Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 673
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(27): 8427-8435, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38920280

RESUMEN

Metal selenides show outstanding sodium-ion storage performance when matched with an ether-based electrolyte. However, the intrinsic origin of improvement and deterministic interface characteristics have not been systematically elucidated. Herein, employing FeSe2 anode as the model system, the electrochemical kinetics of metal selenides in ether and ester-based electrolytes and associated solid electrolyte interphase (SEI) are investigated in detail. Based on the galvanostatic intermittent titration technique and in situ electrochemical impedance spectroscopy, it is found that the ether-based electrolyte can ensure fast Na+ transfer and low interface impedance. Additionally, the ether-derived thin and smooth double-layer SEI, which is critical in facilitating ion transport, maintaining structural stability, and inhibiting electrolyte overdecomposition, is concretely visualized by transmission electron microscopy, atomic force microscopy, and depth-profiling X-ray photoelectron spectroscopy. This work provides a deep understanding of the optimization mechanism of electrolytes, which can guide available inspiration for the design of practical electrode materials.

2.
Biochemistry ; 63(7): 855-864, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38498694

RESUMEN

AQP4-IgG is an autoantibody associated with neuromyelitis optica spectroscopic disorder (NMOSD), a central nervous system inflammatory disease that requires early diagnosis and treatment. We designed two fusion proteins, AQP4-DARPin1 and AQP4-DARPin2, comprising the complete antigenic epitopes of aquaporin-4 (AQP4) and the constant region of the scaffold protein DARPin. These fusion proteins were expressed and purified from Escherichia coli and coated on microplates to develop an efficient method for detecting AQP4-IgG. Molecular dynamics simulation revealed that the fusion of AQP4 extracellular epitopes with DARPin did not alter the main structure of DARPin. The purified AQP4-DARPins bound recombinant antibody rAb-53 (AQP4-IgG) with affinities of 135 and 285 nM, respectively. Enzyme-linked immunosorbent assay (ELISA) and immunoprecipitation demonstrated that AQP4-DARPin1 specifically recognized AQP4-IgG in the NMOSD patient serum. AQP4-DARPin1 as a coated antigen showed higher ELISA signal and end point dilution ratio than full-length AQP4. Our AQP4-DARPin1-coated AQP4-IgG ELISA had 100% specificity and 90% sensitivity. These results indicate that AQP4-DARPin1, compared to existing detection strategies that use full-length or extracellular loop peptides of AQP4, provides a new and more effective approach to the ELISA detection of NMOSD.


Asunto(s)
Neuromielitis Óptica , Humanos , Neuromielitis Óptica/diagnóstico , Proteínas de Repetición de Anquirina Diseñadas , Acuaporina 4/genética , Epítopos , Inmunoglobulina G
3.
J Am Chem Soc ; 146(14): 9819-9827, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38546207

RESUMEN

Iron-based phosphate cathode of Na4Fe3(PO4)2(P2O7) has been regarded as a low-cost and structurally stable cathode material for Na-ion batteries (NIBs). However, their practical application is greatly hindered by the insufficient electrochemical performance and limited energy density. Here, we report a new iron-based phosphate cathode of Na4.5Fe3.5(PO4)2.5(P2O7) with the intergrown heterostructure of the maricite-type NaFePO4 and orthorhombic Na4Fe3(PO4)2(P2O7) phases at a mole ratio of 0.5:1. Benefited from the increased composition ratio and the spontaneous activation of the maricite-type NaFePO4 phase, the as-prepared Na4.5Fe3.5(PO4)2.5(P2O7) composites deliver a reversible capacity over 130 mA h g-1 and energy density close to 400 W h kg-1, which is far beyond that of the single-phase Na4Fe3(PO4)2(P2O7) cathode (∼120 mA h g-1 and ∼350 W h kg-1). Moreover, the kg-level products from the scale-up synthesis demonstrate a stable cycling performance over 2000 times at 3 C in pouch cells. We believe that our findings could show the way forward the practical application of the iron-based phosphate cathodes for NIBs.

4.
Funct Integr Genomics ; 24(4): 118, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935217

RESUMEN

Lung adenocarcinoma (LUAD) has a malignant characteristic that is highly aggressive and prone to metastasis. There is still a lack of suitable biomarkers to facilitate the refinement of precision-based therapeutic regimens. We used a combination of 10 known clustering algorithms and the omics data from 4 dimensions to identify high-resolution molecular subtypes of LUAD. Subsequently, consensus machine learning-related prognostic signature (CMRS) was developed based on subtypes related genes and an integrated program framework containing 10 machine learning algorithms. The efficiency of CMRS was analyzed from the perspectives of tumor microenvironment, genomic landscape, immunotherapy, drug sensitivity, and single-cell analysis. In terms of results, through multi-omics clustering, we identified 2 comprehensive omics subtypes (CSs) in which CS1 patients had worse survival outcomes, higher aggressiveness, mRNAsi and mutation frequency. Subsequently, we developed CMRS based on 13 key genes up-regulated in CS1. The prognostic predictive efficiency of CMRS was superior to most established LUAD prognostic signatures. CMRS demonstrated a strong correlation with tumor microenvironmental feature variants and genomic instability generation. Regarding clinical performance, patients in the high CMRS group were more likely to benefit from immunotherapy, whereas low CMRS were more likely to benefit from chemotherapy and targeted drug therapy. In addition, we evaluated that drugs such as neratinib, oligomycin A, and others may be candidates for patients in the high CMRS group. Single-cell analysis revealed that CMRS-related genes were mainly expressed in epithelial cells. The novel molecular subtypes identified in this study based on multi-omics data could provide new insights into the stratified treatment of LUAD, while the development of CMRS could serve as a candidate indicator of the degree of benefit of precision therapy and immunotherapy for LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Inmunoterapia , Neoplasias Pulmonares , Aprendizaje Automático , Microambiente Tumoral , Humanos , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/terapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patología , Pronóstico , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Genómica , Multiómica
5.
Funct Integr Genomics ; 24(1): 19, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38265702

RESUMEN

The adenosine-signaling axis has been recognized as an important immunomodulatory pathway in tumor immunity. However, the biological role of the adenosine-signaling axis in the remodeling of the tumor microenvironment (TME) in lung adenocarcinoma (LUAD) remains unclear. Here, we quantified adenosine signaling (ado_sig) in LUAD samples using the GSVA method and assessed the prognostic value of adenosine in LUAD. Afterward, we explored the heterogeneity of the tumor-immune microenvironment at different adenosine levels. In addition, we analyzed the potential biological pathways engaged by adenosine. Next, we established single-cell transcriptional profiles of LUAD and analyzed cellular composition and cell-cell communication analysis under different adenosine microenvironments. Moreover, we established adenosine-related prognostic signatures (ARS) based on comprehensive bioinformatics analysis and evaluated the efficacy of ARS in predicting immunotherapy. The results demonstrated that adenosine signaling adversely impacted the survival of immune-enriched LUAD. The high-adenosine microenvironment exhibited elevated pro-tumor-immune infiltration, including M2 macrophages and displayed notably increased epithelial-mesenchymal transition (EMT) transformation. Furthermore, adenosine signaling displayed significant associations with the expression patterns and prognostic value of immunomodulators within the TME. Single-cell sequencing data revealed increased fibroblast occupancy and a prominent activation of the SPP1 signaling pathway in the high adenosine-signaling microenvironment. The ARS exhibited promising effectiveness in prognostication and predicting immunotherapy response in LUAD. In summary, overexpression of adenosine can cause a worsened prognosis in the LUAD with abundant immune infiltration. Moreover, increased adenosine levels are associated with pro-tumor-immune infiltration, active EMT transformation, pro-tumor angiogenesis, and other factors promoting cancer progression, which collectively contribute to the formation of an immunosuppressive microenvironment. Importantly, the ARS developed in this study demonstrate high efficacy in evaluating the response to immunotherapy.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Pronóstico , Microambiente Tumoral , Análisis de Secuencia de ARN , Inmunoterapia , Adenosina
6.
Small ; : e2403136, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770989

RESUMEN

Hollandite-type manganese dioxide (α-MnO2) is recognized as a promising cathode material upon high-performance aqueous zinc-ion batteries (ZIBs) owing to the high theoretical capacities, high working potentials, unique Zn2+/H+ co-insertion chemistry, and environmental friendliness. However, its practical applications limited by Zn2+ accommodation, where the strong coulombic interaction and sluggish kinetics cause significant lattice deformation, fast capacity degradation, insufficient rate capability, and undesired interface degradation. It remains challenging to accurately modulate H+ intercalation while suppressing Zn2+ insertion for better lattice stability and electrochemical kinetics. Herein, proton Grotthuss transfer channels are first tunneled by shielding MnO2 with hydrophilic-zincophobic heterointerface, fulfilling the H+-dominating diffusion with the state-of-the-art ZIBs performance. Local atomic structure and theoretical simulation confirm that surface-engineered α-MnO2 affords to the synergy of Mn electron t2g-eg activation, oxygen vacancy enrichment, selective H+ Grotthuss transfer, and accelerated desolvation kinetics. Consequently, fortified α-MnO2 achieves prominent low current density cycle stability (≈100% capacity retention at 1 C after 400 cycles), remarkable long-lifespan cycling performance (98% capacity retention at 20 C after 12 000 cycles), and ultrafast rate performance (up to 30 C). The study exemplifies a new approach of heterointerface engineering for regulation of H+-dominating Grotthuss transfer and lattice stabilization in α-MnO2 toward reliable ZIBs.

7.
J Transl Med ; 22(1): 335, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589907

RESUMEN

OBJECTIVE: This study aimed to assess the functions of cell division cycle protein 45 (CDC45) in Non-small cell lung cancer (NSCLC) cancer and its effects on stemness and metastasis. METHODS: Firstly, differentially expressed genes related to lung cancer metastasis and stemness were screened by differential analysis and lasso regression. Then, in vitro, experiments such as colony formation assay, scratch assay, and transwell assay were conducted to evaluate the impact of CDC45 knockdown on the proliferation and migration abilities of lung cancer cells. Western blotting was used to measure the expression levels of related proteins and investigate the regulation of CDC45 on the cell cycle. Finally, in vivo model with subcutaneous injection of lung cancer cells was performed to verify the effect of CDC45 on tumor growth. RESULTS: This study identified CDC45 as a key gene potentially influencing tumor stemness and lymph node metastasis. Knockdown of CDC45 not only suppressed the proliferation and migration abilities of lung cancer cells but also caused cell cycle arrest at the G2/M phase. Further analysis revealed a negative correlation between CDC45 and cell cycle-related proteins, stemness-related markers, and tumor mutations. Mouse experiments confirmed that CDC45 knockdown inhibited tumor growth. CONCLUSION: As a novel regulator of stemness, CDC45 plays a role in regulating lung cancer cell proliferation, migration, and cell cycle. Therefore, CDC45 may serve as a potential target for lung cancer treatment and provide a reference for further mechanistic research and therapeutic development.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Línea Celular Tumoral , Adenocarcinoma del Pulmón/genética , Proliferación Celular/genética , Puntos de Control del Ciclo Celular/genética , División Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica
8.
BMC Cancer ; 24(1): 7, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167018

RESUMEN

OBJECTION: Investigating the key genes and mechanisms that influence stemness in lung adenocarcinoma. METHODS: First, consistent clustering analysis was performed on lung adenocarcinoma patients using stemness scoring to classify them. Subsequently, WGCNA was utilized to identify key modules and hub genes. Then, machine learning methods were employed to screen and identify the key genes within these modules. Lastly, functional analysis of the key genes was conducted through cell scratch assays, colony formation assays, transwell migration assays, flow cytometry cell cycle analysis, and xenograft tumor models. RESULTS: First, two groups of patients with different stemness scores were obtained, where the high stemness score group exhibited poor prognosis and immunotherapy efficacy. Next, LASSO regression analysis and random forest regression were employed to identify genes (PBK, RACGAP1) associated with high stemness scores. RACGAP1 was significantly upregulated in the high stemness score group of lung adenocarcinoma and closely correlated with clinical pathological features, poor overall survival (OS), recurrence-free survival (RFS), and unfavorable prognosis in lung adenocarcinoma patients. Knockdown of RACGAP1 suppressed the migration, proliferation, and tumor growth of cancer cells. CONCLUSION: RACGAP1 not only indicates poor prognosis and limited immunotherapy benefits but also serves as a potential targeted biomarker influencing tumor stemness.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Ciclo Celular/genética , División Celular , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Pronóstico
9.
FASEB J ; 37(11): e23267, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37878265

RESUMEN

In multiple sclerosis (MS), the bone marrow hematopoietic system supplies immune cells to orchestrate central nervous system (CNS) inflammation and autoimmunity. Understanding the metabolic processes within the bone marrow is essential for unraveling the phenotype and function of immune cells. However, a comprehensive exploration of the metabolic landscape and its association with systemic immune response in MS at the single-cell level has yet to be elucidated. Herein, we conducted an analysis of 70 289 bone marrow cells obtained from seven patients with MS and seven health controls (referenced as HRA001783) to address this question. Our focus was primarily on investigating the metabolic preferences of diverse immune cell populations and delineating their metabolic manifestations in the bone marrow microenvironment of MS. Through our analysis, we observed the activation of carbohydrate and amino acid metabolic pathways in the bone marrow cells of MS patients. Notably, we discovered significant metabolic alterations in cell-cell communication within the plasma cell population in the MS bone marrow. These findings shed light on the complex metabolic landscape within the bone marrow niche during MS and highlight the distinctive metabolic characteristics of plasma cells in this context, which may provoke novel understanding of MS pathogenesis and promote future design of immune therapies.


Asunto(s)
Esclerosis Múltiple , Humanos , Células de la Médula Ósea , Sistema Nervioso Central , Aminoácidos , Autoinmunidad
10.
FASEB J ; 37(2): e22776, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36688817

RESUMEN

AQP5 plays a crucial role in maintaining corneal transparency and the barrier function of the cornea. Here, we found that in the corneas of Aqp5-/- mice at older than 6 months, loss of AQP5 significantly increased corneal neovascularization, inflammatory cell infiltration, and corneal haze. The results of immunofluorescence staining showed that upregulation of K1, K10, and K14, and downregulation of K12 and Pax6 were detected in Aqp5-/- cornea and primary corneal epithelial cells. Loss of AQP5 aggravated wound-induced corneal neovascularization, inflammation, and haze. mRNA sequencing, western blotting, and qRT-PCR showed that Wnt2 and Wnt6 were significantly decreased in Aqp5-/- corneas and primary corneal epithelial cells, accompanied by decreased aggregation in the cytoplasm and nucleus of ß-catenin. IIIC3 significantly suppressed corneal neovascularization, inflammation, haze, and maintained corneal transparent epithelial in Aqp5-/- corneas. We also found that pre-stimulated Aqp5-/- primary corneal epithelial cells with IIIC3 caused the decreased expression of K1, K10, and K14, the increased expression of K12, Pax6, and increased aggregation in the cytoplasm and nucleus of ß-catenin. These findings revealed that AQP5 may regulate corneal epithelial homeostasis and function through the Wnt/ß-catenin signaling pathway. Together, we uncovered a possible role of AQP5 in determining corneal epithelial cell fate and providing a potential therapeutic target for corneal epithelial dysfunction.


Asunto(s)
Neovascularización de la Córnea , Vía de Señalización Wnt , Ratones , Animales , Acuaporina 5/genética , Neovascularización de la Córnea/metabolismo , beta Catenina/metabolismo , Córnea/metabolismo , Células Epiteliales/metabolismo , Inflamación/metabolismo
11.
FASEB J ; 37(11): e23211, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37773757

RESUMEN

ARL15, a small GTPase protein, was linked to metabolic traits in association studies. We aimed to test the Arl15 gene as a functional candidate for metabolic traits in the mouse. CRISPR/Cas9 germline knockout (KO) of Arl15 showed that homozygotes were postnatal lethal and exhibited a complete cleft palate (CP). Also, decreased cell migration was observed from Arl15 KO mouse embryonic fibroblasts (MEFs). Metabolic phenotyping of heterozygotes showed that females had reduced fat mass on a chow diet from 14 weeks of age. Mild body composition phenotypes were also observed in heterozygous mice on a high-fat diet (HFD)/low-fat diet (LFD). Females on a HFD showed reduced body weight, gonadal fat depot weight and brown adipose tissue (BAT) weight. In contrast, in the LFD group, females showed increased bone mineral density (BMD), while males showed a trend toward reduced BMD. Clinical biochemistry analysis of plasma on HFD showed transient lower adiponectin at 20 weeks of age in females. Urinary and plasma Mg2+ concentrations were not significantly different. Our phenotyping data showed that Arl15 is essential for craniofacial development. Adult metabolic phenotyping revealed potential roles in brown adipose tissue and bone development.


Asunto(s)
Fisura del Paladar , Masculino , Femenino , Ratones , Animales , Técnicas de Inactivación de Genes , Fisura del Paladar/genética , Fisura del Paladar/metabolismo , Fibroblastos/metabolismo , Dieta Alta en Grasa , Tejido Adiposo Pardo/metabolismo , Adiponectina/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados
12.
Org Biomol Chem ; 22(16): 3304-3313, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38578066

RESUMEN

A series of siloxane-containing phosphine (oxide) ligands have been designed and synthesized. These phosphine (oxide) ligands contain silicon atoms, which can impart better solubility in the relevant media, thereby improving certain catalytic performances. The hydrosilylation of olefins catalyzed by these metal phosphine (oxide) complexes has been conducted under mild reaction conditions.

13.
Mol Divers ; 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38246949

RESUMEN

Despite significant progress in lung cancer treatment, this disease remains a prevalent and serious global malignancy, leading to high rates of illness and death. Urgent research is needed to discover new or alternative therapies that can improve clinical outcomes for lung cancer patients. In our study, we successfully demonstrated the effectiveness of Palbociclib, a CDK4/6 inhibitor, in suppressing the growth of lung cancer cells. The IC50 values obtained were 11.00 µM and 11.74 µM for H1299 and A549 cells, respectively. Furthermore, our findings indicate that Palbociclib may possess strong c-Myc G4 stabilizing properties by significantly reducing both protein and mRNA expression levels of c-Myc. Additionally, Palbociclib induces apoptosis and causes cell cycle arrest at the G2/M phase in two cells. Through circular dichroism (CD), molecular docking, and molecular dynamics (MD) simulation, we have provided evidence that Palbociclib enhances the structural stability of c-Myc G4 while exhibiting a high binding affinity to its ligand's binding site on c-Myc G4. These results suggest that Palbociclib holds promise as a novel c-Myc G4 stabilizer for treating cancers associated with abnormal c-Myc activity; further optimization and development are warranted.

14.
BMC Geriatr ; 24(1): 480, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824515

RESUMEN

OBJECTIVE: Research the dose-response relationship between overall and certain types of exercise and cognitive function in older adults with Alzheimer's disease and dementia. DESIGN: Systemic and Bayesian Model-Based Network Meta-Analysis. METHODS: In our study, we analyzed data from randomized controlled trials investigating the effects of different exercises on cognitive outcomes in older adults with AD. We searched the Web of Science, PubMed, Cochrane Central Register of Controlled Trials, and Embase up to November 2023. Using the Cochrane Risk of Bias tool (Rob2) for quality assessment and R software with the MBNMA package for data analysis, we determined standard mean differences (SMDs) and 95% confidence intervals (95%CrI) to evaluate exercise's impact on cognitive function in AD. RESULTS: Twenty-seven studies with 2,242 AD patients revealed a nonlinear relationship between exercise and cognitive improvement in AD patients. We observed significant cognitive enhancements at an effective exercise dose of up to 1000 METs-min/week (SMDs: 0.535, SD: 0.269, 95% CrI: 0.023 to 1.092). The optimal dose was found to be 650 METs-min/week (SMDs: 0.691, SD: 0.169, 95% CrI: 0.373 to 1.039), with AE (Aerobic exercise) being particularly effective. For AE, the optimal cognitive enhancement dose was determined to be 660 METs-min/week (SMDs: 0.909, SD: 0.219, 95% CrI: 0.495 to 1.362). CONCLUSION: Nonlinear dose-response relationship between exercise and cognitive improvement in Alzheimer's disease, with the optimal AE dose identified at 660 METs-min/week for enhancing cognitive function in AD.


Asunto(s)
Enfermedad de Alzheimer , Teorema de Bayes , Cognición , Metaanálisis en Red , Ensayos Clínicos Controlados Aleatorios como Asunto , Humanos , Enfermedad de Alzheimer/psicología , Enfermedad de Alzheimer/terapia , Ensayos Clínicos Controlados Aleatorios como Asunto/métodos , Cognición/fisiología , Terapia por Ejercicio/métodos , Demencia/psicología , Demencia/terapia , Anciano
15.
Eur Heart J ; 44(29): 2730-2742, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37377160

RESUMEN

AIMS: Excess dietary sodium intake and retention lead to hypertension. Impaired dermal lymphangiogenesis and lymphatic dysfunction-mediated sodium and fluid imbalance are pathological mechanisms. The adenosine A2A receptor (A2AR) is expressed in lymphatic endothelial cells (LECs), while the roles and mechanisms of LEC-A2AR in skin lymphangiogenesis during salt-induced hypertension are not clear. METHODS AND RESULTS: The expression of LEC-A2AR correlated with lymphatic vessel density in both high-salt diet (HSD)-induced hypertensive mice and hypertensive patients. Lymphatic endothelial cell-specific A2AR knockout mice fed HSD exhibited 17 ± 2% increase in blood pressure and 17 ± 3% increase in Na+ content associated with decreased lymphatic density (-19 ± 2%) compared with HSD-WT mice. A2AR activation by agonist CGS21680 increased lymphatic capillary density and decreased blood pressure in HSD-WT mice. Furthermore, this A2AR agonist activated MSK1 directly to promote VEGFR2 activation and endocytosis independently of VEGF as assessed by phosphoprotein profiling and immunoprecipitation assays in LECs. VEGFR2 kinase activity inhibitor fruquintinib or VEGFR2 knockout in LECs but not VEGF-neutralizing antibody bevacizumab suppressed A2AR activation-mediated decrease in blood pressure. Immunostaining revealed phosphorylated VEGFR2 and MSK1 expression in the LECs were positively correlated with skin lymphatic vessel density and A2AR level in hypertensive patients. CONCLUSION: The study highlights a novel A2AR-mediated VEGF-independent activation of VEGFR2 signaling in dermal lymphangiogenesis and sodium balance, which might be a potential therapeutic target in salt-sensitive hypertension.


Asunto(s)
Hipertensión , Linfangiogénesis , Ratones , Animales , Receptor de Adenosina A2A/metabolismo , Células Endoteliales/metabolismo , Inhibidores de Proteínas Quinasas , Sodio/metabolismo
16.
Molecules ; 29(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38276616

RESUMEN

Silicosis is a complex occupational disease without recognized effective treatment. Celastrol, a natural product, has shown antioxidant, anti-inflammatory, and anti-fibrotic activities, but the narrow therapeutic window and high toxicity severely limit its clinical application. Through structural optimization, we have identified a highly efficient and low-toxicity celastrol derivative, CEL-07. In this study, we systematically investigated the therapeutic potential and underlying mechanisms of CEL-07 in silicosis fibrosis. By constructing a silicosis mouse model and analyzing with HE, Masson, Sirius Red, and immunohistochemical staining, CEL-07 significantly prevented the progress of inflammation and fibrosis, and it effectively improved the lung respiratory function of silicosis mice. Additionally, CEL-07 markedly suppressed the expression of inflammatory factors (IL-6, IL-1α, TNF-α, and TNF-ß) and fibrotic factors (α-SMA, collagen I, and collagen III), and promoted apoptosis of fibroblasts by increasing ROS accumulation. Moreover, bioinformatics analysis combined with experimental validation revealed that CEL-07 inhibited the pathways associated with inflammation (PI3K-AKT and JAK2-STAT3) and the expression of apoptosis-related proteins. Overall, these results suggest that CEL-07 may serve as a potential candidate for the treatment of silicosis.


Asunto(s)
Triterpenos Pentacíclicos , Dióxido de Silicio , Silicosis , Ratones , Animales , Especies Reactivas de Oxígeno/farmacología , Dióxido de Silicio/farmacología , Fosfatidilinositol 3-Quinasas , Silicosis/tratamiento farmacológico , Silicosis/metabolismo , Silicosis/prevención & control , Fibrosis , Colágeno/farmacología , Inflamación , Apoptosis , Fibroblastos
17.
Biochem Biophys Res Commun ; 680: 184-193, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37742347

RESUMEN

Cataract is lens opacity, which is a common blinding eye disease worldwide. Aquaporin 5 (AQP5) is expressed in the human and mouse lenses. This study aimed to investigate the underlying mechanisms of AQP5 in the senescence of lens epithelial cells (LECs). Primary LECs were isolated and cultured from Aqp5+/+ and Aqp5-/- mice. Western blot or immunofluorescence staining of p16, Ki67, MitoSOX, JC-1 and phalloidin was used in the experiments to evaluate the changes in the primary LECs. The primary Aqp5-/- LECs showed increased p16 expression and mitochondrial reactive oxygen species, decreased mitochondrial membrane potential and activity, and cytoskeletal disorders. When the cells were pretreated with Mito-TEMPO, the Aqp5-/- mice showed decreased p16 expression, reduced mitochondrial dysfunction and cytoskeletal disorders. Our results revealed that AQP5 deficiency promotes the senescence of primary LECs through mitochondrial dysfunction. This provides a new perspective for the treatment of cataracts by regulating AQP5 expression.

18.
Small ; 19(4): e2206194, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36437114

RESUMEN

The powerful and rapid development of lithium-ion batteries (LIBs) in secondary batteries field makes lithium resources in short supply, leading to rising battery costs. Under the circumstances, sodium-ion batteries (SIBs) with low cost, inexhaustible sodium reserves, and analogous work principle to LIBs, have evolved as one of the most anticipated candidates for large-scale energy storage devices. Thereinto, the applicable electrode is a core element for the smooth development of SIBs. Among various anode materials, metal selenides (MSex ) with relatively high theoretical capacity and unique structures have aroused extensive interest. Regrettably, MSex suffers from large volume expansion and unwished side reactions, which result in poor electrochemistry performance. Thus, strategies such as carbon modification, structural design, voltage control as well as electrolyte and binder optimization are adopted to alleviate these issues. In this review, the synthesis methods and main reaction mechanisms of MSex are systematically summarized. Meanwhile, the major challenges of MSex and the corresponding available strategies are proposed. Furthermore, the recent research progress on layered and nonlayered MSex for application in SIBs is presented and discussed in detail. Finally, the future development focuses of MSex in the field of rechargeable ion batteries are highlighted.

19.
J Transl Med ; 21(1): 909, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38087364

RESUMEN

BACKGROUND: The occurrence of epithelial-mesenchymal transition (EMT) and immune evasion is considered to contribute to poor prognosis in lung adenocarcinoma (LUAD). Therefore, this study aims to explore the key oncogenes that promote EMT and immune evasion and reveal the expression patterns, prognostic value, and potential biological functions. METHODS: Firstly, we identified gene modules associated with EMT and Tumor Immune Dysfunction and Exclusion (TIDE) through weighted gene co-expression network analysis (WGCNA). Next, we utilized differential analysis and machine learning to identify the key genes and validate them. Moreover, we analyzed the correlation between key genes and tumor microenvironment remodeling, drug sensitivity, as well as mutation frequency. Furthermore, we explored and validated their malignant biological characteristics through in vitro experiments and clinical samples. Finally, potential drugs for LUAD were screened based on CMap and validated through experiments. RESULTS: Firstly, WGCNA analysis revealed that red and green modules were highly correlated with EMT and TIDE. Among them, upregulated expression of SPOCK1 was observed in lung adenocarcinoma tissues and was associated with poor prognosis. Additionally, patients in the high SPOCK1 group showed more activation of malignant oncogenic pathways, higher infiltration of immunosuppressive components, and a higher frequency of mutations. The knockdown of SPOCK1 suppressed invasion and metastasis capabilities of lung adenocarcinoma cells, and the high expression of SPOCK1 was associated with low infiltration of CD8+ T cells. Therapeutic aspects, SPOCK1 can be a candidate indicator for drug sensitivity and CMap showed that VER-155008 was the drug candidate with the largest perturbation effect on the SPOCK1 expression profile. In vitro and in vivo experiments validated the cancer-inhibitory effect of VER-155008 in LUAD. CONCLUSION: This study revealed through comprehensive bioinformatics analysis and experimental analysis that SPOCK1 can promote EMT and immune escape in LUAD, and it may serve as a promising candidate prognostic biomarker and therapeutic target for LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Pronóstico , Evasión Inmune , Linfocitos T CD8-positivos , Biomarcadores , Adenocarcinoma del Pulmón/genética , Transición Epitelial-Mesenquimal/genética , Neoplasias Pulmonares/genética , Microambiente Tumoral , Proteoglicanos
20.
BMC Cancer ; 23(1): 222, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36894874

RESUMEN

BACKGROUND: Our previous studies have confirmed that miR-154-5p can regulate pRb expression, and thus, play a tumor suppressor role in HPV16 E7-induced cervical cancer. However, its upstream molecules have not been elucidated in the progression of cervical cancer. This study aimed to explore the role of the miR-154-5p upstream molecule, hsa_circ_0000276 in cervical cancer development and its possible mechanisms of action. METHODS: We detected differences in whole transcriptome expression profiles of cervical squamous carcinoma and tissues adjacent to cervical cancer tissues from patients using microarray technology to predict circular RNAs (circRNAs) with binding sites to miR-154-5p. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to detect the expression of hsa_circ_0000276 (which had the strongest binding capacity to miR-154 and was selected as the target molecule) in cervical cancer tissues, followed by in vitro functional assays. Downstream microRNAs (miRNAs) and mRNAs of hsa_circ_0000276 were identified using transcriptome microarray data and databases, while the protein-protein interaction networks were obtained using STRING. A competing endogenous RNA (ceRNA) network centered on hsa_circ_0000276 was constructed using Cytoscape and GO and KEGG databases. Abnormal expression and prognosis of critical downstream molecules were analyzed using gene databases and molecular experiments. qRT-PCR and western blot analysis was performed to verify the expression of candidate genes. RESULTS: We identified 4,001 differentially expressed circRNAs between HPV16-positive cervical squamous carcinoma and benign cervical tissues and 760 circRNAs targeting miR-154-5p, including hsa_circ_0000276. hsa_circ_0000276 and miR-154-5p directly bound, and hsa_circ_0000276 was upregulated, in cervical precancerous lesions and cervical cancer tissues and cells. Silencing hsa_circ_0000276 inhibited G1/S transition and cell proliferation and promoted apoptosis in SiHa and CaSki cells. Bioinformatics analysis showed that the hsa_circ_0000276 ceRNA network included 17 miRNAs and seven mRNAs, and downstream molecules of hsa_circ_0000276 were upregulated in cervical cancer tissues. These downstream molecules were associated with a poor prognosis and affected cervical cancer-associated immune infiltration. Of these, expression of CD47, LDHA, PDIA3, and SLC16A1 was downregulated in sh_hsa_circ_0000276 cells. CONCLUSIONS: Our findings show that hsa_circ_0000276 exerts cancer-promoting effects in cervical cancer and is an underlying biomarker for cervical squamous cell carcinoma.


Asunto(s)
Carcinoma de Células Escamosas , MicroARNs , Neoplasias del Cuello Uterino , Femenino , Humanos , ARN Circular/genética , ARN Circular/metabolismo , Neoplasias del Cuello Uterino/genética , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/metabolismo , Carcinoma de Células Escamosas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA