Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Biol Chem ; 289(45): 31647-61, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25262870

RESUMEN

Tissue factor pathway inhibitor-2 (TFPI-2) is a homologue of TFPI-1 and contains three Kunitz-type domains and a basic C terminus region. The N-terminal domain of TFPI-2 is the only inhibitory domain, and it inhibits plasma kallikrein, factor XIa, and plasmin. However, plasma TFPI-2 levels are negligible (≤20 pM) in the context of influencing clotting or fibrinolysis. Here, we report that platelets contain significant amounts of TFPI-2 derived from megakaryocytes. We employed RT-PCR, Western blotting, immunohistochemistry, and confocal microscopy to determine that platelets, MEG-01 megakaryoblastic cells, and bone marrow megakaryocytes contain TFPI-2. ELISA data reveal that TFPI-2 binds factor V (FV) and partially B-domain-deleted FV (FV-1033) with K(d) ~9 nM and binds FVa with K(d) ~100 nM. Steady state analysis of surface plasmon resonance data reveal that TFPI-2 and TFPI-1 bind FV-1033 with K(d) ~36-48 nM and bind FVa with K(d) ~252-456 nM. Further, TFPI-1 (but not TFPI-1161) competes with TFPI-2 in binding to FV. These data indicate that the C-terminal basic region of TFPI-2 is similar to that of TFPI-1 and plays a role in binding to the FV B-domain acidic region. Using pull-down assays and Western blots, we show that TFPI-2 is associated with platelet FV/FVa. TFPI-2 (~7 nM) in plasma of women at the onset of labor is also, in part, associated with FV. Importantly, TFPI-2 in platelets and in plasma of pregnant women inhibits FXIa and tissue-type plasminogen activator-induced clot fibrinolysis. In conclusion, TFPI-2 in platelets from normal or pregnant subjects and in plasma from pregnant women binds FV/Va and regulates intrinsic coagulation and fibrinolysis.


Asunto(s)
Plaquetas/citología , Fibrinólisis/fisiología , Glicoproteínas/metabolismo , Lipoproteínas/metabolismo , Megacariocitos/citología , Glicoproteína IIb de Membrana Plaquetaria/metabolismo , Coagulación Sanguínea , Plaquetas/enzimología , Células de la Médula Ósea/citología , Femenino , Sangre Fetal/enzimología , Regulación de la Expresión Génica , Glicoproteínas/genética , Hemostasis , Humanos , Ligandos , Lipoproteínas/genética , Embarazo , Inhibidores de Proteasas/química , Unión Proteica , Estructura Terciaria de Proteína , Resonancia por Plasmón de Superficie
2.
Anal Biochem ; 479: 6-14, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25804408

RESUMEN

This study uses high-pressure size exclusion chromatography (HPSEC) to quantify divalent metal ion (X(2+))-induced compaction found in vitamin K-dependent (VKD) proteins. Multiple X(2+) binding sites formed by the presence of up to 12 γ-carboxyglutamic acid (Gla) residues are present in plasma-derived FIX (pd-FIX) and recombinant FIX (r-FIX). Analytical ultracentrifugation (AUC) was used to calibrate the Stokes radius (R) measured by HPSEC. A compaction of pd-FIX caused by the filling of Ca(2+) and Mg(2+) binding sites resulted in a 5 to 6% decrease in radius of hydration as observed by HPSEC. The filling of Ca(2+) sites resulted in greater compaction than for Mg(2+) alone where this effect was additive or greater when both ions were present at physiological levels. Less X(2+)-induced compaction was observed in r-FIX with lower Gla content populations, which enabled the separation of biologically active r-FIX species from inactive ones by HPSEC. HPSEC was sensitive to R changes of approximately 0.01nm that enabled the detection of FIX compaction that was likely cooperative in nature between lower avidity X(2+) sites of the Gla domain and higher avidity X(2+) sites of the epidermal growth factor 1 (EGF1)-like domain.


Asunto(s)
Ácido 1-Carboxiglutámico/química , Cromatografía en Gel/métodos , Factor IX/química , Factor IX/metabolismo , Sitios de Unión , Calcio/metabolismo , Cationes Bivalentes/metabolismo , Humanos , Magnesio/metabolismo , Modelos Moleculares , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Vitamina K/metabolismo
3.
Biochemistry ; 53(3): 505-17, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-24383758

RESUMEN

Kunitz domain 1 (KD1) of tissue factor pathway inhibitor-2 in which P2' residue Leu17 (bovine pancreatic trypsin inhibitor numbering) is mutated to Arg selectively inhibits the active site of plasmin with ∼5-fold improved affinity. Thrombin cleavage (24 h extended incubation at a 1:50 enzyme-to-substrate ratio) of the KD1 mutant (Leu17Arg) yielded a smaller molecule containing the intact Kunitz domain with no detectable change in the active-site inhibitory function. The N-terminal sequencing and MALDI-TOF/ESI data revealed that the starting molecule has a C-terminal valine (KD1L17R-VT), whereas the smaller molecule has a C-terminal lysine (KD1L17R-KT). Because KD1L17R-KT has C-terminal lysine, we examined whether it could serve as a decoy receptor for plasminogen/plasmin. Such a molecule might inhibit plasminogen activation as well as the active site of generated plasmin. In surface plasmon resonance experiments, tissue plasminogen activator (tPA) and Glu-plasminogen bound to KD1L17R-KT (Kd ∼ 0.2 to 0.3 µM) but not to KD1L17R-VT. Furthermore, KD1L17R-KT inhibited tPA-induced plasma clot fibrinolysis more efficiently than KD1L17R-VT. Additionally, compared to ε-aminocaproic acid KD1L17R-KT was more effective in reducing blood loss in a mouse liver-laceration injury model, where the fibrinolytic system is activated. In further experiments, the micro(µ)-plasmin-KD1L17R-KT complex inhibited urokinase-induced plasminogen activation on phorbol-12-myristate-13-acetate-stimulated U937 monocyte-like cells, whereas the µ-plasmin-KD1L17R-VT complex failed to inhibit this process. In conclusion, KD1L17R-KT inhibits the active site of plasmin as well as acts as a decoy receptor for the kringle domain(s) of plasminogen/plasmin; hence, it limits both plasmin generation and activity. With its dual function, KD1L17R-KT could serve as a preferred agent for controlling plasminogen activation in pathological processes.


Asunto(s)
Fibrinolisina/metabolismo , Glicoproteínas/farmacología , Kringles/fisiología , Receptores de Superficie Celular/química , Secuencia de Aminoácidos , Animales , Fibrinolisina/antagonistas & inhibidores , Fibrinólisis/efectos de los fármacos , Glicoproteínas/genética , Humanos , Kringles/efectos de los fármacos , Laceraciones/tratamiento farmacológico , Hígado/lesiones , Ratones , Plasminógeno/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Activador de Tejido Plasminógeno/antagonistas & inhibidores , Células U937
4.
J Biol Chem ; 287(45): 38200-9, 2012 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-22961984

RESUMEN

During blood coagulation, the protease factor XIa (fXIa) activates factor IX (fIX). We describe a new mechanism for this process. FIX is cleaved initially after Arg(145) to form fIXα, and then after Arg(180) to form the protease fIXaß. FIXα is released from fXIa, and must rebind for cleavage after Arg(180) to occur. Catalytic efficiency of cleavage after Arg(180) is 7-fold greater than for cleavage after Arg(145), limiting fIXα accumulation. FXIa contains four apple domains (A1-A4) and a catalytic domain. Exosite(s) on fXIa are required for fIX binding, however, there is lack of consensus on their location(s), with sites on the A2, A3, and catalytic domains described. Replacing the A3 domain with the prekallikrein A3 domain increases K(m) for fIX cleavage after Arg(145) and Arg(180) 25- and ≥ 90-fold, respectively, and markedly decreases k(cat) for cleavage after Arg(180). Similar results were obtained with the isolated fXIa catalytic domain, or fXIa in the absence of Ca(2+). Forms of fXIa lacking the A3 domain exhibit 15-fold lower catalytic efficiency for cleavage after Arg(180) than for cleavage after Arg(145), resulting in fIXα accumulation. Replacing the A2 domain does not affect fIX activation. The results demonstrate that fXIa activates fIX by an exosite- and Ca(2+)-mediated release-rebind mechanism in which efficiency of the second cleavage is enhanced by conformational changes resulting from the first cleavage. Initial binding of fIX and fIXα requires an exosite on the fXIa A3 domain, but not the A2 or catalytic domain.


Asunto(s)
Factor IX/metabolismo , Factor IXa/metabolismo , Factor XIa/metabolismo , Arginina/metabolismo , Sitios de Unión/genética , Unión Competitiva , Biocatálisis/efectos de los fármacos , Calcio/metabolismo , Calcio/farmacología , Dominio Catalítico , Electroforesis en Gel de Poliacrilamida , Factor XIa/química , Factor XIa/genética , Células HEK293 , Humanos , Cinética , Mutación , Oligopéptidos/metabolismo , Multimerización de Proteína , Proteolisis , Ácido Pirrolidona Carboxílico/análogos & derivados , Ácido Pirrolidona Carboxílico/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
5.
J Biol Chem ; 286(6): 4329-40, 2011 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-21115497

RESUMEN

Tissue factor pathway inhibitor-2 (TFPI-2) inhibits factor XIa, plasma kallikrein, and factor VIIa/tissue factor; accordingly, it has been proposed for use as an anticoagulant. Full-length TFPI-2 or its isolated first Kunitz domain (KD1) also inhibits plasmin; therefore, it has been proposed for use as an antifibrinolytic agent. However, the anticoagulant properties of TFPI-2 or KD1 would diminish its antifibrinolytic function. In this study, structure-based investigations and analysis of the serine protease profiles revealed that coagulation enzymes prefer a hydrophobic residue at the P2' position in their substrates/inhibitors, whereas plasmin prefers a positively charged arginine residue at the corresponding position in its substrates/inhibitors. Based upon this observation, we changed the P2' residue Leu-17 in KD1 to Arg (KD1-L17R) and compared its inhibitory properties with wild-type KD1 (KD1-WT). Both WT and KD1-L17R were expressed in Escherichia coli, folded, and purified to homogeneity. N-terminal sequences and mass spectra confirmed proper expression of KD1-WT and KD1-L17R. Compared with KD1-WT, the KD1-L17R did not inhibit factor XIa, plasma kallikrein, or factor VIIa/tissue factor. Furthermore, KD1-L17R inhibited plasmin with ∼6-fold increased affinity and effectively prevented plasma clot fibrinolysis induced by tissue plasminogen activator. Similarly, in a mouse liver laceration bleeding model, KD1-L17R was ∼8-fold more effective than KD1-WT in preventing blood loss. Importantly, in this bleeding model, KD1-L17R was equally or more effective than aprotinin or tranexamic acid, which have been used as antifibrinolytic agents to prevent blood loss during major surgery/trauma. Furthermore, as compared with aprotinin, renal toxicity was not observed with KD1-L17R.


Asunto(s)
Sustitución de Aminoácidos , Antifibrinolíticos , Fibrinólisis/efectos de los fármacos , Glicoproteínas , Hemorragia/tratamiento farmacológico , Pliegue de Proteína , Animales , Antifibrinolíticos/química , Antifibrinolíticos/farmacología , Aprotinina/química , Aprotinina/farmacología , Factores de Coagulación Sanguínea/química , Modelos Animales de Enfermedad , Escherichia coli , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/farmacología , Humanos , Ratones , Mutación Missense , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Relación Estructura-Actividad , Ácido Tranexámico/química , Ácido Tranexámico/farmacología
6.
Acta Crystallogr D Struct Biol ; 77(Pt 6): 809-819, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34076594

RESUMEN

Coagulation factor VIIa (FVIIa) consists of a γ-carboxyglutamic acid (GLA) domain, two epidermal growth factor-like (EGF) domains and a protease domain. FVIIa binds three Mg2+ ions and four Ca2+ ions in the GLA domain, one Ca2+ ion in the EGF1 domain and one Ca2+ ion in the protease domain. Further, FVIIa contains an Na+ site in the protease domain. Since Na+ and water share the same number of electrons, Na+ sites in proteins are difficult to distinguish from waters in X-ray structures. Here, to verify the Na+ site in FVIIa, the structure of the FVIIa-soluble tissue factor (TF) complex was solved at 1.8 Šresolution containing Mg2+, Ca2+ and Rb+ ions. In this structure, Rb+ replaced two Ca2+ sites in the GLA domain and occupied three non-metal sites in the protease domain. However, Rb+ was not detected at the expected Na+ site. In kinetic experiments, Na+ increased the amidolytic activity of FVIIa towards the synthetic substrate S-2288 (H-D-Ile-Pro-Arg-p-nitroanilide) by ∼20-fold; however, in the presence of Ca2+, Na+ had a negligible effect. Ca2+ increased the hydrolytic activity of FVIIa towards S-2288 by ∼60-fold in the absence of Na+ and by ∼82-fold in the presence of Na+. In molecular-dynamics simulations, Na+ stabilized the two Na+-binding loops (the 184-loop and 220-loop) and the TF-binding region spanning residues 163-180. Ca2+ stabilized the Ca2+-binding loop (the 70-loop) and Na+-binding loops but not the TF-binding region. Na+ and Ca2+ together stabilized both the Na+-binding and Ca2+-binding loops and the TF-binding region. Previously, Rb+ has been used to define the Na+ site in thrombin; however, it was unsuccessful in detecting the Na+ site in FVIIa. A conceivable explanation for this observation is provided.


Asunto(s)
Calcio/metabolismo , Factor VIIa , Magnesio/metabolismo , Rubidio/metabolismo , Sitios de Unión , Factor VIIa/química , Factor VIIa/metabolismo , Humanos , Unión Proteica , Dominios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad
7.
J Clin Med ; 9(11)2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33212896

RESUMEN

Current antifibrinolytic agents reduce blood loss by inhibiting plasmin active sites (e.g., aprotinin) or by preventing plasminogen/tissue plasminogen activator (tPA) binding to fibrin clots (e.g., ε-aminocaproic acid and tranexamic acid); however, they have adverse side effects. Here, we expressed 60-residue (NH2NAE…IEKCOOH) Kunitz domain1 (KD1) mutants of human tissue factor pathway inhibitor type-2 that inhibit plasmin as well as plasminogen activation. A single (KD1-L17R-KCOOH) and a double mutant (KD1-Y11T/L17R- KCOOH) were expressed in Escherichia coli as His-tagged constructs, each with enterokinase cleavage sites. KD1-Y11T/L17R-KCOOH was also expressed in Pichia pastoris. KD1-Y11T/L17R-KCOOH inhibited plasmin comparably to aprotinin and bound to the kringle domains of plasminogen/plasmin and tPA with Kd of ~50 nM and ~35 nM, respectively. Importantly, compared to aprotinin, KD1-L17R-KCOOH and KD1-Y11T/L17R-KCOOH did not inhibit kallikrein. Moreover, the antifibrinolytic potential of KD1-Y11T/L17R-KCOOH was better than that of KD1-L17R-KCOOH and similar to that of aprotinin in plasma clot-lysis assays. In thromboelastography experiments, KD1-Y11T/L17R-KCOOH was shown to inhibit fibrinolysis in a dose dependent manner and was comparable to aprotinin at a higher concentration. Further, KD1-Y11T/L17R-KCOOH did not induce cytotoxicity in primary human endothelial cells or fibroblasts. We conclude that KD1-Y11T/L17R-KCOOH is comparable to aprotinin, the most potent known inhibitor of plasmin and can be produced in large amounts using Pichia.

8.
J Thromb Haemost ; 17(4): 574-584, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30725510

RESUMEN

Essentials Consensus sequence and biochemical data suggest a Na+ -site in the factor (F) IXa protease domain. X-ray structure of the FIXa EGF2/protease domain at 1.37 Å reveals a Na+ -site not observed earlier. Molecular dynamics simulations data support that Na+  ± Ca2+ promote FIXa protease domain stability. Sulfate ions found in the protease domain mimic heparin sulfate binding mode in FIXa. SUMMARY: Background Activated coagulation factor IX (FIXa) consists of a γ-carboxyglutamic acid domain, two epidermal growth factor-like (EGF) domains, and a C-terminal protease domain. Consensus sequence and biochemical data support the existence of a Na+ -site in the FIXa protease domain. However, soaking experiments or crystals grown in high concentration of ammonium sulfate did not reveal a Na+ -site in wild-type or mutant FIXa EGF2/protease domain structure. Objective Determine the structure of the FIXa EGF2/protease domain in the presence of Na+ ; perform molecular dynamics (MD) simulations to explore the role of Na+ in stabilizing FIXa structure. Methods Crystallography, MD simulations, and modeling heparin binding to FIXa. Results Crystal structure at 1.37-Å resolution revealed that Na+ is coordinated to carbonyl groups of residues 184A, 185, 221A, and 224 in the FIXa protease domain. The Na+ -site in FIXa is similar to that of FXa and is linked to the Asp189 S1-site. In MD simulations, Na+ reduced fluctuations in residues 217-225 (Na+ -loop) and 70-80 (Ca2+ -loop), whereas Ca2+ reduced fluctuations only in residues of the Ca2+ -loop. Ca2+ and Na+ together reduced fluctuations in residues of the Ca2+ -loop and Na+ -loop (residues 70-80, 183-194, and 217-225). Moreover, we observed four sulfate ions that make salt bridges with FIXa protease domain Arg/Lys residues, which have been implicated in heparin binding. Based upon locations of the sulfate ions, we modeled heparin binding to FIXa, which is similar to the heparin binding in thrombin. Conclusions The FIXa Na+ -site in association with Ca2+ contributes to stabilization of the FIXa protease domain. The heparin binding mode in FIXa is similar to that in thrombin.


Asunto(s)
Coagulación Sanguínea , Cristalografía por Rayos X , Factor IXa/metabolismo , Simulación de Dinámica Molecular , Sodio/metabolismo , Sitios de Unión , Calcio/metabolismo , Estabilidad de Enzimas , Factor IXa/química , Factor IXa/genética , Heparina/metabolismo , Humanos , Mutación , Unión Proteica , Dominios Proteicos , Sodio/química
9.
Int Biol Rev ; 1(1)2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28845483

RESUMEN

BACKGROUND: Factor V (FV) B-domain contains an acidic region (FV-AR2) and a basic region (FV-BR), which interact with each other and maintain FV in a procofactor form; removal of either region via deletion/proteolysis results in an active FVa molecule. Tissue factor pathway inhibitor type-1 (TFPI) and type-2 (TFPI2) each contain a C-terminus basic segment homologous to FV-BR; this region in TFPI (and predicted in TFPI2) binds to FV-AR2 in platelet FVa (that lacks FV-BR) with high affinity and inhibits FVa function. OBJECTIVES: To understand molecular interactions between FV-AR2 with FV-BR, TFPI-BR and TFPI2-BR. METHODS: Circular dichroism (CD) and molecular modeling approaches. RESULTS AND CONCLUSIONS: CD experiments reveal the presence of ∼20% helical content in both FV-AR2 and FV-BR but each lacks beta-sheet. Predicted structures of FV-AR2 and FV-BR, obtained using threading (I-TASSER), are consistent with the CD data and have compact folds with hydrophobic residues in the interior and charged residues on the surface. Scores from QMEAN and ModFOLD servers indicate a very high probability for each structure to be native. Predicted models of Kunitz domain-3 of TFPI and TFPI2 each with C-terminal basic tail are consistent with known homologous structures. Docking experiments using ClusPro indicate that the acidic groove of FV-AR2 has high shape complementarity to accommodate the conserved basic residues in FV-BR (1002-RKKKK-1006), TFPI-BR (256-RKRKK-260) or TFPI2-BR (191-KKKKK-195). Further, similar electrostatic interactions occur in each case. These models, in the absence of experimentally determined structures, provide a guiding point for proper mutagenesis studies in FV, TFPI and TFPI2.

10.
J Mol Biol ; 350(1): 78-91, 2005 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-15913649

RESUMEN

During blood coagulation, factor IXa (FIXa) activates factor X (FX) requiring Ca2+, phospholipid, and factor VIIIa (FVIIIa). The serine protease domain of FIXa contains a Ca2+ site and is predicted to contain a Na+ site. Comparative homology analysis revealed that Na+ in FIXa coordinates to the carbonyl groups of residues 184A, 185, 221A, and 224 (chymotrypsin numbering). Kinetic data obtained at several concentrations of Na+ and Ca2+ with increasing concentrations of a synthetic substrate (CH3-SO2-d-Leu-Gly-Arg-p-nitroanilide) were fit globally, assuming rapid equilibrium conditions. Occupancy by Na+ increased the affinity of FIXa for the synthetic substrate, whereas occupancy by Ca2+ decreased this affinity but increased k(cat) dramatically. Thus, Na+-FIXa-Ca2+ is catalytically more active than free FIXa. FIXa(Y225P), a Na+ site mutant, was severely impaired in Na+ potentiation of its catalytic activity and in binding to p-aminobenzamidine (S1 site probe) validating that substrate binding in FIXa is linked positively to Na+ binding. Moreover, the rate of carbamylation of NH2 of Val16, which forms a salt-bridge with Asp194 in serine proteases, was faster for FIXa(Y225P) and addition of Ca2+ overcame this impairment only partially. Further studies were aimed at delineating the role of the FIXa Na+ site in macromolecular catalysis. In the presence of Ca2+ and phospholipid, with or without saturating FVIIIa, FIXa(Y225P) activated FX with similar K(m) but threefold reduced k(cat). Further, interaction of FVIIIa:FIXa(Y225P) was impaired fourfold. Our previous data revealed that Ca2+ binding to the protease domain increases the affinity of FIXa for FVIIIa approximately 15-fold. The present data indicate that occupancy of the Na+ site further increases the affinity of FIXa for FVIIIa fourfold and k(cat) threefold. Thus, in the presence of Ca2+, phospholipid, and FVIIIa, binding of Na+ to FIXa increases its biologic activity by approximately 12-fold, implicating its role in physiologic coagulation.


Asunto(s)
Factor IXa/química , Factor IXa/metabolismo , Factor VIIIa/química , Factor VIIIa/metabolismo , Sodio/metabolismo , Sodio/farmacología , Sitios de Unión , Calcio/metabolismo , Catálisis/efectos de los fármacos , Cationes Monovalentes/metabolismo , Cationes Monovalentes/farmacología , Línea Celular , Factor IXa/genética , Factor X/metabolismo , Humanos , Hidrólisis , Cinética , Modelos Moleculares , Unión Proteica/efectos de los fármacos , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Tirosina/genética , Tirosina/metabolismo , Valina/genética , Valina/metabolismo
11.
Trends Cardiovasc Med ; 13(1): 39-45, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12554099

RESUMEN

Factor IX (FIX) consists of an N-terminal gamma-carboxyglutamic acid (Gla) domain followed by two epidermal growth factor (EGF)-like domains, and the C-terminal serine protease domain. During physiologic coagulation, one of the activators of FIX is the FVIIa/tissue factor (TF) complex. In this reaction, the Gla and EGF1 domains of FIX are thought to interact with TF. The FIXa that is generated then combines with FVIIIa on the platelet surface to activate FX in the coagulation cascade. In this assembly, the protease domain and possibly the EGF2 domain of FIXa are thought to provide the primary specificity in binding to FVIIIa. Disruption of the interaction of FIX/FX with TF and of the FIXa:FVIIIa interface may provide a pharmacologic target as an alternative strategy for the development of antithrombotic agents.


Asunto(s)
Factor IX/química , Factor IX/farmacología , Factor IXa/química , Factor IXa/farmacología , Relación Estructura-Actividad , Coagulación Sanguínea/efectos de los fármacos , Humanos , Transducción de Señal/efectos de los fármacos
12.
Bone Res ; 22014.
Artículo en Inglés | MEDLINE | ID: mdl-25506471

RESUMEN

Heterogeneous nuclear ribonucleoprotein (hnRNP) C plays a key role in RNA processing. More recently hnRNP C has also been shown to function as a DNA binding protein exerting a dominant-negative effect on transcriptional responses to the vitamin D hormone,1,25-dihydroxyvitamin D (1,25(OH)2D), via interaction in cis with vitamin D response elements (VDREs). The physiologically active form of human hnRNPC is a tetramer of hnRNPC1 (huC1) and C2 (huC2) subunits known to be critical for specific RNA binding activity in vivo, yet the requirement for heterodimerization of huC1 and C2 in DNA binding and downstream action is not well understood. While over-expression of either huC1 or huC2 alone in mouse osteoblastic cells did not suppress 1,25(OH)2D-induced transcription, over-expression of huC1 and huC2 in combination using a bone-specific polycistronic vector successfully suppressed 1,25(OH)2D-mediated induction of osteoblast target gene expression. Over-expression of either huC1 or huC2 in human osteoblasts was sufficient to confer suppression of 1,25(OH)2D-mediated transcription, indicating the ability of transfected huC1 and huC2 to successfully engage as heterodimerization partners with endogenously expressed huC1 and huC2. The failure of the chimeric combination of mouse and human hnRNPCs to impair 1,25(OH)2D-driven gene expression in mouse cells was structurally predicted, owing to the absence of the last helix in the leucine zipper (LZ) heterodimerization domain of hnRNPC gene product in lower species, including the mouse. These results confirm that species-specific heterodimerization of hnRNPC1 and hnRNPC2 is a necessary prerequisite for DNA binding and down-regulation of 1,25(OH)2D-VDR-VDRE-directed gene transactivation in osteoblasts.

13.
Thromb Res ; 133 Suppl 1: S48-51, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24759143

RESUMEN

Factor XI (fXI) is the zymogen of a plasma protease, factor XIa (fXIa), that contributes to thrombin generation during blood coagulation by proteolytic conversion of factor IX (fIX) to factor IXaß (fIXaß). There is considerable interest in fXIa as a therapeutic target because it contributes to thrombosis, while serving a relatively minor role in hemostasis. FXI/XIa has a distinctly different structure than other plasma coagulation proteases. Specifically, the protein lacks a phospholipid-binding Gla-domain, and is a homodimer. Each subunit of a fXIa dimer contains four apple domains (A1 to A4) and one trypsin-like catalytic domain. The A3 domain contains a binding site (exosite) that largely determines affinity and specificity for the substrate fIX. After binding to fXIa, fIX undergoes a single cleavage to form the intermediate fIXα. FIXα then rebinds to the A3 domain to undergo a second cleavage, generating fIXaß. The catalytic efficiency for the second cleavage is ~7-fold greater than that of the first cleavage, limiting fIXα accumulation. Residues at the N-terminus and C-terminus of the fXIa A3 domain likely form the fIX binding site. The dimeric conformation of fXIa is not required for normal fIX activation in solution. However, monomeric forms of fXI do not reconstitute fXI-deficient mice in arterial thrombosis models, indicating the dimer is required for normal function in vivo. FXI must be a dimer to be activated normal by the protease fXIIa. It is also possible that the dimeric structure is an adaptation that allows fXI/XIa to bind to a surface through one subunit, while binding to its substrate fIX through the other.


Asunto(s)
Factor IX/metabolismo , Factor XIa/metabolismo , Secuencia de Aminoácidos , Animales , Factor IX/química , Factor XIa/química , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Multimerización de Proteína
14.
J Mol Biol ; 425(11): 1961-1981, 2013 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-23454357

RESUMEN

Crystal structures of factor (F) VIIa/soluble tissue factor (TF), obtained under high Mg(2+) (50mM Mg(2+)/5mM Ca(2+)), have three of seven Ca(2+) sites in the γ-carboxyglutamic acid (Gla) domain replaced by Mg(2+) at positions 1, 4, and 7. We now report structures under low Mg(2+) (2.5mM Mg(2+)/5mM Ca(2+)) as well as under high Ca(2+) (5mM Mg(2+)/45 mM Ca(2+)). Under low Mg(2+), four Ca(2+) and three Mg(2+) occupy the same positions as in high-Mg(2+) structures. Conversely, under low Mg(2+), reexamination of the structure of Gla domain of activated Protein C (APC) complexed with soluble endothelial Protein C receptor (sEPCR) has position 4 occupied by Ca(2+) and positions 1 and 7 by Mg(2+). Nonetheless, in direct binding experiments, Mg(2+) replaced three Ca(2+) sites in the unliganded Protein C or APC. Further, the high-Ca(2+) condition was necessary to replace Mg4 in the FVIIa/soluble TF structure. In biological studies, Mg(2+) enhanced phospholipid binding to FVIIa and APC at physiological Ca(2+). Additionally, Mg(2+) potentiated phospholipid-dependent activations of FIX and FX by FVIIa/TF and inactivation of activated factor V by APC. Since APC and FVIIa bind to sEPCR involving similar interactions, we conclude that under the low-Mg(2+) condition, sEPCR binding to APC-Gla (or FVIIa-Gla) replaces Mg4 by Ca4 with an attendant conformational change in the Gla domain ω-loop. Moreover, since phospholipid and sEPCR bind to FVIIa or APC via the ω-loop, we predict that phospholipid binding also induces the functional Ca4 conformation in this loop. Cumulatively, the data illustrate that Mg(2+) and Ca(2+) act in concert to promote coagulation and anticoagulation.


Asunto(s)
Ácido 1-Carboxiglutámico/química , Calcio/metabolismo , Factor VIIa/química , Factor VIIa/metabolismo , Magnesio/metabolismo , Proteína C/química , Proteína C/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Fosfolípidos/metabolismo , Unión Proteica , Conformación Proteica
15.
Front Biosci (Landmark Ed) ; 17(7): 2476-94, 2012 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-22652793

RESUMEN

Factor VII (FVII) consists of an N-terminal gamma-carboxyglutamic acid domain followed by two epidermal growth factor-like (EGF1 and EGF2) domains and the C-terminal protease domain. Activation of FVII results in a two-chain FVIIa molecule consisting of a light chain (Gla-EGF1-EGF2 domains) and a heavy chain (protease domain) held together by a single disulfide bond. During coagulation, the complex of tissue factor (TF, a transmembrane glycoprotein) and FVIIa activates factor IX (FIX) and factor X (FX). FVIIa is structurally "zymogen-like" and when bound to TF, it is more "active enzyme-like." FIX and FX share structural homology with FVII. Three structural biology aspects of FVIIa/TF are presented in this review. One, regions in soluble TF (sTF) that interact with FVIIa as well as mapping of Ca2+, Mg2+, Na+ and Zn2+ sites in FVIIa and their functions; two, modeled interactive regions of Gla and EGF1 domains of FXa and FIXa with FVIIa/sTF; and three, incompletely formed oxyanion hole in FVIIa/sTF and its induction by substrate/inhibitor. Finally, an overview of the recognition elements in TF pathway inhibitor is provided.


Asunto(s)
Coagulación Sanguínea/fisiología , Factor VIIa/química , Factor VIIa/metabolismo , Tromboplastina/química , Tromboplastina/metabolismo , Sitios de Unión , Factores de Coagulación Sanguínea/química , Factores de Coagulación Sanguínea/metabolismo , Cationes/metabolismo , Humanos , Lipoproteínas/química , Lipoproteínas/metabolismo , Modelos Moleculares , Complejos Multiproteicos/química , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas
16.
Biochemistry ; 47(5): 1326-35, 2008 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-18186617

RESUMEN

In serine proteases, Gly193 (chymotrypsin numbering) is conserved with rare exception. Mutants of blood coagulation proteases have been reported with Glu, Ala, Arg or Val substitutions for Gly193. To further understand the role of Gly193 in protease activity, we replaced it with Ala or Val in coagulation factor XIa (FXIa). For comparison to the reported FXIa Glu193 mutant, we prepared FXIa with Asp (short side chain) or Lys (opposite charge) substitutions. Binding of p-aminobenzamidine (pAB) and diisopropylfluorphosphate (DFP) were impaired 1.6-36-fold and 35-478-fold, respectively, indicating distortion of, or altered accessibility to, the S1 and oxyanion-binding sites. Val or Asp substitutions caused the most impairment. Salt bridge formation between the amino terminus of the mature protease moiety at Ile16 and Asp194, essential for catalysis, was impaired 1.4-4-fold. Mutations reduced catalytic efficiency of tripeptide substrate hydrolysis 6-280-fold, with Val or Asp causing the most impairment. Further studies were directed toward macromolecular interactions with the FXIa mutants. kcat for factor IX activation was reduced 8-fold for Ala and 400-1100-fold for other mutants, while binding of the inhibitors antithrombin and amyloid beta-precursor protein Kunitz domain (APPI) was impaired 13-2300-fold and 22-27000-fold, respectively. The data indicate that beta-branching of the side chain of residue 193 is deleterious for interactions with pAB, DFP and amidolytic substrates, situations where no S2'-P2' interactions are involved. When an S2'-P2' interaction is involved (factor IX, antithrombin, APPI), beta-branching and increased side chain length are detrimental. Molecular models indicate that the mutants have impaired S2' binding sites and that beta-branching causes steric conflicts with the FXIa 140-loop, which could perturb the local tertiary structure of the protease domain. In conclusion, enzyme activity is impaired in FXIa when Gly193 is replaced by a non-Gly residue, and residues with side chains that branch at the beta-carbon have the greatest effect on catalysis and binding of substrates.


Asunto(s)
Factor XIa/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Precursor de Proteína beta-Amiloide/farmacología , Antitrombinas/farmacología , Benzamidinas/química , Carbamatos/química , Factor IX/metabolismo , Factor XIa/antagonistas & inhibidores , Factor XIa/genética , Factor XIa/metabolismo , Humanos , Isoflurofato/farmacología , Cinética , Modelos Moleculares
17.
J Biol Chem ; 282(21): 15632-44, 2007 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-17387172

RESUMEN

We previously reported that the first epidermal growth factor-like (EGF1) domain in factor X (FX) or factor IX (FIX) plays an important role in the factor VIIa/tissue factor (FVIIa/TF)-induced coagulation. To assess the role of gamma-carboxyglutamic acid (Gla) domains of FX and FIX in FVIIa/TF induced coagulation, we studied four new and two previously described replacement mutants: FX(PCGla) and FIX(PCGla) (Gla domain replaced with that of protein C), FX(PCEGF1) and FIX(PCEGF1) (EGF1 domain replaced with that of protein C), as well as FX(PCGla/EGF1) and FIX(PCGla/EGF1) (both Gla and EGF1 domains replaced with those of protein C). FVIIa/TF activation of each FX mutant and the corresponding reciprocal activation of FVII/TF by each FXa mutant were impaired. In contrast, FVIIa/TF activation of FIX(PCGla) was minimally affected, and the reciprocal activation of FVII/TF by FIXa(PCGla) was normal; however, both reactions were impaired for the FIX(PCEGF1) and FIX(PCGla/EGF1) mutants. Predictably, FXIa activation of FIX(PCEGF1) was normal, whereas it was impaired for the FIX(PCGla) and FIX(PCGla/EGF1) mutants. Molecular models reveal that alternate interactions exist for the Gla domain of protein C such that it is comparable with FIX but not FX in its binding to FVIIa/TF. Further, additional interactions exist for the EGF1 domain of FX, which are not possible for FIX. Importantly, a seven-residue insertion in the EGF1 domain of protein C prevents its interaction with FVIIa/TF. Cumulatively, our data provide a molecular framework demonstrating that the Gla and EGF1 domains of FX interact more strongly with FVIIa/TF than the corresponding domains in FIX.


Asunto(s)
Factor IX/química , Factor VIIa/química , Factor X/química , Modelos Moleculares , Proteína C/química , Tromboplastina/química , Animales , Factor IX/genética , Factor IX/metabolismo , Factor VIIa/genética , Factor VIIa/metabolismo , Factor X/genética , Factor X/metabolismo , Humanos , Unión Proteica/genética , Proteína C/genética , Proteína C/metabolismo , Estructura Terciaria de Proteína/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Tromboplastina/genética , Tromboplastina/metabolismo
18.
J Biol Chem ; 281(34): 24873-88, 2006 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-16757484

RESUMEN

Factor VIIa (FVIIa) consists of a gamma-carboxyglutamic acid (Gla) domain, two epidermal growth factor-like domains, and a protease domain. FVIIa binds seven Ca(2+) ions in the Gla, one in the EGF1, and one in the protease domain. However, blood contains both Ca(2+) and Mg(2+), and the Ca(2+) sites in FVIIa that could be specifically occupied by Mg(2+) are unknown. Furthermore, FVIIa contains a Na(+) and two Zn(2+) sites, but ligands for these cations are undefined. We obtained p-aminobenzamidine-VIIa/soluble tissue factor (sTF) crystals under conditions containing Ca(2+), Mg(2+), Na(+), and Zn(2+). The crystal diffracted to 1.8A resolution, and the final structure has an R-factor of 19.8%. In this structure, the Gla domain has four Ca(2+) and three bound Mg(2+). The EGF1 domain contains one Ca(2+) site, and the protease domain contains one Ca(2+), one Na(+), and two Zn(2+) sites. (45)Ca(2+) binding in the presence/absence of Mg(2+) to FVIIa, Gla-domainless FVIIa, and prothrombin fragment 1 supports the crystal data. Furthermore, unlike in other serine proteases, the amide N of Gly(193) in FVIIa points away from the oxyanion hole in this structure. Importantly, the oxyanion hole is also absent in the benzamidine-FVIIa/sTF structure at 1.87A resolution. However, soaking benzamidine-FVIIa/sTF crystals with d-Phe-Pro-Arg-chloromethyl ketone results in benzamidine displacement, d-Phe-Pro-Arg incorporation, and oxyanion hole formation by a flip of the 192-193 peptide bond in FVIIa. Thus, it is the substrate and not the TF binding that induces oxyanion hole formation and functional active site geometry in FVIIa. Absence of oxyanion hole is unusual and has biologic implications for FVIIa macromolecular substrate specificity and catalysis.


Asunto(s)
Factor VIIa/química , Tromboplastina/química , Benzamidinas/química , Catálisis , Factor VIIa/metabolismo , Humanos , Modelos Moleculares , Mapeo Peptídico , Conformación Proteica , Relación Estructura-Actividad , Especificidad por Sustrato , Tromboplastina/metabolismo
19.
J Biol Chem ; 280(30): 27832-8, 2005 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-15932872

RESUMEN

Kunitz domain 1 (KD1) of tissue factor pathway inhibitor-2 inhibits trypsin, plasmin, and factor VIIa (FVIIa)/tissue factor with Ki values of 13, 3, and 1640 nM, respectively. To investigate the molecular specificity of KD1, crystals of the complex of KD1 with bovine beta-trypsin were obtained that diffracted to 1.8 A. The P1 residue Arg-15 (bovine pancreatic trypsin inhibitor numbering) in KD1 interacts with Asp-189 (chymotrypsin numbering) and with the carbonyl oxygens of Gly-219 and Ogamma of Ser-190. Leu-17, Leu-18, Leu-19, and Leu-34 in KD1 make van der Waals contacts with Tyr-39, Phe-41, and Tyr-151 in trypsin, forming a hydrophobic interface. Molecular modeling indicates that this complementary hydrophobic patch is composed of Phe-37, Met-39, and Phe-41 in plasmin, whereas in FVIIa/tissue factor, it is essentially absent. Arg-20, Tyr-46, and Glu-39 in KD1 interact with trypsin through ordered water molecules. In contrast, insertions in the 60-loop in plasmin and FVIIa allow Arg-20 of KD1 to directly interact with Glu-60 in plasmin and Asp-60 in FVIIa. Moreover, Tyr-46 in KD1 electrostatically interacts with Lys-60A and Arg-60D in plasmin and Lys-60A in FVIIa. Glu-39 in KD1 interacts directly with Arg-175 of the basic patch in plasmin, whereas in FVIIa, such interactions are not possible. Thus, the specificity of KD1 for plasmin is attributable to hydrophobic and direct electrostatic interactions. For trypsin, hydrophobic interactions are intact, and electrostatic interactions are weak, whereas for FVIIa, hydrophobic interactions are missing, and electrostatic interactions are partially intact. These findings provide insight into the protease selectivity of KD1.


Asunto(s)
Glicoproteínas/química , Animales , Bovinos , Quimotripsina/química , Cristalografía por Rayos X , Escherichia coli/metabolismo , Factor VIIa/química , Fibrinolisina/química , Fibrinolisina/metabolismo , Glicoproteínas/antagonistas & inhibidores , Humanos , Leucina/química , Modelos Moleculares , Metástasis de la Neoplasia , Oxígeno/química , Fenilalanina/química , Inhibidores de Proteasas/farmacología , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Serina/química , Electricidad Estática , Tripsina/química
20.
J Biol Chem ; 279(28): 29485-92, 2004 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-15090552

RESUMEN

In serine proteases, Gly(193) is highly conserved with few exceptions. A patient with inherited deficiency of the coagulation serine protease factor XI (FXI) was reported to be homozygous for a Gly(555) --> Glu substitution. Gly(555) in FXI corresponds to Gly(193) in chymotrypsin, which is the numbering system used subsequently. To investigate the abnormality in FXI(G193E), we expressed and purified recombinant FXIa(G193E), activated it to FXIa(G193E), and compared its activity to wild type-activated FXI (FXIa(WT)). FXIa(G193E) activated FIX with approximately 300-fold reduced k(cat) and similar K(m), and hydrolyzed synthetic substrate with approximately 10-fold reduced K(m) and modestly reduced k(cat). Binding of antithrombin and the amyloid beta-precursor protein Kunitz domain inhibitor (APPI) to FXIa(G193E) was impaired approximately 8000- and approximately 100000-fold, respectively. FXIa(G193E) inhibition by diisopropyl fluoro-phosphate was approximately 30-fold slower and affinity for p-aminobenzamidine (S1 site probe) was 6-fold weaker than for FXIa(WT). The rate of carbamylation of NH(2)-Ile(16), which forms a salt bridge with Asp(194) in active serine proteases, was 4-fold faster for FXIa(G193E). These data indicate that the unoccupied active site of FXIa(G193E) is incompletely formed, and the amide N of Glu(193) may not point toward the oxyanion hole. Inclusion of saturating amounts of p-aminobenzamidine resulted in comparable rates of carbamylation for FXIa(WT) and FXIa(G193E), suggesting that the occupied active site has near normal conformation. Thus, binding of small synthetic substrates or inhibitors provides sufficient energy to allow the amide N of Glu(193) to point correctly toward the oxyanion hole. Homology modeling also indicates that the inability of FXIa(G193E) to bind antithrombin/APPI or activate FIX is caused, in part, by impaired accessibility of the S2' site because of a steric clash with Glu(193). Such arguments will apply to other serine proteases with substitutions of Gly(193) with a non-glycine residue.


Asunto(s)
Factor XIa/genética , Factor XIa/metabolismo , Glicina/metabolismo , Mutación Puntual , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Animales , Quimotripsina/química , Quimotripsina/genética , Quimotripsina/metabolismo , Activación Enzimática , Inhibidores Enzimáticos/metabolismo , Factor XIa/química , Humanos , Modelos Moleculares , Péptidos/metabolismo , Unión Proteica , Conformación Proteica , Serina Endopeptidasas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA