics among local communities (spatial asynchrony). Their interaction weakly increased gamma stability by increasing spatial asynchrony. Our findings indicate that disentangling the processes operating at different spatial scales may improve conservation and management aiming at maintaining the ability of ecosystems to reliably provide functions and services for humanity.


Asunto(s)
Pradera , Herbivoria , Biodiversidad , Ecosistema , Nutrientes
4.
Ecol Lett ; 24(10): 2100-2112, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34240557

RESUMEN

The effects of altered nutrient supplies and herbivore density on species diversity vary with spatial scale, because coexistence mechanisms are scale dependent. This scale dependence may alter the shape of the species-area relationship (SAR), which can be described by changes in species richness (S) as a power function of the sample area (A): S = cAz , where c and z are constants. We analysed the effects of experimental manipulations of nutrient supply and herbivore density on species richness across a range of scales (0.01-75 m2 ) at 30 grasslands in 10 countries. We found that nutrient addition reduced the number of species that could co-occur locally, indicated by the SAR intercepts (log c), but did not affect the SAR slopes (z). As a result, proportional species loss due to nutrient enrichment was largely unchanged across sampling scales, whereas total species loss increased over threefold across our range of sampling scales.


Asunto(s)
Biodiversidad , Pradera , Ecosistema , Herbivoria , Nutrientes
5.
Glob Chang Biol ; 27(10): 2029-2038, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33508870

RESUMEN

Stability of the soil carbon (C) pool under decadal scale variability in temperature and precipitation is an important source of uncertainty in our understanding of land-atmosphere climate feedbacks. This depends on how two opposing C-fluxes-influx from net primary production (NPP) and efflux from heterotrophic soil respiration (Rh )-respond to covariation in temperature and precipitation. There is scant evidence to judge whether field experiments which manipulate both temperature and precipitation align with Earth System Models, or not. As a result, even though the world is generally greening, whether the resultant gains in NPP can offset climate change impacts on Rh , where, and by how much, remains uncertain. Here, we use decadal-scale global time-series datasets on NPP, Rh , temperature, and precipitation to estimate the two opposing C-fluxes and address whether one can outpace the other. We implement machine-learning tools on recent (2001-2019) and near-future climate scenarios (2020-2040) to assess the response of both C-fluxes to temperature and precipitation variation. We find that changes in C-influx may not compensate for C-efflux, particularly in wetter and warmer conditions. Soil-C loss can occur in both tropics and at high latitudes since C-influx from NPP can fall behind C-efflux from Rh . Precipitation emerges as the key determinant of soil-C vulnerability in a warmer world, implying that hotspots for soil-C loss/gain can shift rapidly and highlighting that soil-C is vulnerable to climate change despite widespread greening of the world. The direction of covariation between change in temperature and precipitation, rather than their magnitude, can help conceptualize highly variable patterns in C-fluxes to guide soil-C stewardship.


Asunto(s)
Cambio Climático , Suelo , Carbono , Ciclo del Carbono , Ecosistema , Respiración
6.
Glob Chang Biol ; 26(4): 2060-2071, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32012421

RESUMEN

Grasslands are subject to considerable alteration due to human activities globally, including widespread changes in populations and composition of large mammalian herbivores and elevated supply of nutrients. Grassland soils remain important reservoirs of carbon (C) and nitrogen (N). Herbivores may affect both C and N pools and these changes likely interact with increases in soil nutrient availability. Given the scale of grassland soil fluxes, such changes can have striking consequences for atmospheric C concentrations and the climate. Here, we use the Nutrient Network experiment to examine the responses of soil C and N pools to mammalian herbivore exclusion across 22 grasslands, under ambient and elevated nutrient availabilities (fertilized with NPK + micronutrients). We show that the impact of herbivore exclusion on soil C and N pools depends on fertilization. Under ambient nutrient conditions, we observed no effect of herbivore exclusion, but under elevated nutrient supply, pools are smaller upon herbivore exclusion. The highest mean soil C and N pools were found in grazed and fertilized plots. The decrease in soil C and N upon herbivore exclusion in combination with fertilization correlated with a decrease in aboveground plant biomass and microbial activity, indicating a reduced storage of organic matter and microbial residues as soil C and N. The response of soil C and N pools to herbivore exclusion was contingent on temperature - herbivores likely cause losses of C and N in colder sites and increases in warmer sites. Additionally, grasslands that contain mammalian herbivores have the potential to sequester more N under increased temperature variability and nutrient enrichment than ungrazed grasslands. Our study highlights the importance of conserving mammalian herbivore populations in grasslands worldwide. We need to incorporate local-scale herbivory, and its interaction with nutrient enrichment and climate, within global-scale models to better predict land-atmosphere interactions under future climate change.

7.
Ecol Appl ; 27(5): 1514-1528, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28370777

RESUMEN

Quantification of rates and patterns of community dynamics is central for understanding the organization and function of ecosystems. These insights may support a greater empirical understanding of ecological resilience, and the application of resilience concepts toward ecosystem management. Distinct types of dynamics in natural communities can be used to interpret and apply resilience concepts, but quantitative methods that can systematically distinguish among them are needed. We develop a quantitative method to analyze long-term records of plant community dynamics using principles of movement ecology. We analyzed dissimilarity of species composition through time with linear and nonlinear statistical models to assign community change to four classes of movement trajectories. Compositional change in each sampled plot through time was classified into four classes, stability, abrupt nonlinear change, transient reversible change, and gradual linear drift, each representing a different aspect of ecological resilience. These competing models were evaluated based on estimated coefficients, goodness of fit, and parsimony. We tested our method's accuracy and robustness through simulations, or the ability to distinguish among trajectories and classify them correctly. We simulated 16,000 trajectories of four types, of which 94-100% were correctly classified. Next, we analyzed 13 long-term vegetation records from North American grasslands (annual grasslands with warm-season and cool-season communities, shortgrass, mixedgrass, and tallgrass prairies, and sagebrush steppe), and a record of primary succession at Mt. St. Helens volcano. Collectively, we analyzed 14,647 observations from 775 plots, between 1915 and 2012. Dynamics could be reliably assigned for 705 plots (91%), and overall statistical fit was high (goodness of fit, 0.77 ± 0.15 SD). Among the perennial grasslands, stability was most common (44% of all plots), followed by gradual linear (22%), abrupt nonlinear (17%), and reversible (6%) change. Among annual grasslands, abrupt nonlinear shifts (33%) were more common in the warm-season community than in the cool-season (20%). As expected, abrupt nonlinear change was common during primary succession (51%) while reversible change was rare (3%). Generally, reversible dynamics often required 2-3 decades. Analysis of long-term community change, or trajectories, with principles of movement ecology provides a quantitative basis to compare and interpret ecological resilience within and among ecosystems.


Asunto(s)
Biota , Ecología/métodos , Dispersión de las Plantas , Plantas , Alberta , Modelos Biológicos , Dinámica Poblacional , Estados Unidos
8.
Theor Popul Biol ; 110: 25-35, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27095011

RESUMEN

Theoretical models suggest that competitive coexistence of consumers over shared resources can occur only under very restrictive conditions. Yet, in apparent defiance of the competitive exclusion principle, large numbers of species form natural communities while sharing a small number of limiting resources. Consumers not only coexist, but also show positive facilitative interactions among themselves. Since body size and functional responses may play important roles in these interactions, we investigate their joint effects on two consumers over a single resource. We find that two consumers with unimodal Type IV functional response can facilitate each other by increasing each other's intake rates. But, this facilitation does not necessarily impact their co-existence. When the consumers differ in their body sizes, the larger consumer receives greater absolute benefits, and the smaller consumer gains more relative benefits. These results are consistent with empirical observations, and do not require any additional assumptions over the parameters governing dynamics of resources to explain net positive interactions between consumers.


Asunto(s)
Conducta Competitiva , Modelos Biológicos , Modelos Teóricos , Dinámica Poblacional , Tamaño Corporal , Ecosistema
9.
Nat Ecol Evol ; 8(10): 1877-1888, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39103674

RESUMEN

Global change is associated with variable shifts in the annual production of aboveground plant biomass, suggesting localized sensitivities with unclear causal origins. Combining remotely sensed normalized difference vegetation index data since the 1980s with contemporary field data from 84 grasslands on 6 continents, we show a widening divergence in site-level biomass ranging from +51% to -34% globally. Biomass generally increased in warmer, wetter and species-rich sites with longer growing seasons and declined in species-poor arid areas. Phenological changes were widespread, revealing substantive transitions in grassland seasonal cycling. Grazing, nitrogen deposition and plant invasion were prevalent in some regions but did not predict overall trends. Grasslands are undergoing sizable changes in production, with implications for food security, biodiversity and carbon storage especially in arid regions where declines are accelerating.


Asunto(s)
Biomasa , Pradera , Cambio Climático , Estaciones del Año , Biodiversidad
10.
Nat Commun ; 14(1): 6624, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37857640

RESUMEN

Little is currently known about how climate modulates the relationship between plant diversity and soil organic carbon and the mechanisms involved. Yet, this knowledge is of crucial importance in times of climate change and biodiversity loss. Here, we show that plant diversity is positively correlated with soil carbon content and soil carbon-to-nitrogen ratio across 84 grasslands on six continents that span wide climate gradients. The relationships between plant diversity and soil carbon as well as plant diversity and soil organic matter quality (carbon-to-nitrogen ratio) are particularly strong in warm and arid climates. While plant biomass is positively correlated with soil carbon, plant biomass is not significantly correlated with plant diversity. Our results indicate that plant diversity influences soil carbon storage not via the quantity of organic matter (plant biomass) inputs to soil, but through the quality of organic matter. The study implies that ecosystem management that restores plant diversity likely enhances soil carbon sequestration, particularly in warm and arid climates.


Asunto(s)
Ecosistema , Suelo , Carbono , Biodiversidad , Biomasa , Plantas , Nitrógeno
11.
Nat Commun ; 14(1): 1809, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37002217

RESUMEN

Plant productivity varies due to environmental heterogeneity, and theory suggests that plant diversity can reduce this variation. While there is strong evidence of diversity effects on temporal variability of productivity, whether this mechanism extends to variability across space remains elusive. Here we determine the relationship between plant diversity and spatial variability of productivity in 83 grasslands, and quantify the effect of experimentally increased spatial heterogeneity in environmental conditions on this relationship. We found that communities with higher plant species richness (alpha and gamma diversity) have lower spatial variability of productivity as reduced abundance of some species can be compensated for by increased abundance of other species. In contrast, high species dissimilarity among local communities (beta diversity) is positively associated with spatial variability of productivity, suggesting that changes in species composition can scale up to affect productivity. Experimentally increased spatial environmental heterogeneity weakens the effect of plant alpha and gamma diversity, and reveals that beta diversity can simultaneously decrease and increase spatial variability of productivity. Our findings unveil the generality of the diversity-stability theory across space, and suggest that reduced local diversity and biotic homogenization can affect the spatial reliability of key ecosystem functions.


Asunto(s)
Ecosistema , Pradera , Biomasa , Biodiversidad , Reproducibilidad de los Resultados , Plantas
12.
Ecol Appl ; 22(2): 400-11, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22611843

RESUMEN

Resilience-based frameworks, including state-and-transition models (STM), are being increasingly called upon to inform policy and guide ecosystem management, particularly in rangelands. Yet, multiple challenges impede their effective implementation: (1) paucity of empirical tests of resilience concepts, such as alternative states and thresholds, and (2) heavy reliance on expert models, which are seldom tested against empirical data. We developed an analytical protocol to identify unique plant communities and their transitions, and applied it to a long-term vegetation record from the Sonoran Desert (1953-2009). We assessed whether empirical trends were consistent with resilience concepts, and evaluated how they may inform the construction and interpretation of expert STMs. Seven statistically distinct plant communities were identified based on the cover of 22 plant species in 68 permanent transects. We recorded 253 instances of community transitions, associated with changes in species composition between successive samplings. Expectedly, transitions were more frequent among proximate communities with similar species pools than among distant communities. But unexpectedly, communities and transitions were not strongly constrained by soil type and topography. Only 18 transitions featured disproportionately large compositional turnover (species dissimilarity ranged between 0.54 and 0.68), and these were closely associated with communities that were dominated by the common shrub (burroweed, Haplopappus tenuisecta); indicating that only some, and not all, communities may be prone to large compositional change. Temporal dynamics in individual transects illustrated four general trajectories: stability, nondirectional drift, reversibility, and directional shifts that were not reversed even after 2-3 decades. The frequency of transitions and the accompanying species dissimilarity were both positively correlated with fluctuation in precipitation, indicating that climatic drivers require more attention in STMs. Many features of the expert models, including the number of communities and participant species, were consistent with empirical trends, but expert models underrepresented recent increases in cacti while overemphasizing the introduced Lehmann's lovegrass (Eragrostis lehmanniana). Quantification of communities and transitions within long-term vegetation records presents several quantitative metrics such as transition frequency, magnitude of accompanying compositional change, presence of unidirectional trajectories, and lack of reversibility within various timescales, which can clarify resilience concepts and inform the construction and interpretation of STMs.


Asunto(s)
Clima Desértico , Ecosistema , Monitoreo del Ambiente/métodos , Modelos Biológicos , Plantas/clasificación , Arizona , Conservación de los Recursos Naturales , Desarrollo de la Planta , Dinámica Poblacional , Factores de Tiempo
13.
Nat Ecol Evol ; 6(9): 1290-1298, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35879541

RESUMEN

Ecological models predict that the effects of mammalian herbivore exclusion on plant diversity depend on resource availability and plant exposure to ungulate grazing over evolutionary time. Using an experiment replicated in 57 grasslands on six continents, with contrasting evolutionary history of grazing, we tested how resources (mean annual precipitation and soil nutrients) determine herbivore exclusion effects on plant diversity, richness and evenness. Here we show that at sites with a long history of ungulate grazing, herbivore exclusion reduced plant diversity by reducing both richness and evenness and the responses of richness and diversity to herbivore exclusion decreased with mean annual precipitation. At sites with a short history of grazing, the effects of herbivore exclusion were not related to precipitation but differed for native and exotic plant richness. Thus, plant species' evolutionary history of grazing continues to shape the response of the world's grasslands to changing mammalian herbivory.


Asunto(s)
Biodiversidad , Herbivoria , Animales , Mamíferos , Plantas , Suelo
14.
Ecol Lett ; 13(8): 959-68, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20482575

RESUMEN

Grazing occurs over a third of the earth's land surface and may potentially influence the storage of 10(9) Mg year(-1) of greenhouse gases as soil C. Displacement of native herbivores by high densities of livestock has often led to overgrazing and soil C loss. However, it remains unknown whether matching livestock densities to those of native herbivores can yield equivalent soil C sequestration. In the Trans-Himalayas we found that, despite comparable grazing intensities, watersheds converted to pastoralism had 49% lower soil C than watersheds which retain native herbivores. Experimental grazer-exclusion within each watershed type, show that this difference appears to be driven by indirect effects of livestock diet selection, leading to vegetation shifts that lower plant production and reduce likely soil C inputs from vegetation by c. 25 gC m(-2) year(-1). Our results suggest that while accounting for direct impacts (stocking density) is a major step, managing indirect impacts on vegetation composition are equally important in influencing soil C sequestration in grazing ecosystems.


Asunto(s)
Animales Domésticos/fisiología , Carbono/análisis , Conducta Alimentaria , Desarrollo de la Planta , Suelo , Animales , Biodiversidad , Dieta , Ecosistema , Efecto Invernadero , Modelos Biológicos , Densidad de Población
15.
Oecologia ; 164(4): 1075-82, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20585808

RESUMEN

Large mammalian herbivores may have positive, neutral, or negative effects on annual net aboveground plant production (NAP) in different ecosystems, depending on their indirect effects on availability of key nutrients such as soil N. In comparison, less is known about the corresponding influence of grazers, and nutrient dynamics, over annual net belowground plant production (NBP). In natural multi-species plant communities, it remains uncertain how grazing influences relative allocation in the above- and belowground compartments in relation to its effects on plant nutrients. We evaluated grazer impacts on NAP, NBP, and relative investment in the above- and belowground compartments, alongside their indirect effects on soil N availability in the multiple-use Trans-Himalayan grazing ecosystem with native grazers and livestock. Data show that a prevailing grazing intensity of 51% increases NAP (+61%), but reduces NBP (-35%). Grazing also reduced C:N ratio in shoots (-16%) and litter (-50%), but not in roots, and these changes coincided with increased plant-available inorganic soil N (+23%). Areas used by livestock and native grazers showed qualitatively similar responses since NAP was promoted, and NBP was reduced, in both cases. The preferential investment in the aboveground fraction, at the expense of the belowground fraction, was correlated positively with grazing intensity and with improvement in litter quality. These results are consistent with hypothesized herbivore-mediated positive feedbacks between soil nutrients and relative investment in above- and belowground compartments. Since potentially overlapping mechanisms, such as N mineralization rate, plant N uptake, compositional turnover, and soil microbial activity, may contribute towards these feedbacks, further studies may be able to discern their respective contributions.


Asunto(s)
Ecosistema , Ganado/fisiología , Nitrógeno/metabolismo , Plantas/metabolismo , Suelo/química , Animales , Actitud , Biomasa , Conducta Alimentaria/fisiología , India , Nepal , Desarrollo de la Planta , Estaciones del Año , Tibet
17.
Nat Ecol Evol ; 2(12): 1925-1932, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30374174

RESUMEN

Herbivores alter plant biodiversity (species richness) in many of the world's ecosystems, but the magnitude and the direction of herbivore effects on biodiversity vary widely within and among ecosystems. One current theory predicts that herbivores enhance plant biodiversity at high productivity but have the opposite effect at low productivity. Yet, empirical support for the importance of site productivity as a mediator of these herbivore impacts is equivocal. Here, we synthesize data from 252 large-herbivore exclusion studies, spanning a 20-fold range in site productivity, to test an alternative hypothesis-that herbivore-induced changes in the competitive environment determine the response of plant biodiversity to herbivory irrespective of productivity. Under this hypothesis, when herbivores reduce the abundance (biomass, cover) of dominant species (for example, because the dominant plant is palatable), additional resources become available to support new species, thereby increasing biodiversity. By contrast, if herbivores promote high dominance by increasing the abundance of herbivory-resistant, unpalatable species, then resource availability for other species decreases reducing biodiversity. We show that herbivore-induced change in dominance, independent of site productivity or precipitation (a proxy for productivity), is the best predictor of herbivore effects on biodiversity in grassland and savannah sites. Given that most herbaceous ecosystems are dominated by one or a few species, altering the competitive environment via herbivores or by other means may be an effective strategy for conserving biodiversity in grasslands and savannahs globally.


Asunto(s)
Biodiversidad , Pradera , Herbivoria , Mamíferos/fisiología , Plantas , Animales , Clima Desértico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA