Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Nano Lett ; 23(4): 1514-1521, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36730120

RESUMEN

Excitons are quasi-particles composed of electron-hole pairs through Coulomb interaction. Due to the atomic-thin thickness, they are tightly bound in monolayer transition metal dichalcogenides (TMDs) and dominate their optical properties. The capability to manipulate the excitonic behavior can significantly influence the photon emission or carrier transport performance of TMD-based devices. However, on-demand and region-selective manipulation of the excitonic states in a reversible manner remains challenging so far. Herein, harnessing the coordinated effect of femtosecond-laser-driven atomic defect generation, interfacial electron transfer, and surface molecular desorption/adsorption, we develop an all-optical approach to manipulate the charge states of excitons in monolayer molybdenum disulfide (MoS2). Through steering the laser beam, we demonstrate reconfigurable optical encoding of the excitonic charge states (between neutral and negative states) on a single MoS2 flake. Our technique can be extended to other TMDs materials, which will guide the design of all-optical and reconfigurable TMD-based optoelectronic and nanophotonic devices.

2.
Nano Lett ; 21(20): 8715-8722, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34643401

RESUMEN

Optical Fourier transform-based processing is an attractive technique due to the fast processing times and large-data rates. Furthermore, it has recently been demonstrated that certain Fourier-based processors can be realized in compact form factors using flat optics. The flat optics, however, have been demonstrated as static filters where the operator is fixed, limiting the applicability of the approach. Here, we demonstrate a reconfigurable metasurface that can be dynamically tuned to provide a range of processing modalities including bright-field imaging, low-pass and high-pass filtering, and second-order differentiation. The dynamically tunable metasurface can be directly combined with standard coherent imaging systems and operates with a numerical aperture up to 0.25 and over a 60 nm bandwidth. The ability to dynamically control light in the wave vector domain, while doing so in a compact form factor, may open new doors to applications in microscopy, machine vision, and sensing.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Óptica y Fotónica , Microscopía
3.
Opt Lett ; 46(9): 2095-2098, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33929427

RESUMEN

Nonlinear nanophotonics, as an emerging field in nanophotonics, eagerly calls for experimental techniques for probing and analyzing near-field nonlinear optical signals with subwavelength resolution. Here, we report an aperture-type scanning near-field optical microscopic method for probing near-field nonlinear optical processes. As a demonstration, near-field third-harmonic generation from an anapole dark-mode state generated by a silicon nanodisk is probed and imaged. The measured results agree well with the simulations, with a spatial resolution down to $0.14{\lambda _0}$ and a sensitivity of 0.1 nW. This method provides a powerful tool for characterizing nonlinear light-matter interactions at the nanoscale, which can help, for example, to unveil crystal properties involving subwavelength defects or dislocations.

4.
Opt Lett ; 44(10): 2454-2457, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31090705

RESUMEN

A dry-etching-assisted femtosecond laser lithography technology is proposed to in-site fabricate micro-optical components with an ultra-smooth three-dimensional continuous profile on a non-planar substrate. Owing to the nanometric resolution of femtosecond laser multi-photon polymerization and dry etching, smooth micro-optical components can be realized on hard materials with surface roughness of approximately 1.5 nm. With flexible and arbitrary designability of femtosecond laser lithography, various high-quality micro-optical components are realized on sapphire. These results indicate that dry-etching-assisted femtosecond laser lithography has promising potential for versatile fabrication of arbitrary ultra-smooth micro/nanostructures on hard materials.

5.
Opt Express ; 26(14): 18644-18663, 2018 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-30114040

RESUMEN

Near-field microscopy is widely used for characterizing electromagnetic fields at nanoscale, where nanoprobes afford the opportunity to extract subwavelength optical quantities, including the amplitude, phase, polarization, chirality, etc. However, owing to the complexity of various nanoprobes, a general and intuitive theory is highly desired to assess the vectorial responses of nanoprobes and interpret the mechanism of the probe-field interaction. Here, we develop a general imaging theory based on the reciprocity of electromagnetism and multipole expansion analysis. The proposed theory closely resembles the multipolar Hamiltonian for light-matter interaction energy, revealing the coupling mechanism of the probe-field interaction. Based on this theory, we introduce a new paradigm for the design of functional nanoprobes by analyzing the reciprocal dipole moments, and establish effective design principles for the imaging of vectorial near fields. As application examples of the proposed theory, we numerically analyze the responses of two typical probes, a split-ring probe and a nanoparticle probe, which can quantitatively reproduce and well explain the experimental results of previously reported measurements of the optical magnetism and the transverse spin angular momentum. Our work provides a powerful tool for the design and analysis of new functional probes that may enable the probing of various physical quantities of the vectorial near field.

6.
Opt Express ; 26(19): 24637-24652, 2018 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-30469577

RESUMEN

Magnetic light-matter interaction plays a crucial role in nanophysics, such as in photonic topological insulators and metamaterials. Recent advances in all-dielectric nanophotonics especially demand vectorial mapping of magnetic light at visible wavelengths. Here, we report that a novel functional nanoprobe decorated with a silicon nanoparticle predominantly senses both the vertical and lateral magnetic field, that is, the magnetic field vector, complementary to a metal nanoparticle probe detecting the local electric field vector. As a proof-of-principle experiment, we demonstrate the mapping of magnetic field vectors in a transverse electric (TE) evanescent standing wave by this probe in a scanning near-field optical microscope (SNOM) with nanopolarimetry. It is for the first time that the full magnetic field vector of visible light, whose frequency exceeds 550 THz, can be directly detected with deep subwavelength resolution. Such functional probe and nanopolarimetry may pave the way toward complete vectorial near-field characterization over the whole visible band for nano-optics and subwavelength optics.

7.
Opt Express ; 25(8): 8584-8592, 2017 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-28437936

RESUMEN

We propose a type of ultra-thin metasurfaces composed of rectangular graphene patches supporting orthogonal plasmonic resonances, which can work in transmission or reflection modes for dynamic terahertz wavefront manipulation with high polarization conversion ratio. By controlling the response of each patch via electrical biasing, the phase of the output wave can be tuned in a wide range over 180° while keeping its amplitude high and relatively stable. We demonstrate several functional devices based on such metasurfaces: a linear polarization converter with nearly 100% polarization conversion ratio, a switchable anomalous wave deflection device, and a dual-polarity focusing mirror with the focal spot tunable in both the transversal and longitudinal directions.

8.
Opt Express ; 24(19): 22061-73, 2016 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-27661941

RESUMEN

Surface plasmon polariton (SPP) sources and launchers are highly demanded in various applications of nanophotonics. Here, we propose a general approach that can realize complete control of the complex extinction ratio (including amplitude and phase) of any two linearly independent SPP modes excited by any elementary SPP excitation architecture just by manipulating the incident polarization state. In an optical system, it suffices to simply tune the orientation angles of a linear polarizer and a quarter wave plate, which may greatly simplify the design and application of SPP launchers and diversify their functionalities. As an example to show the broad application prospect of this method, we design and realize a metaline consisting of Δ-shaped plasmonic nanoantennas, which can effectively realize dual functionalities, i.e., the tunable directional SPP excitation at an arbitrarily chosen wavelength and the complete unidirectional SPP excitation over a broad bandwidth. This general approach can also be extended to the control of the complex extinction ratio of any two linearly independent excited modes in many other linear optical systems, such as two modes in a waveguide or two diffraction orders in a grating, over a broad bandwidth.

9.
Nano Lett ; 15(9): 5988-94, 2015 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-26280305

RESUMEN

Infrared antireflection is an essential issue in many fields such as thermal imaging, sensors, thermoelectrics, and stealth. However, a limited antireflection capability, narrow effective band, and complexity as well as high cost in implementation represent the main unconquered problems, especially on metal surfaces. By introducing precursor micro/nano structures via ultrafast laser beforehand, we present a novel approach for facile and uniform growth of high-quality oxide semiconductor nanowires on a Cu surface via thermal oxidation. Through the enhanced optical phonon dissipation of the nanowires, assisted by light trapping in the micro structures, ultralow total reflectance of 0.6% is achieved at the infrared wavelength around 17 µm and keeps steadily below 3% over a broad band of 14-18 µm. The precursor structures and the nanowires can be flexibly tuned by controlling the laser processing procedure to achieve desired antireflection performance. The presented approach possesses the advantages of material simplicity, structure reconfigurability, and cost-effectiveness for mass production. It opens a new path to realize unique functions by integrating semiconductor nanowires onto metal surface structures.

10.
Opt Lett ; 40(23): 5486-9, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26625032

RESUMEN

The efficient steering of surface plasmon polariton (SPP) fields is a vital issue in various plasmonic applications, such as plasmonic circuitry. We present a straightforward and efficient method for generating unidirectionally propagating SPP beams with arbitrary amplitude and phase profiles by manipulating Δ-shaped nanoantennas. As an example, a second-order Hermite-Gauss SPP beam is generated with this method. The near-field distribution of the generated SPP beam is experimentally characterized to validate the effectiveness of the method.

11.
Appl Opt ; 54(24): 7160-8, 2015 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-26368748

RESUMEN

We propose a simple dual-wavelength extinction (DWE) method to measure the average size of spherical metal nanoparticle (NP) ensembles. Unlike the spectroscopic methods that need to measure the full spectra of scattering and/or extinction to retrieve the NP size, the DWE method can estimate the NP size by measuring the light extinction at only two properly selected wavelengths and thus is useful for fast sizing of metal NP ensembles. The influences of the NP shape deviation and ensemble dispersancy on the measurement accuracy are analyzed and discussed in detail. An empirical correction procedure is established to compensate these influences to further improve accuracy. The feasibility and reliability of the DWE method are corroborated by experimentally measuring several typical gold spherical NP ensembles and comparing the results with those obtained by three other standard methods. The experimental results indicate satisfactory accuracy of the DWE method for measuring gold NPs from 30 to 100 nm by using two measurement wavelengths of 532 and 573 nm. The studies show that the DWE method is efficient, reliable, and easy to implement. It may find wide applications in the metrology of NPs.


Asunto(s)
Nanosferas/química , Nanotecnología/métodos , Espectrofotometría/métodos , Oro/química , Luz , Nanopartículas del Metal/química , Microscopía Electrónica de Transmisión , Modelos Estadísticos , Óptica y Fotónica , Reproducibilidad de los Resultados
12.
Small ; 10(8): 1603-11, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24665074

RESUMEN

Plasmonic nanostructures separated by nanogaps enable strong electromagnetic-field confinement on the nanoscale for enhancing light-matter interactions, which are in great demand in many applications such as surface-enhanced Raman scattering (SERS). A simple M-shaped nanograting with narrow V-shaped grooves is proposed. Both theoretical and experimental studies reveal that the electromagnetic field on the surface of the M grating can be pronouncedly enhanced over that of a grating without such grooves, due to field localization in the nanogaps formed by the narrow V grooves. A technique based on room-temperature nanoimprinting lithography and anisotropic reactive-ion etching is developed to fabricate this device, which is cost-effective, reliable, and suitable for fabricating large-area nanostructures. As a demonstration of the potential application of this device, the M grating is used as a SERS substrate for probing Rhodamine 6G molecules. Experimentally, an average SERS enhancement factor as high as 5×108 has been achieved, which verifies the greatly enhanced light-matter interaction on the surface of the M grating over that of traditional SERS surfaces.

13.
ACS Nano ; 18(1): 272-280, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38096138

RESUMEN

Two-dimensional (2D) semiconductors, such as transition metal dichalcogenides, have emerged as important candidate materials for next-generation chip-scale optoelectronic devices with the development of large-scale production techniques, such as chemical vapor deposition (CVD). However, 2D materials need to be transferred to other target substrates after growth, during which various micro- and nanoscale defects, such as nanobubbles, are inevitably generated. These nanodefects not only influence the uniformity of 2D semiconductors but also may significantly alter the local optoelectronic properties of the composed devices. Hence, super-resolution discrimination and characterization of nanodefects are highly demanded. Here, we report a near-field nanophotoluminescence (nano-PL) microscope that can quickly screen nanobubbles and investigate their impact on local excitonic properties of 2D semiconductors by directly visualize the PL emission distribution with a very high spatial resolution of ∼10 nm, far below the optical diffraction limit, and a high speed of 10 ms/point under ambient conditions. By using nano-PL microscopy to map the exciton and trion emission intensity distributions in transferred CVD-grown monolayer tungsten disulfide (1L-WS2) flakes, it is found that the PL intensity decreases by 13.4% as the height of the nanobubble increases by every nanometer, which is mainly caused by the suppression of trion emission due to the strong doping effect from the substrate. In addition to the nanobubbles, other types of nanodefects, such as cracks, stacks, and grain boundaries, can also be characterized. The nano-PL method is proven to be a powerful tool for the nondestructive quality inspection of nanodefects as well as the super-resolution exploration of local optoelectronic properties of 2D materials.

14.
Opt Express ; 21(3): 2987-3000, 2013 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-23481757

RESUMEN

Fast and accurate geometric characterization and metrology of noble metal nanoparticles such as gold nanorod (NR) ensembles is highly demanded in practical production, trade, and application of nanoparticles. Traditional imaging methods such as transmission electron microscopy (TEM) need to measure a sufficiently large number of nanoparticles individually in order to characterize a nanoparticle ensemble statistically, which are time-consuming and costly, though accurate enough. In this work, we present the use of optical extinction spectroscopy (OES) to fast measure the aspect ratio distribution (which is a critical geometric parameter) of gold NR ensembles statistically. By comparing with the TEM results experimentally, it is shown that the mean aspect ratio obtained by the OES method coincides with that of the TEM method well if the other NR structural parameters are reasonably pre-determined, while the OES method is much faster and of more statistical significance. Furthermore, the influences of these NR structural parameters on the measurement results are thoroughly analyzed and the possible measures to improve the accuracy of solving the ill-posed inverse scattering problem are discussed. By using the OES method, it is also possible to determine the mass-volume concentration of NRs, which is helpful for improving the solution of the inverse scattering problem while is unable to be obtained by the TEM method.


Asunto(s)
Interpretación Estadística de Datos , Oro/química , Ensayo de Materiales/métodos , Nanotubos/química , Nanotubos/ultraestructura , Análisis Espectral/métodos , Tamaño de la Partícula
15.
Opt Express ; 21(18): 21639-50, 2013 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-24104038

RESUMEN

Aspect ratio, width, and end-cap factor are three critical parameters defined to characterize the geometry of metallic nanorod (NR). In our previous work [Opt. Express 21, 2987 (2013)], we reported an optical extinction spectroscopic (OES) method that can measure the aspect ratio distribution of gold NR ensembles effectively and statistically. However, the measurement accuracy was found to depend on the estimate of the width and end-cap factor of the nanorod, which unfortunately cannot be determined by the OES method itself. In this work, we propose to improve the accuracy of the OES method by applying an auxiliary scattering measurement of the NR ensemble which can help to estimate the mean width of the gold NRs effectively. This so-called optical extinction/scattering spectroscopic (OESS) method can fast characterize the aspect ratio distribution as well as the mean width of gold NR ensembles simultaneously. By comparing with the transmission electron microscopy experimentally, the OESS method shows the advantage of determining two of the three critical parameters of the NR ensembles (i.e., the aspect ratio and the mean width) more accurately and conveniently than the OES method.

16.
Nano Lett ; 12(11): 5750-5, 2012 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-23062196

RESUMEN

Ultrathin metasurfaces consisting of a monolayer of subwavelength plasmonic resonators are capable of generating local abrupt phase changes and can be used for controlling the wavefront of electromagnetic waves. The phase change occurs for transmitted or reflected wave components whose polarization is orthogonal to that of a linearly polarized (LP) incident wave. As the phase shift relies on the resonant features of the plasmonic structures, it is in general wavelength-dependent. Here, we investigate the interaction of circularly polarized (CP) light at an interface composed of a dipole antenna array to create spatially varying abrupt phase discontinuities. The phase discontinuity is dispersionless, that is, it solely depends on the orientation of dipole antennas, but not their spectral response and the wavelength of incident light. By arranging the antennas in an array with a constant phase gradient along the interface, the phenomenon of broadband anomalous refraction is observed ranging from visible to near-infrared wavelengths. We further design and experimentally demonstrate an ultrathin phase gradient interface to generate a broadband optical vortex beam based on the above principle.

17.
Micromachines (Basel) ; 14(3)2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36984951

RESUMEN

Photonic nano/microstructures (e [...].

18.
Opt Lett ; 37(21): 4446-8, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23114324

RESUMEN

We investigated the optical properties of a novel chiral metamaterial; two-dimensional metal chiral networks formed from metal ribbons deposited on a dielectric substrate. For zeroth-order transmitted light, sharp optical resonances were observed at spectral positions, which are determined by the surface plasmon resonance frequencies of the periodic metal structures. The experimental results are in excellent agreement with numerical calculations.

19.
J Phys Chem Lett ; 13(33): 7645-7652, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35959945

RESUMEN

All-inorganic halide perovskites are promising candidates for optoelectronic and photovoltaic devices because of their good thermal stability and remarkable optoelectronic properties. Among those properties, carrier transport properties are critical as they inherently dominate the device performance. The transport properties of perovskites have been widely studied at room and lower temperatures, but their high-temperature (i.e., tens of degrees above room temperature) characteristics are not fully understood. Here, the photoexcitation diffusion is optically visualized by transient photoluminescence microscopy (TPLM), through which the temperature-dependent transport characteristics from room temperature to 80 °C are studied in all-inorganic CsPbBr3 single-crystalline microplates. We reveal the decreasing trend of diffusion coefficient and the almost unchanged trend of diffusion length when heating the sample to high temperature. The phonon scattering in combination with the variation of effective mass is proposed for the explanation of the temperature-dependent diffusion behavior.

20.
Opt Express ; 19(2): 770-8, 2011 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-21263618

RESUMEN

The performance of infrared (IR) dual-band detector can be substantially improved by simultaneously increasing IR absorptions for both sensor bands. Currently available methods only provide absorption enhancement for single spectral band, but not for the dual-band. The Fabry-Perot (FP) cavity generates a series of resonances in multispectral bands. With this flexibility, we introduced a novel type of dual-band detector structure containing a multilayer FP cavity with two absorbing layers and a subwavelength-period grating mirror, which is capable of simultaneously enhancing the middle wave infrared (MWIR) and the long wave infrared (LWIR) detection. Compared with the bare-absorption-layer detector (common dual-band detector), the optimized FP cavity can provide about 13 times and 17 times absorption enhancement in LWIR and MWIR bands respectively.


Asunto(s)
Interferometría/instrumentación , Metales/química , Fotometría/instrumentación , Refractometría/instrumentación , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Rayos Infrarrojos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA