Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38776555

RESUMEN

5-Fluorouracil (5-FU) is a first-line treatment for colorectal cancer, but side effects such as severe diarrhea are common in clinical use and have been linked to its induction of normal cell senescence. Chloramphenicol (CAP) is an antibiotic commonly used to treat typhoid or anaerobic infections, but its senescence-related aspects have not been thoroughly investigated. Here, we used 5-FU to induce senescence in human umbilical vein endothelial cells (HUVECs) and investigated the relationship between CAP and cellular senescence at the cellular level. In a model of cellular senescence induced by 5-FU treatment, we discovered that CAP treatment reversed the rise in the percentage of senescence-associated galactosidase (SA-ß-gal)-positive cells and decreased the expression of senescence-associated proteins (p16), senescence-associated genes (p21), and senescence-associated secretory phenotypes (SASPs: IL-6, TNF-α). In addition, CAP subsequently restored the autophagic process inhibited by 5-FU and upregulated the levels of autophagy-related proteins. Mechanistically, we found that CAP restored autophagic flux by inhibiting the mTOR pathway, which in turn alleviated FU-induced cellular senescence. Our findings suggest that CAP may help prevent cellular senescence and restore autophagy, opening up new possibilities and approaches for the clinical management of colorectal cancer.

2.
Biochem Biophys Res Commun ; 610: 119-126, 2022 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-35462092

RESUMEN

Trifluridine, a key component of trifluridine/tipiracil, is a potential anti-cancer drug that can act effectively on refractory metastatic colorectal cancer. Chemotherapy is important for cancer treatment, but its adverse effects limit its use. Long-term side-effects caused by the drug used during chemotherapy are closely related to the accumulation of cellular senescence. However, the relationship between trifluridine and normal cell aging remains unclear. The purpose of this study is to evaluate whether trifluridine can induce the senescence of human umbilical vein endothelial cells and to explore the possible mechanism. Human umbilical vein endothelial cells were treated with trifluridine, senescence levels were measured via senescence-related acidic ß-galactosidase staining and senescence-associated secretory phenotype levels respectively. Autophagy was assessed by the protein levels of LC3II/LC3I and p62, and LC3 fusion was detected by fluorescence microscopy. Chloroquine diphosphate salt and rapamycin were used to detect the effect of trifluridine on autophagy flux and mTOR signaling pathway. Trifluridine increased the expression of senescence-associated acidic ß-galactosidase and senescence-related secretory phenotype mRNA levels in cells. In addition, also trifluridine induced cellular senescence by inhibiting autophagy and was closely related to the activation of the mTOR signaling pathway, therefore, we believe that trifluridine may be an effective mTOR activator. The findings also provide a new strategy for establishing autophagy or aging models, as well as a new theoretical basis for the use of trifluridine in clinical treatment.


Asunto(s)
Autofagia , Trifluridina , Senescencia Celular , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Serina-Treonina Quinasas TOR/metabolismo , beta-Galactosidasa/metabolismo
3.
Int Immunopharmacol ; 122: 110630, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37451017

RESUMEN

Irreversible cardiotoxicity limits the clinical applications of doxorubicin (DOX). Cardiotoxicity can be detected early using clinical assessment; however, effective preventive measures are still lacking. Peficitinib (ASP015K), a JAK (Janus kinase) inhibitor, is a potent anti-inflammatory agent in autoimmune diseases. Nevertheless, little research has been conducted on anti-ageing and anti-tumour therapies. In this study, we investigated whether ASP015K could attenuate DOX-induced cardiotoxicity through its anti-ageing effects and whether it would affect the tumour treatment effect of DOX by establishing senescence, acute heart injury, and xenograft models. We observed that ASP015K could antagonise the senescence induced by various factors, including hydrogen peroxide and DOX. In addition, ASP015K treatment significantly alleviated cardiac function damage, histopathological deterioration, myocardial fibrosis, and oxidative damage in acute injury mouse models. ASP015K enhanced the sensitivity of tumour cells to DOX therapy and significantly slowed down the tumour growth rate and tumour volume in the xenograft mouse model. Therefore, ASP015K is expected to be developed as a potential cardioprotective agent to prevent or reduce the cardiotoxic side effects of anthracyclines in chemotherapy.


Asunto(s)
Cardiotoxicidad , Doxorrubicina , Ratones , Humanos , Animales , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/metabolismo , Doxorrubicina/uso terapéutico , Niacinamida/farmacología , Estrés Oxidativo , Senescencia Celular , Miocitos Cardíacos/metabolismo , Apoptosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA