Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 44(27)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38724284

RESUMEN

While ipsilesional cortical electroencephalography has been associated with poststroke recovery mechanisms and outcomes, the role of the cerebellum and its interaction with the ipsilesional cortex is still largely unknown. We have previously shown that poststroke motor control relies on increased corticocerebellar coherence (CCC) in the low beta band to maintain motor task accuracy and to compensate for decreased excitability of the ipsilesional cortex. We now extend our work to investigate corticocerebellar network changes associated with chronic stimulation of the dentato-thalamo-cortical pathway aimed at promoting poststroke motor rehabilitation. We investigated the excitability of the ipsilesional cortex, the dentate (DN), and their interaction as a function of treatment outcome measures. Relative to baseline, 10 human participants (two women) at the end of 4-8 months of DN deep brain stimulation (DBS) showed (1) significantly improved motor control indexed by computerized motor tasks; (2) significant increase in ipsilesional premotor cortex event-related desynchronization that correlated with improvements in motor function; and (3) significant decrease in CCC, including causal interactions between the DN and ipsilesional cortex, which also correlated with motor function improvements. Furthermore, we show that the functional state of the DN in the poststroke state and its connectivity with the ipsilesional cortex were predictive of motor outcomes associated with DN-DBS. The findings suggest that as participants recovered, the ipsilesional cortex became more involved in motor control, with less demand on the cerebellum to support task planning and execution. Our data provide unique mechanistic insights into the functional state of corticocerebellar-cortical network after stroke and its modulation by DN-DBS.


Asunto(s)
Núcleos Cerebelosos , Estimulación Encefálica Profunda , Recuperación de la Función , Accidente Cerebrovascular , Humanos , Femenino , Estimulación Encefálica Profunda/métodos , Masculino , Persona de Mediana Edad , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/terapia , Recuperación de la Función/fisiología , Anciano , Núcleos Cerebelosos/fisiopatología , Núcleos Cerebelosos/fisiología , Corteza Motora/fisiopatología , Rehabilitación de Accidente Cerebrovascular/métodos , Adulto , Electroencefalografía
2.
Neuroimage ; 289: 120556, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38423263

RESUMEN

Functional neuroimaging methods like fMRI and PET are vital in neuroscience research, but require that subjects remain still throughout the scan. In animal research, anesthetic agents are typically applied to facilitate the acquisition of high-quality data with minimal motion artifact. However, anesthesia can have profound effects on brain metabolism, selectively altering dynamic neural networks and confounding the acquired data. To overcome the challenge, we have developed a novel head fixation device designed to support awake rat brain imaging. A validation experiment demonstrated that the device effectively minimizes animal motion throughout the scan, with mean absolute displacement and mean relative displacement of 0.0256 (SD: 0.001) and 0.009 (SD: 0.002), across eight evaluated subjects throughout fMRI image acquisition (total scanning time per subject: 31 min, 12 s). Furthermore, the awake scans did not induce discernable stress to the animals, with stable physiological parameters throughout the scan (Mean HR: 344, Mean RR: 56, Mean SpO2: 94 %) and unaltered serum corticosterone levels (p = 0.159). In conclusion, the device presented in this paper offers an effective and safe method of acquiring functional brain images in rats, allowing researchers to minimize the confounding effects of anesthetic use.


Asunto(s)
Anestésicos , Vigilia , Humanos , Ratas , Animales , Vigilia/fisiología , Encéfalo/fisiología , Cabeza , Neuroimagen/métodos , Imagen por Resonancia Magnética/métodos , Anestésicos/farmacología
3.
Stereotact Funct Neurosurg ; 101(3): 207-216, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37232022

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) is a neurosurgical treatment used for the treatment of movement disorders. Surgical and perioperative complications, although infrequent, can result in clinically significant neurological impairment. OBJECTIVES: In this study, we evaluated the incidence and risk factors of intracranial bleeding in DBS surgery. METHOD: Medline, EMBASE, and Cochrane were screened in line with PRISMA 2020 guidelines to capture studies reporting on the incidence of hemorrhagic events in DBS. After removing duplicates, the search yielded 1,510 papers. Abstracts were evaluated by two independent reviewers for relevance. A total of 386 abstracts progressed to the full-text screen and were assessed against eligibility criteria. A total of 151 studies met the criteria and were included in the analysis. Any disagreement between the reviewers was resolved by consensus. Relevant data points were extracted and analyzed in OpenMeta [Analyst] software. RESULTS: The incidence of intracranial bleeding was 2.5% (95% CI: 2.2-2.8%) per each patient and 1.4% (95% CI: 1.2-1.6%) per each implanted lead. There was no statistically significant difference across implantation targets and clinical indications. Patients who developed an intracranial bleed were on average 5 years older (95% CI: 1.26-13.19), but no difference was observed between the genders (p = 0.891). A nonsignificant trend was observed for a higher risk of bleeding in patients with hypertension (OR: 2.99, 95% CI: 0.97-9.19) (p = 0.056). The use of microelectrode recording did not affect the rate of bleeding (p = 0.79). CONCLUSIONS: In this review, we find that the rate of bleeding per each implanted lead was 1.4% and that older patients had a higher risk of hemorrhage.


Asunto(s)
Estimulación Encefálica Profunda , Trastornos del Movimiento , Humanos , Masculino , Femenino , Estimulación Encefálica Profunda/efectos adversos , Hemorragias Intracraneales/epidemiología , Hemorragias Intracraneales/etiología , Trastornos del Movimiento/cirugía , Factores de Riesgo
4.
Rheumatol Int ; 43(8): 1459-1465, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37227468

RESUMEN

This study aimed to determine the minimum number of days required to reliably estimate free-living sedentary time, light-intensity physical activity (LPA) and moderate-intensity physical activity (MPA) using accelerometer data in people with Rheumatoid Arthritis (RA), according to Disease Activity Score-28-C-reactive protein (DAS-28-CRP). Secondary analysis of two existing RA cohorts with controlled (cohort 1) and active (cohort 2) disease was undertaken. People with RA were classified as being in remission (DAS-28-CRP < 2.4, n = 9), or with low (DAS-28-CRP ≥ 2.4-≤ 3.2, n = 15), moderate (DAS-28-CRP > 3.2-≤ 5.1, n = 41) or high (DAS-28-CRP > 5.1, n = 16) disease activity. Participants wore an ActiGraph accelerometer on their right hip for 7 days during waking hours. Validated RA-specific cut-points were applied to accelerometer data to estimate free-living sedentary time, LPA and MPA (%/day). Single-day intraclass correlation coefficients (ICC) were calculated and used in the Spearman Brown prophecy formula to determine the number of monitoring days required to achieve measurement reliability (ICC ≥ 0.80) for each group. The remission group required ≥ 4 monitoring days to achieve an ICC ≥ 0.80 for sedentary time and LPA, with low, moderate and high disease activity groups requiring ≥ 3 monitoring days to reliably estimate these behaviours. The monitoring days required for MPA were more variable across disease activity groups (remission = ≥ 3 days; low = ≥ 2 days; moderate = ≥ 3 days; high = ≥ 5 days). We conclude at least 4 monitoring days will reliably estimate sedentary time and LPA in RA, across the whole spectrum of disease activity. However, to reliably estimate behaviours across the movement continuum (sedentary time, LPA, MPA), at least 5 monitoring days are required.


Asunto(s)
Artritis Reumatoide , Conducta Sedentaria , Humanos , Reproducibilidad de los Resultados , Ejercicio Físico , Proteína C-Reactiva
5.
Ann Surg ; 276(6): e961-e968, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33534233

RESUMEN

OBJECTIVE: We aimed to examine biomarkers for screening unhealthy alcohol use in the trauma setting. SUMMARY AND BACKGROUND DATA: Self-report tools are the practice standard for screening unhealthy alcohol use; however, their collection suffers from recall bias and incomplete collection by staff. METHODS: We performed a multi-center prospective clinical study of 251 adult patients who arrived within 24 hours of injury with external validation in another 60 patients. The Alcohol Use Disorders Identification Test served as the reference standard. The following biomarkers were measured: (1) PEth; (2) ethyl glucuronide; (3) ethyl sulfate; (4) gamma-glutamyl-transpeptidase; (5) carbohydrate deficient transferrin; and (6) blood alcohol concentration (BAC). Candidate single biomarkers and multivariable models were compared by considering discrimination (AUROC). The optimal cutpoint for the final model was identified using a criterion for setting the minimum value for specificity at 80% and maximizing sensitivity. Decision curve analysis was applied to compare to existing screening with BAC. RESULTS: PEth alone had an AUROC of 0.93 [95% confidence interval (CI): 0.92-0.93] in internal validation with an optimal cutpoint of 25 ng/mL. A 4- variable biomarker model and the addition of any single biomarker to PEth did not improve AUROC over PEth alone ( P > 0.05). Decision curve analysis showed better performance of PEth over BAC across most predicted probability thresholds. In external validation, sensitivity and specificity were 76.0% (95% CI: 53.0%-92.0%) and 73.0% (95% CI: 56.0%-86.0%), respectively.Conclusion and Relevance: PEth alone proved to be the single best biomarker for screening of unhealthy alcohol use and performed better than existing screening systems with BAC. PEth may overcome existing screening barriers.


Asunto(s)
Alcoholismo , Glicerofosfolípidos , Adulto , Humanos , Alcoholismo/diagnóstico , Nivel de Alcohol en Sangre , Estudios Prospectivos , Consumo de Bebidas Alcohólicas , Etanol , Biomarcadores
6.
Clin Exp Immunol ; 209(3): 247-258, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-35641155

RESUMEN

In March 2020, the United Kingdom Primary Immunodeficiency Network (UKPIN) established a registry of cases to collate the outcomes of individuals with PID and SID following SARS-CoV-2 infection and treatment. A total of 310 cases of SARS-CoV-2 infection in individuals with PID or SID have now been reported in the UK. The overall mortality within the cohort was 17.7% (n = 55/310). Individuals with CVID demonstrated an infection fatality rate (IFR) of 18.3% (n = 17/93), individuals with PID receiving IgRT had an IFR of 16.3% (n = 26/159) and individuals with SID, an IFR of 27.2% (n = 25/92). Individuals with PID and SID had higher inpatient mortality and died at a younger age than the general population. Increasing age, low pre-SARS-CoV-2 infection lymphocyte count and the presence of common co-morbidities increased the risk of mortality in PID. Access to specific COVID-19 treatments in this cohort was limited: only 22.9% (n = 33/144) of patients admitted to the hospital received dexamethasone, remdesivir, an anti-SARS-CoV-2 antibody-based therapeutic (e.g. REGN-COV2 or convalescent plasma) or tocilizumab as a monotherapy or in combination. Dexamethasone, remdesivir, and anti-SARS-CoV-2 antibody-based therapeutics appeared efficacious in PID and SID. Compared to the general population, individuals with PID or SID are at high risk of mortality following SARS-CoV-2 infection. Increasing age, low baseline lymphocyte count, and the presence of co-morbidities are additional risk factors for poor outcome in this cohort.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Síndromes de Inmunodeficiencia , Humanos , Anticuerpos Monoclonales Humanizados , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/terapia , Sueroterapia para COVID-19 , Dexametasona , Combinación de Medicamentos , Inmunización Pasiva , SARS-CoV-2 , Reino Unido/epidemiología
7.
Neuromodulation ; 25(6): 804-816, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34309115

RESUMEN

OBJECTIVES: To characterize and compare the stability of cortical potentials evoked by deep brain stimulation (DBS) of the subthalamic nucleus (STN) across the naïve, parkinsonian, and pharmacologically treated parkinsonian states. To advance cortical potentials as possible biomarkers for DBS programming. MATERIALS AND METHODS: Serial electrocorticographic (ECoG) recordings were made more than nine months from a single non-human primate instrumented with bilateral ECoG grids spanning anterior parietal to prefrontal cortex. Cortical evoked potentials (CEPs) were generated through time-lock averaging of the ECoG recordings to DBS pulses delivered unilaterally in the STN region using a chronically implanted, six-contact, scaled DBS lead. Recordings were made across the naïve followed by mild and moderate parkinsonian conditions achieved by staged injections of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxin. In addition to characterizing the spatial distribution and stability of the response within each state, changes in the amplitude and latency of CEP components as well as in the frequency content were examined in relation to parkinsonian severity and dopamine replacement. RESULTS: In the naïve state, the STN DBS CEP presented as a multiphase response maximal over M1 cortex, with components attributable to physiological activity distinguishable from stimulus artifact as early as 0.45-0.75 msec poststimulation. When delivered using therapeutically effective parameters in the parkinsonian state, the CEP was highly stable across multiple recording sessions within each behavioral state. Across states, significant differences were present with respect to both the latency and amplitude of individual response components, with greater differences present for longer-latency components (all p < 0.05). Power spectral density analysis revealed a high-beta peak within the evoked response, with significant changes in power between disease states across multiple frequency bands. CONCLUSIONS: Our findings underscore the spatiotemporal specificity and relative stability of the DBS-CEP associated with different disease states and with therapeutic benefit. DBS-CEP may be a viable biomarker for therapeutic programming.


Asunto(s)
Estimulación Encefálica Profunda , Núcleo Subtalámico , Animales , Estimulación Encefálica Profunda/métodos , Potenciales Evocados/fisiología , Núcleo Subtalámico/fisiología
8.
Neuromodulation ; 24(2): 259-264, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32744789

RESUMEN

OBJECTIVE: Deep brain stimulation (DBS) for pain has largely been implemented in an uncontrolled manner to target the somatosensory component of pain, with research leading to mixed results. We have previously shown that patients with poststroke pain syndrome who were treated with DBS targeting the ventral striatum/anterior limb of the internal capsule (VS/ALIC) demonstrated a significant improvement in measures related to the affective sphere of pain. In this study, we sought to determine how DBS targeting the VS/ALIC modifies brain activation in response to pain. MATERIALS AND METHODS: Five patients with poststroke pain syndrome who were blinded to DBS status (ON/OFF) and six age- and sex-matched healthy controls underwent functional magnetic resonance imaging (fMRI) measuring blood oxygen level-dependent activation in a block design. In this design, each participant received heat stimuli to the affected or unaffected wrist area. Statistical comparisons were performed using fMRI z-maps. RESULTS: In response to pain, patients in the DBS OFF state showed significant activation (p < 0.001) in the same regions as healthy controls (thalamus, insula, and operculum) and in additional regions (orbitofrontal and superior convexity cortical areas). DBS significantly reduced activation of these additional regions and introduced foci of significant inhibitory activation (p < 0.001) in the hippocampi when painful stimulation was applied to the affected side. CONCLUSIONS: These findings suggest that DBS of the VS/ALIC modulates affective neural networks.


Asunto(s)
Estimulación Encefálica Profunda , Estriado Ventral , Humanos , Cápsula Interna/diagnóstico por imagen , Imagen por Resonancia Magnética , Dolor
9.
J Neurophysiol ; 124(6): 1698-1705, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33052766

RESUMEN

Neural oscillatory changes within and across different frequency bands are thought to underlie motor dysfunction in Parkinson's disease (PD) and may serve as biomarkers for closed-loop deep brain stimulation (DBS) approaches. Here, we used neural oscillatory signals derived from chronically implanted cortical and subcortical electrode arrays as features to train machine learning algorithms to discriminate between naive and mild PD states in a nonhuman primate model. Local field potential (LFP) data were collected over several months from a 12-channel subdural electrocorticography (ECoG) grid and a 6-channel custom array implanted in the subthalamic nucleus (STN). Relative to the naive state, the PD state showed elevated primary motor cortex (M1) and STN power in the beta, high gamma, and high-frequency oscillation (HFO) bands and decreased power in the delta band. Theta power was found to be decreased in STN but not M1. In the PD state there was elevated beta-HFO phase-amplitude coupling (PAC) in the STN. We applied machine learning with support vector machines with radial basis function (SVM-RBF) kernel and k-nearest neighbors (KNN) classifiers trained by features related to power and PAC changes to discriminate between the naive and mild states. Our results show that the most predictive feature of parkinsonism in the STN was high beta (∼86% accuracy), whereas it was HFO in M1 (∼98% accuracy). A feature fusion approach outperformed every individual feature, particularly in the M1, where ∼98% accuracy was achieved with both classifiers. Overall, our data demonstrate the ability to use various frequency band power to classify the clinical state and are also beneficial in developing closed-loop DBS therapeutic approaches.NEW & NOTEWORTHY Neurophysiological biomarkers that correlate with motor symptoms or disease severity are vital to improve our understanding of the pathophysiology in Parkinson's disease (PD) and for the development of more effective treatments, including deep brain stimulation (DBS). This work provides direct insight into the application of these biomarkers in training classifiers to discriminate between brain states, which is a first step toward developing closed-loop DBS systems.


Asunto(s)
Ondas Encefálicas , Corteza Motora/fisiopatología , Trastornos Parkinsonianos/diagnóstico , Trastornos Parkinsonianos/fisiopatología , Núcleo Subtalámico/fisiopatología , Animales , Femenino , Macaca mulatta , Aprendizaje Automático , Procesamiento de Señales Asistido por Computador
10.
J Autoimmun ; 105: 102298, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31280933

RESUMEN

BACKGROUND: Many patients with rheumatoid arthritis (RA) achieve disease remission with modern treatment strategies. However, having achieved this state, there are no tests that predict when withdrawal of therapy will result in drug-free remission rather than flare. We aimed to identify predictors of drug-free remission in RA. METHODS: The Biomarkers of Remission in Rheumatoid Arthritis (BioRRA) Study was a unique, prospective, interventional cohort study of complete and abrupt cessation of conventional synthetic disease-modifying anti-rheumatic drugs (DMARDs). Patients with RA of at least 12 months duration and in clinical and ultrasound remission discontinued DMARDs and were monitored for six months. The primary outcome was time-to-flare, defined as disease activity score in 28 joints with C-reactive protein (DAS28-CRP) ≥ 2.4. Baseline clinical and ultrasound measures, circulating inflammatory biomarkers, and peripheral CD4+ T cell gene expression were assessed for their ability to predict time-to-flare and flare/remission status by Cox regression and receiver-operating characteristic (ROC) analysis respectively. RESULTS: 23/44 (52%) eligible patients experienced an arthritis flare after a median (IQR) of 48 (31.5-86.5) days following DMARD cessation. A composite score incorporating five baseline variables (three transcripts [FAM102B, ENSG00000228010, ENSG00000227070], one cytokine [interleukin-27], one clinical [Boolean remission]) differentiated future flare from drug-free remission with an area under the ROC curve of 0.96 (95% CI 0.91-1.00), sensitivity 0.91 (0.78-1.00) and specificity 0.95 (0.84-1.00). CONCLUSION: We provide proof-of-concept evidence for predictors of drug-free remission in RA. If validated, these biomarkers could help to personalize immunosuppressant withdrawal: a therapy paradigm shift with ensuing patient and economic benefits.


Asunto(s)
Antirreumáticos/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Adulto , Anciano , Anciano de 80 o más Años , Artritis Reumatoide/metabolismo , Biomarcadores/metabolismo , Proteína C-Reactiva/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Inducción de Remisión/métodos , Índice de Severidad de la Enfermedad , Resultado del Tratamiento
11.
Cerebellum ; 18(6): 1064-1097, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31165428

RESUMEN

The cerebellum is best known for its role in controlling motor behaviors. However, recent work supports the view that it also influences non-motor behaviors. The contribution of the cerebellum towards different brain functions is underscored by its involvement in a diverse and increasing number of neurological and neuropsychiatric conditions including ataxia, dystonia, essential tremor, Parkinson's disease (PD), epilepsy, stroke, multiple sclerosis, autism spectrum disorders, dyslexia, attention deficit hyperactivity disorder (ADHD), and schizophrenia. Although there are no cures for these conditions, cerebellar stimulation is quickly gaining attention for symptomatic alleviation, as cerebellar circuitry has arisen as a promising target for invasive and non-invasive neuromodulation. This consensus paper brings together experts from the fields of neurophysiology, neurology, and neurosurgery to discuss recent efforts in using the cerebellum as a therapeutic intervention. We report on the most advanced techniques for manipulating cerebellar circuits in humans and animal models and define key hurdles and questions for moving forward.


Asunto(s)
Cerebelo/fisiología , Consenso , Estimulación Encefálica Profunda/métodos , Modelos Animales , Animales , Cerebelo/citología , Estimulación Encefálica Profunda/tendencias , Humanos
12.
AJR Am J Roentgenol ; 212(5): 968-975, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30807219

RESUMEN

OBJECTIVE. The purpose of this study is to determine the effect of different reader and patient parameters on the degree of agreement and the rate of misclassification of vesicoureteric reflux grading on last-image-hold frames in relation to spot-exposed frames from voiding cystourethrography (VCUG) as well as to determine the nature of reflux misclassification on last-image-hold frames. MATERIALS AND METHODS. Blinded readers conducted a retrospective evaluation of last-image-hold and spot-exposed frames of the renal fossae from 191 sequential VCUG examinations performed during a five-year period. Kappa tests were used to determine the agreement between reflux gradings and to assess the impact of reader and patient parameters. Pearson product-moment correlations were used to evaluate the effect of patient parameters on reader level of certainty regarding reflux grading. RESULTS. We measured almost perfect overall agreement for more experienced readers and substantial overall agreement for less experienced readers. Point estimates of overall misclassification were less than 2% for more experienced readers and less than 4% for less experienced readers. The readers' level of certainty about reflux grading had a positive impact on agreement values and misclassification rates. Experienced readers' most common misclassification was assigning reflux a grade of 3 on a spot-exposed frame and a grade of 2 on an equivalent last-image-hold frame. Inexperienced readers' most common misclassification involved missing reflux altogether. CONCLUSION. Instances of grade 2 reflux on last-image-hold frames may warrant supplemental evaluation with spot-exposed frames. Otherwise, a reader's level of certainty regarding reflux grading on a last-image-hold frame may help determine whether a supplemental spot-exposed frame would be beneficial.

13.
J Neurophysiol ; 120(3): 1247-1255, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29873615

RESUMEN

Many studies suggest that Parkinson's disease (PD) is associated with changes in neuronal activity patterns throughout the basal ganglia-thalamocortical motor circuit. There are limited electrophysiological data, however, describing how parkinsonism impacts the presupplementary motor area (pre-SMA) and SMA proper (SMAp), cortical areas known to be involved in movement planning and motor control. In this study, local field potentials (LFPs) were recorded in the pre-SMA/SMAp of a nonhuman primate during a visually cued reaching task. Recordings were made in the same subject in both the naive and parkinsonian state using the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of parkinsonism. We found that in the naive animal, well before a go-cue providing instruction of reach onset and direction was given, LFP activity was dynamically modulated in both high (20-30 Hz) and low beta (10-20 Hz) bands, and the magnitude of this modulation (e.g., decrease/increase in beta amplitude for each band, respectively) correlated linearly with reaction time (RT) on a trial-to-trial basis, suggesting it may predictively encode for RT. Consistent with this hypothesis, we observed that this activity was more prominent within the pre-SMA compared with SMAp. In the parkinsonian state, however, pre-SMA/SMAp beta band modulation was disrupted, particularly in the high beta band, such that the predictive encoding of RT was significantly diminished. In addition, the predictive encoding of RT preferentially within pre-SMA over SMAp was lost. These findings add to our understanding of the role of pre-SMA/SMAp in motor behavior and suggest a fundamental role of these cortical areas in early preparatory and premovement processes that are altered in parkinsonism. NEW & NOTEWORTHY Goal-directed movements, such as reaching for an object, necessitate temporal preparation and organization of information processing within the basal ganglia-thalamocortical motor network. Impaired movement in parkinsonism is thought to be the result of pathophysiological activity disrupting information flow within this network. This work provides neurophysiological evidence linking altered motor preplanning processes encoded in pre-SMA/SMAp beta band modulation to the pathogenesis of motor disturbances in parkinsonism.


Asunto(s)
Corteza Motora/fisiopatología , Movimiento , Neuronas/fisiología , Trastornos Parkinsonianos/fisiopatología , Desempeño Psicomotor , Animales , Ritmo beta , Señales (Psicología) , Femenino , Macaca mulatta , Tiempo de Reacción
14.
J Neurophysiol ; 119(6): 2118-2128, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29384450

RESUMEN

Poststroke pain syndrome (PSPS) is an often intractable disorder characterized by hemiparesis associated with unrelenting chronic pain. Although traditional analgesics have largely failed, integrative approaches targeting affective-cognitive spheres have started to show promise. Recently, we demonstrated that deep brain stimulation (DBS) of the ventral striatal area significantly improved the affective sphere of pain in patients with PSPS. In the present study, we examined whether electrophysiological correlates of pain anticipation were modulated by DBS that could serve as signatures of treatment effects. We recorded event-related fields (ERFs) of pain anticipation using magnetoencephalography (MEG) in 10 patients with PSPS preoperatively and postoperatively in DBS OFF and ON states. Simple visual cues evoked anticipation as patients awaited a painful (PS) or nonpainful stimulus (NPS) to the nonaffected or affected extremity. Preoperatively, ERFs showed no difference between PS and NPS anticipation to the affected extremity, possibly due to loss of salience in a network saturated by pain experience. DBS significantly modulated the early N1, consistent with improvements in affective networks involving restoration of salience and discrimination capacity. Additionally, DBS suppressed the posterior P2 (aberrant anticipatory anxiety) while enhancing the anterior N1 (cognitive and emotional regulation) in responders. DBS-induced changes in ERFs could potentially serve as signatures for clinical outcomes. NEW & NOTEWORTHY We examined the electrophysiological correlates of pain affect in poststroke pain patients who underwent deep brain stimulation (DBS) targeting the ventral striatal area under a randomized, controlled trial. DBS significantly modulated early event-related components, particularly N1 and P2, measured with magnetoencephalography during a pain anticipatory task, compared with baseline and the DBS-OFF condition, pointing to possible mechanisms of action. DBS-induced changes in event-related fields could potentially serve as biomarkers for clinical outcomes.


Asunto(s)
Síndromes de Dolor Regional Complejo/terapia , Cuerpo Estriado/fisiopatología , Estimulación Encefálica Profunda/métodos , Accidente Cerebrovascular/complicaciones , Adulto , Anticipación Psicológica , Síndromes de Dolor Regional Complejo/etiología , Potenciales Evocados , Femenino , Humanos , Magnetoencefalografía , Masculino , Persona de Mediana Edad
15.
Ann Rheum Dis ; 77(2): 175-187, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28765121

RESUMEN

The past three decades have witnessed remarkable advances in our ability to target specific elements of the immune and inflammatory response, fuelled by advances in both biotechnology and disease knowledge. As well as providing superior treatments for immune-mediated inflammatory diseases (IMIDs), such therapies also offer unrivalled opportunities to study the underlying immunopathological basis of these conditions.In this review, we explore recent approaches to the treatment of IMIDs and the insights to pathobiology that they provide. We review novel biologic agents targeting the T-helper 17 axis, including therapies directed towards interleukin (IL)-17 (secukinumab, ixekizumab, bimekizumab), IL-17R (brodalumab), IL-12/23p40 (ustekinumab, briakinumab) and IL-23p19 (guselkumab, tildrakizumab, brazikumab, risankizumab, mirikizumab). We also present an overview of biologics active against type I and II interferons, including sifalumumab, rontalizumab, anifrolumab and fontolizumab. Emerging strategies to interfere with cellular adhesion processes involved in lymphocyte recruitment are discussed, including both integrin blockade (natalizumab, vedolizumab, etrolizumab) and sphingosine-1-phosphate receptor inhibition (fingolimod, ozanimod). We summarise the development and recent application of Janus kinase (JAK) inhibitors in the treatment of IMIDs, including first-generation pan-JAK inhibitors (tofacitinib, baricitinib, ruxolitinib, peficitinib) and second-generation selective JAK inhibitors (decernotinib, filgotinib, upadacitinib). New biologics targeting B-cells (including ocrelizumab, veltuzumab, tabalumab and atacicept) and the development of novel strategies for regulatory T-cell modulation (including low-dose IL-2 therapy and Tregitopes) are also discussed. Finally, we explore recent biotechnological advances such as the development of bispecific antibodies (ABT-122, COVA322), and their application to the treatment of IMIDs.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Enfermedades Autoinmunes/terapia , Terapia Biológica/métodos , Terapia Molecular Dirigida/métodos , Anticuerpos Monoclonales Humanizados/efectos adversos , Enfermedades Autoinmunes/inmunología , Terapia Biológica/efectos adversos , Biotecnología/métodos , Humanos , Terapia Molecular Dirigida/efectos adversos
17.
Ann Neurol ; 81(5): 653-663, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28380672

RESUMEN

OBJECTIVE: The experience with deep brain stimulation (DBS) for pain is largely based on uncontrolled studies targeting the somatosensory pathways, with mixed results. We hypothesized that targeting limbic neural pathways would modulate the affective sphere of pain and alleviate suffering. METHODS: We conducted a prospective, double-blinded, randomized, placebo-controlled, crossover study of DBS targeting the ventral striatum/anterior limb of the internal capsule (VS/ALIC) in 10 patients with poststroke pain syndrome. One month after bilateral DBS, patients were randomized to active DBS or sham for 3 months, followed by crossover for another 3-month period. The primary endpoint was a ≥50% improvement on the Pain Disability Index in 50% of patients with active DBS compared to sham. This 6-month blinded phase was followed by an 18-month open stimulation phase. RESULTS: Nine participants completed randomization. Although this trial was negative for its primary and secondary endpoints, we did observe significant differences in multiple outcome measures related to the affective sphere of pain (eg, Montgomery-Åsberg Depression Rating Scale, Beck Depression Inventory, Affective Pain Rating Index of the Short-Form McGill Pain Questionnaire). Fourteen serious adverse events were recorded and resolved. INTERPRETATION: VS/ALIC DBS to modulate the affective sphere of pain represents a paradigm shift in chronic pain management. Although this exploratory study was negative for its primary endpoint, VS/ALIC DBS demonstrated an acceptable safety profile and statistically significant improvements on multiple outcome measures related to the affective sphere of pain. Therefore, we believe these results justify further work on neuromodulation therapies targeting the affective sphere of pain. Ann Neurol 2017;81:653-663.


Asunto(s)
Dolor Crónico , Estimulación Encefálica Profunda/métodos , Cápsula Interna , Neuralgia , Evaluación de Resultado en la Atención de Salud , Accidente Cerebrovascular/complicaciones , Estriado Ventral , Adulto , Dolor Crónico/etiología , Dolor Crónico/psicología , Dolor Crónico/terapia , Estudios Cruzados , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neuralgia/etiología , Neuralgia/psicología , Neuralgia/terapia , Dimensión del Dolor , Estudios Prospectivos
18.
Neurosurg Focus ; 45(2): E13, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30064319

RESUMEN

Ischemic stroke is a leading cause of disability worldwide, with profound economic costs. Poststroke motor impairment is the most commonly encountered deficit resulting in significant disability and is the primary driver of stroke-associated healthcare expenditures. Although many patients derive some degree of benefit from physical rehabilitation, a significant proportion continue to suffer from persistent motor impairment. Noninvasive brain stimulation, vagal nerve stimulation, epidural cortical stimulation, and deep brain stimulation (DBS) have all been studied as potential modalities to improve upon the benefits derived from physical therapy alone. These neuromodulatory therapies aim primarily to augment neuroplasticity and drive functional reorganization of the surviving perilesional cortex. The authors have proposed a novel and emerging therapeutic approach based on cerebellar DBS targeted at the dentate nucleus. Their rationale is based on the extensive reciprocal connectivity between the dentate nucleus and wide swaths of cerebral cortex via the dentatothalamocortical and corticopontocerebellar tracts, as well as the known limitations to motor rehabilitation imposed by crossed cerebellar diaschisis. Preclinical studies in rodent models of ischemic stroke have shown that cerebellar DBS promotes functional recovery in a frequency-dependent manner, with the most substantial benefits of the therapy noted at 30-Hz stimulation. The improvements in motor function are paralleled by increased expression of markers of synaptic plasticity, synaptogenesis, and neurogenesis in the perilesional cortex. Given the findings of preclinical studies, a first-in-human trial, Electrical Stimulation of the Dentate Nucleus Area (EDEN) for Improvement of Upper Extremity Hemiparesis Due to Ischemic Stroke: A Safety and Feasibility Study, commenced in 2016. Although the existing preclinical evidence is promising, the results of this Phase I trial and subsequent clinical trials will be necessary to determine the future applicability of this therapy.


Asunto(s)
Cerebelo/cirugía , Estimulación Encefálica Profunda , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular/terapia , Animales , Núcleos Cerebelosos/cirugía , Humanos , Recuperación de la Función/fisiología
19.
J Neurophysiol ; 117(6): 2242-2249, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28228579

RESUMEN

A number of studies suggest that Parkinson's disease (PD) is associated with alterations of neuronal activity patterns in the basal-ganglia-thalamocortical circuit. There are limited electrophysiological data, however, describing how the premotor cortex, which is involved in movement and decision-making, is likely impacted in PD. In this study, spontaneous local field potential (LFP) and single unit neuronal activity were recorded in the dorsal premotor area of nonhuman primates in both the naïve and parkinsonian state using the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of parkinsonism. In both animals, we observed a shift of power in LFP power spectral densities (1-350 Hz) from higher to lower frequency bands; parkinsonism resulted in increased power in frequencies <8 Hz and decreased power at frequencies >30 Hz. A comparable but not identical trend was observed in the power spectral analysis of single unit spike trains: alpha power increased in both animals and gamma power decreased in one; power in other frequency bands remaining unchanged. Although not consistent across animals, we also observed changes in discharge rates and bursting activity. Overall, the LFP and single unit analysis suggest that abnormalities in premotor neural activity are a feature of parkinsonism, although specific details of those abnormalities may differ between subjects. This study further supports the concept that PD is a network disorder that induces abnormal spontaneous neural activities across the basal-ganglia-thalamocortical circuit including the premotor cortex and provides foundational knowledge for future studies regarding the relationship between changes in neuronal activity in this region and the development of motor deficits in PD.NEW & NOTEWORTHY This study begins to fill a gap in knowledge regarding how Parkinson's disease (PD) may cause abnormal functioning of the premotor cortex. It is novel as the premotor activity is examined in both the naïve and parkinsonian states, in the same subjects, at the single unit and LFP level. It provides foundational knowledge on which to build future studies to explore the relationships between premotor activities and specific parkinsonian motor and cognitive deficits.


Asunto(s)
Potenciales Evocados , Intoxicación por MPTP/fisiopatología , Corteza Motora/fisiopatología , Neuronas/fisiología , Ritmo alfa , Animales , Femenino , Ritmo Gamma , Macaca mulatta , Masculino
20.
J Neurophysiol ; 118(5): 2654-2669, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28835526

RESUMEN

Oscillatory neural activity in different frequency bands and phase-amplitude coupling (PAC) are hypothesized to be biomarkers of Parkinson's disease (PD) that could explain dysfunction in the motor circuit and be used for closed-loop deep brain stimulation (DBS). How these putative biomarkers change from the normal to the parkinsonian state across nodes in the motor circuit and within the same subject, however, remains unknown. In this study, we characterized how parkinsonism and vigilance altered oscillatory activity and PAC within the primary motor cortex (M1), subthalamic nucleus (STN), and globus pallidus (GP) in two nonhuman primates. Static and dynamic analyses of local field potential (LFP) recordings indicate that 1) after induction of parkinsonism using the neurotoxin MPTP, low-frequency power (8-30 Hz) increased in the STN and GP in both subjects, but increased in M1 in only one subject; 2) high-frequency power (~330 Hz) was present in the STN in both normal subjects but absent in the parkinsonian condition; 3) elevated PAC measurements emerged in the parkinsonian condition in both animals, but in different sites in each animal (M1 in one subject and GPe in the other); and 4) the state of vigilance significantly impacted how oscillatory activity and PAC were expressed in the motor circuit. These results support the hypothesis that changes in low- and high-frequency oscillatory activity and PAC are features of parkinsonian pathophysiology and provide evidence that closed-loop DBS systems based on these biomarkers may require subject-specific configurations as well as adaptation to changes in vigilance.NEW & NOTEWORTHY Chronically implanted electrodes were used to record neural activity across multiple nodes in the basal ganglia-thalamocortical circuit simultaneously in a nonhuman primate model of Parkinson's disease, enabling within-subject comparisons of electrophysiological biomarkers between normal and parkinsonian conditions and different vigilance states. This study improves our understanding of the role of oscillatory activity and phase-amplitude coupling in the pathophysiology of Parkinson's disease and supports the development of more effective DBS therapies based on pathophysiological biomarkers.


Asunto(s)
Nivel de Alerta , Globo Pálido/fisiopatología , Intoxicación por MPTP/fisiopatología , Corteza Motora/fisiopatología , Animales , Estimulación Encefálica Profunda , Potenciales Evocados , Femenino , Macaca mulatta , Núcleo Subtalámico/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA