Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Semin Cell Dev Biol ; 146: 40-56, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36737258

RESUMEN

Alternative RNA splicing is a co-transcriptional process that richly increases proteome diversity, and is dynamically regulated based on cell species, lineage, and activation state. Virus infection in vertebrate hosts results in rapid host transcriptome-wide changes, and regulation of alternative splicing can direct a combinatorial effect on the host transcriptome. There has been a recent increase in genome-wide studies evaluating host alternative splicing during viral infection, which integrates well with prior knowledge on viral interactions with host splicing proteins. A critical challenge remains in linking how these individual events direct global changes, and whether alternative splicing is an overall favorable pathway for fending off or supporting viral infection. Here, we introduce the process of alternative splicing, discuss how to analyze splice regulation, and detail studies on genome-wide and splice factor changes during viral infection. We seek to highlight where the field can focus on moving forward, and how incorporation of a virus-host co-evolutionary perspective can benefit this burgeoning subject.


Asunto(s)
Empalme Alternativo , Virus , Empalme Alternativo/genética , Virus/genética , Genoma , Transcriptoma , Proteoma/genética
2.
PLoS Biol ; 20(12): e3001934, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36542656

RESUMEN

Viruses must balance their reliance on host cell machinery for replication while avoiding host defense. Influenza A viruses are zoonotic agents that frequently switch hosts, causing localized outbreaks with the potential for larger pandemics. The host range of influenza virus is limited by the need for successful interactions between the virus and cellular partners. Here we used immunocompetitive capture-mass spectrometry to identify cellular proteins that interact with human- and avian-style viral polymerases. We focused on the proviral activity of heterogenous nuclear ribonuclear protein U-like 1 (hnRNP UL1) and the antiviral activity of mitochondrial enoyl CoA-reductase (MECR). MECR is localized to mitochondria where it functions in mitochondrial fatty acid synthesis (mtFAS). While a small fraction of the polymerase subunit PB2 localizes to the mitochondria, PB2 did not interact with full-length MECR. By contrast, a minor splice variant produces cytoplasmic MECR (cMECR). Ectopic expression of cMECR shows that it binds the viral polymerase and suppresses viral replication by blocking assembly of viral ribonucleoprotein complexes (RNPs). MECR ablation through genome editing or drug treatment is detrimental for cell health, creating a generic block to virus replication. Using the yeast homolog Etr1 to supply the metabolic functions of MECR in MECR-null cells, we showed that specific antiviral activity is independent of mtFAS and is reconstituted by expressing cMECR. Thus, we propose a strategy where alternative splicing produces a cryptic antiviral protein that is embedded within a key metabolic enzyme.


Asunto(s)
Ácido Graso Desaturasas , Virus de la Influenza A , Humanos , Ácido Graso Desaturasas/metabolismo , Empalme Alternativo/genética , Mitocondrias/metabolismo , Virus de la Influenza A/genética , Isoformas de Proteínas/metabolismo , Replicación Viral
3.
J Virol ; 89(6): 3421-6, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25552727

RESUMEN

The live attenuated influenza virus vaccine (LAIV) is preferentially recommended for use in persons 2 through 49 years of age but has not been approved for children under 2 or asthmatics due to safety concerns. Therefore, increasing safety is desirable. Here we describe a murine LAIV with reduced pathogenicity that retains lethality at high doses and further demonstrate that we can enhance safety in vivo through mutations within NS1. This model may permit preliminary safety analysis of improved LAIVs.


Asunto(s)
Modelos Animales de Enfermedad , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Gripe Humana/prevención & control , Ratones , Vacunas Atenuadas/administración & dosificación , Animales , Anticuerpos Antivirales/inmunología , Femenino , Humanos , Virus de la Influenza A/clasificación , Virus de la Influenza A/genética , Vacunas contra la Influenza/efectos adversos , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Gripe Humana/virología , Vacunas Atenuadas/efectos adversos , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología
4.
J Immunol ; 193(12): 6031-40, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25392529

RESUMEN

Influenza viruses remain a critical global health concern. More efficacious vaccines are needed to protect against influenza virus, yet few adjuvants are approved for routine use. Specialized proresolving mediators (SPMs) are powerful endogenous bioactive regulators of inflammation, with great clinical translational properties. In this study, we investigated the ability of the SPM 17-HDHA to enhance the adaptive immune response using an OVA immunization model and a preclinical influenza vaccination mouse model. Our findings revealed that mice immunized with OVA plus 17-HDHA or with H1N1-derived HA protein plus 17-HDHA increased Ag-specific Ab titers. 17-HDHA increased the number of Ab-secreting cells in vitro and the number of HA-specific Ab-secreting cells present in the bone marrow. Importantly, the 17-HDHA-mediated increased Ab production was more protective against live pH1N1 influenza infection in mice. To our knowledge, this is the first report on the biological effects of ω-3-derived SPMs on the humoral immune response. These findings illustrate a previously unknown biological link between proresolution signals and the adaptive immune system. Furthermore, this work has important implications for the understanding of B cell biology, as well as the development of new potential vaccine adjuvants.


Asunto(s)
Ácidos Docosahexaenoicos/farmacología , Inmunidad Humoral/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Infecciones por Orthomyxoviridae/inmunología , Adyuvantes Inmunológicos/farmacología , Animales , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/efectos de los fármacos , Formación de Anticuerpos/inmunología , Subgrupos de Linfocitos B/citología , Subgrupos de Linfocitos B/efectos de los fármacos , Subgrupos de Linfocitos B/inmunología , Subgrupos de Linfocitos B/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Inmunoglobulina G/inmunología , Inmunoglobulina M/inmunología , Masculino , Ratones , Infecciones por Orthomyxoviridae/virología , Células Plasmáticas/citología , Células Plasmáticas/efectos de los fármacos , Células Plasmáticas/inmunología , Células Plasmáticas/metabolismo
5.
J Biopharm Stat ; 26(3): 409-20, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26010892

RESUMEN

Viruses that express reporter genes upon infection have been recently used to evaluate neutralizing antibody responses, where a lack of reporter expression indicates specific virus inhibition. The traditional model-based methods using standard outcome of percent neutralization could be applied to the data from the assays to estimate antibody titers. However, the data produced are sometimes irregular, which can yield meaningless outcomes of percent neutralization that do not fit the typical curves for immunoassays, making automated or semi-high throughput antibody titer estimation unreliable. We developed a type of new outcomes model, which is biologically meaningful and fits typical immunoassay curves well. Our simulation study indicates that the new response approach outperforms the traditional response approach regardless of the data variability. The proposed new response approach can be used in similar assays for other disease models.


Asunto(s)
Proteínas Fluorescentes Verdes/química , Pruebas de Neutralización/métodos , Anticuerpos Neutralizantes/análisis , Anticuerpos Antivirales/análisis , Glicoproteínas Hemaglutininas del Virus de la Influenza/análisis , Modelos Estadísticos , Método de Montecarlo
6.
J Infect Dis ; 212(8): 1270-8, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25838266

RESUMEN

Recent studies have shown that live attenuated influenza vaccines (LAIVs) expressing avian influenza virus hemagglutinins (HAs) prime for strong protective antibody responses to an inactivated influenza vaccine (IIV) containing the HA. To better understand this priming effect, we compared H7 HA head and stalk domain-specific B-cell responses in H7N7 LAIV-primed subjects and non-H7-primed controls after a single dose of H7N7 IIV. As previously reported, H7N7 LAIV-primed subjects but not control subjects generated strong hemagglutination-inhibiting and neutralizing antibody responses to the H7N7 IIV. Here, we found that the quantity, epitope diversity, and affinity of H7 head-specific antibodies increased rapidly in only H7N7 LAIV-primed subjects after receipt of the IIV. However, all cohorts generated a vigorous, high-affinity, stalk-specific antibody response. Consistent increases in circulating memory B-cell frequencies after receipt of the IIV reflected the specificity of high-affinity antibody production. Our findings emphasize the value of LAIVs as a vehicle for prepandemic vaccination.


Asunto(s)
Anticuerpos Antivirales/sangre , Subtipo H7N7 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Anticuerpos Neutralizantes/sangre , Linfocitos B/inmunología , Estudios de Cohortes , Pruebas de Inhibición de Hemaglutinación , Humanos , Gripe Humana/prevención & control , Gripe Humana/virología , Pruebas de Neutralización , Vacunas Atenuadas/inmunología , Vacunas de Productos Inactivados/inmunología
7.
J Virol ; 88(20): 12006-16, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25100831

RESUMEN

The effector functions of specific CD8 T cells are crucial in mediating influenza heterologous protection. However, new approaches for influenza vaccines that can trigger effective CD8 T cell responses have not been extensively explored. We report here the generation of single-cycle infectious influenza virus that lacks a functional hemagglutinin (HA) gene on an X31 genetic background and demonstrate its potential for triggering protective CD8 T cell immunity against heterologous influenza virus challenge. In vitro, X31-sciIV can infect MDCK cells, but infectious virions are not produced unless HA is transcomplemented. In vivo, intranasal immunization with X31-sciIV does not cause any clinical symptoms in mice but generates influenza-specific CD8 T cells in lymphoid (mediastinal lymph nodes and spleen) and nonlymphoid tissues, including lung and bronchoalveolar lavage fluid, as measured by H2-Db NP366 and PA224 tetramer staining. In addition, a significant proportion of X31-sciIV-induced antigen-specific respiratory CD8 T cells expressed VLA-1, a marker that is associated with heterologous influenza protection. Further, these influenza-specific CD8 T cells produce antiviral cytokines when stimulated with NP366 and PA224 peptides, indicating that CD8 T cells triggered by X31-sciIV are functional. When challenged with a lethal dose of heterologous PR8 virus, X31-sciIV-primed mice were fully protected from death. However, when CD8 T cells were depleted after priming or before priming, mice could not effectively control virus replication or survive the lethal challenge, indicating that X31-sciIV-induced memory CD8 T cells mediate the heterologous protection. Thus, our results demonstrate the potential for sciIV as a CD8 T cell-inducing vaccine. Importance: One of the challenges for influenza prevention is the existence of multiple influenza virus subtypes and variants and the fact that new strains can emerge yearly. Numerous studies have indicated that the effector functions of specific CD8 T cells are crucial in mediating influenza heterologous protection. However, influenza vaccines that can trigger effective CD8 T cell responses for heterologous protection have not been developed. We report here the generation of an X31 (H3N2) virus-derived single-cycle infectious influenza virus, X31-sciIV. A one-dose immunization with X31-sciIV is capable of inducing functional influenza virus-specific CD8 T cells that can be recruited into respiratory tissues and provide protection against lethal heterologous challenge. Without these cells, protection against lethal challenge was essentially lost. Our data indicate that an influenza vaccine that primarily relies on CD8 T cells for protection could be developed.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Animales , Perros , Relación Dosis-Respuesta Inmunológica , Ensayo de Inmunoadsorción Enzimática , Femenino , Citometría de Flujo , Células HEK293 , Glicoproteínas Hemaglutininas del Virus de la Influenza/análisis , Humanos , Depleción Linfocítica , Ratones , Ratones Endogámicos C57BL
8.
J Virol ; 88(18): 10525-40, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24965472

RESUMEN

UNLABELLED: Influenza viral infection represents a serious public health problem that causes contagious respiratory disease, which is most effectively prevented through vaccination to reduce transmission and future infection. The nonstructural (NS) gene of influenza A virus encodes an mRNA transcript that is alternatively spliced to express two viral proteins, the nonstructural protein 1 (NS1) and the nuclear export protein (NEP). The importance of the NS gene of influenza A virus for viral replication and virulence has been well described and represents an attractive target to generate live attenuated influenza viruses with vaccine potential. Considering that most amino acids can be synthesized from several synonymous codons, this study employed the use of misrepresented mammalian codons (codon deoptimization) for the de novo synthesis of a viral NS RNA segment based on influenza A/Puerto Rico/8/1934 (H1N1) (PR8) virus. We generated three different recombinant influenza PR8 viruses containing codon-deoptimized synonymous mutations in coding regions comprising the entire NS gene or the mRNA corresponding to the individual viral protein NS1 or NEP, without modifying the respective splicing and packaging signals of the viral segment. The fitness of these synthetic viruses was attenuated in vivo, while they retained immunogenicity, conferring both homologous and heterologous protection against influenza A virus challenges. These results indicate that influenza viruses can be effectively attenuated by synonymous codon deoptimization of the NS gene and open the possibility of their use as a safe vaccine to prevent infections with these important human pathogens. IMPORTANCE: Vaccination serves as the best therapeutic option to protect humans against influenza viral infections. However, the efficacy of current influenza vaccines is suboptimal, and novel approaches are necessary for the prevention of disease cause by this important human respiratory pathogen. The nonstructural (NS) gene of influenza virus encodes both the multifunctional nonstructural protein 1 (NS1), essential for innate immune evasion, and the nuclear export protein (NEP), required for the nuclear export of viral ribonucleoproteins and for timing of the virus life cycle. Here, we have generated a recombinant influenza A/Puerto Rico/8/1934 (H1N1) (PR8) virus containing a codon-deoptimized NS segment that is attenuated in vivo yet retains immunogenicity and protection efficacy against homologous and heterologous influenza virus challenges. These results open the exciting possibility of using this NS codon deoptimization methodology alone or in combination with other approaches for the future development of vaccine candidates to prevent influenza viral infections.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/genética , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/inmunología , Gripe Humana/virología , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología , Animales , Secuencia de Bases , Codón , Femenino , Humanos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Gripe Humana/prevención & control , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Ingeniería de Proteínas , Proteínas no Estructurales Virales/administración & dosificación
9.
J Virol ; 88(18): 10778-91, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25008914

RESUMEN

UNLABELLED: Influenza A and B viruses cocirculate in humans and together cause disease and seasonal epidemics. These two types of influenza viruses are evolutionarily divergent, and exchange of genetic segments inside coinfected cells occurs frequently within types but never between influenza A and B viruses. Possible mechanisms inhibiting the intertypic reassortment of genetic segments could be due to incompatible protein functions of segment homologs, a lack of processing of heterotypic segments by influenza virus RNA-dependent RNA polymerase, an inhibitory effect of viral proteins on heterotypic virus function, or an inability to specifically incorporate heterotypic segments into budding virions. Here, we demonstrate that the full-length hemagglutinin (HA) of prototype influenza B viruses can complement the function of multiple influenza A viruses. We show that viral noncoding regions were sufficient to drive gene expression for either type A or B influenza virus with its cognate or heterotypic polymerase. The native influenza B virus HA segment could not be incorporated into influenza A virus virions. However, by adding the influenza A virus packaging signals to full-length influenza B virus glycoproteins, we rescued influenza A viruses that possessed HA, NA, or both HA and NA of influenza B virus. Furthermore, we show that, similar to single-cycle infectious influenza A virus, influenza B virus cannot incorporate heterotypic transgenes due to packaging signal incompatibilities. Altogether, these results demonstrate that the lack of influenza A and B virus reassortants can be attributed at least in part to incompatibilities in the virus-specific packaging signals required for effective segment incorporation into nascent virions. IMPORTANCE: Reassortment of influenza A or B viruses provides an evolutionary strategy leading to unique genotypes, which can spawn influenza A viruses with pandemic potential. However, the mechanism preventing intertypic reassortment or gene exchange between influenza A and B viruses is not well understood. Nucleotides comprising the coding termini of each influenza A virus gene segment are required for specific segment incorporation during budding. Whether influenza B virus shares a similar selective packaging strategy or if packaging signals prevent intertypic reassortment remains unknown. Here, we provide evidence suggesting a similar mechanism of influenza B virus genome packaging. Furthermore, by appending influenza A virus packaging signals onto influenza B virus segments, we rescued recombinant influenza A/B viruses that could reassort in vitro with another influenza A virus. These findings suggest that the divergent evolution of packaging signals aids with the speciation of influenza A and B viruses and is in part responsible for the lack of intertypic viral reassortment.


Asunto(s)
Virus de la Influenza A/fisiología , Virus de la Influenza B/fisiología , Gripe Humana/virología , Virus Reordenados/fisiología , Ensamble de Virus , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Virus de la Influenza A/genética , Virus de la Influenza B/genética , Virus Reordenados/genética , Recombinación Genética
10.
J Virol ; 87(15): 8591-605, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23720727

RESUMEN

Despite countermeasures against influenza virus that prevent (vaccines) and treat (antivirals) infection, this upper respiratory tract human pathogen remains a global health burden, causing both seasonal epidemics and occasional pandemics. More potent and safe new vaccine technologies would contribute significantly to the battle against influenza and other respiratory infections. Using plasmid-based reverse genetics techniques, we have developed a single-cycle infectious influenza virus (sciIV) with immunoprotective potential. In our sciIV approach, the fourth viral segment, which codes for the receptor-binding and fusion protein hemagglutinin (HA), has been removed. Thus, upon infection of normal cells, although no infectious progeny are produced, the expression of other viral proteins occurs and is immunogenic. Consequently, sciIV is protective against influenza homologous and heterologous viral challenges in a mouse model. Vaccination with sciIV protects in a dose- and replication-dependent manner, which is attributed to both humoral responses and T cells. Safety, immunogenicity, and protection conferred by sciIV vaccination were also demonstrated in ferrets, where this immunization additionally blocked direct and aerosol transmission events. All together, our studies suggest that sciIV may have potential as a broadly protective vaccine against influenza virus.


Asunto(s)
Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Orthomyxoviridae/inmunología , Vacunación/métodos , Animales , Anticuerpos Antivirales/inmunología , Modelos Animales de Enfermedad , Femenino , Hurones , Humanos , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/efectos adversos , Vacunas contra la Influenza/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/mortalidad , Genética Inversa , Análisis de Supervivencia , Linfocitos T/inmunología , Vacunación/efectos adversos , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/efectos adversos , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/efectos adversos , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología
11.
Ann N Y Acad Sci ; 1522(1): 60-73, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36722473

RESUMEN

Respiratory viruses are a common cause of morbidity and mortality around the world. Viruses like influenza, RSV, and most recently SARS-CoV-2 can rapidly spread through a population, causing acute infection and, in vulnerable populations, severe or chronic disease. Developing effective treatment and prevention strategies often becomes a race against ever-evolving viruses that develop resistance, leaving therapy efficacy either short-lived or relevant for specific viral strains. On June 29 to July 2, 2022, researchers met for the Keystone symposium "Respiratory Viruses: New Frontiers." Researchers presented new insights into viral biology and virus-host interactions to understand the mechanisms of disease and identify novel treatment and prevention approaches that are effective, durable, and broad.


Asunto(s)
COVID-19 , Gripe Humana , Infecciones por Virus Sincitial Respiratorio , Humanos , COVID-19/patología , COVID-19/virología , Interacciones Microbiota-Huesped , Gripe Humana/patología , Gripe Humana/virología , Infecciones por Virus Sincitial Respiratorio/patología , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitiales Respiratorios , SARS-CoV-2
12.
Elife ; 82019 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-31179971

RESUMEN

The evolutionary history of ANP32 proteins impacts how influenza virus jumps from birds to mammals.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Orthomyxoviridae , Animales , Proteínas de Unión al ARN , Proteínas Virales
13.
Cell Rep ; 29(8): 2175-2183.e4, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31747592

RESUMEN

All viruses balance interactions between cellular machinery co-opted to support replication and host factors deployed to halt the infection. We use gene correlation analysis to perform an unbiased screen for host factors involved in influenza A virus (FLUAV) infection. Our screen identifies the cellular factor epidermal growth factor receptor pathway substrate 8 (EPS8) as the highest confidence pro-viral candidate. Knockout and overexpression of EPS8 confirm its importance in enhancing FLUAV infection and titers. Loss of EPS8 does not affect virion attachment, uptake, or fusion. Rather, our data show that EPS8 specifically functions during virion uncoating. EPS8 physically associates with incoming virion components, and subsequent nuclear import of released ribonucleoprotein complexes is significantly delayed in the absence of EPS8. Our study identifies EPS8 as a host factor important for uncoating, a crucial step of FLUAV infection during which the interface between the virus and host is still being discovered.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Virus de la Influenza A/patogenicidad , Proteínas Adaptadoras Transductoras de Señales/genética , Humanos , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Virión/genética , Virión/metabolismo
14.
Cell Rep ; 24(10): 2581-2588.e4, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30184493

RESUMEN

Adaptation of viruses to their hosts can result in specialization and a restricted host range. Species-specific polymorphisms in the influenza virus polymerase restrict its host range during transmission from birds to mammals. ANP32A was recently identified as a cellular co-factor affecting polymerase adaption and activity. Avian influenza polymerases require ANP32A containing an insertion resulting from an exon duplication uniquely encoded in birds. Here we find that natural splice variants surrounding this exon create avian ANP32A proteins with distinct effects on polymerase activity. We demonstrate species-independent direct interactions between all ANP32A variants and the PB2 polymerase subunit. This interaction is enhanced in the presence of viral genomic RNA. In contrast, only avian ANP32A restored ribonucleoprotein complex assembly for a restricted polymerase by enhancing RNA synthesis. Our data suggest that ANP32A splicing variation among birds differentially affects viral replication, polymerase adaption, and the potential of avian hosts to be reservoirs.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Orthomyxoviridae/genética , Orthomyxoviridae/patogenicidad , Empalme del ARN/genética , Proteínas Virales/metabolismo , Animales , Aves , Línea Celular , Exones/genética , Técnica del Anticuerpo Fluorescente , Humanos , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intracelular/genética , Unión Proteica/genética , Unión Proteica/fisiología , ARN Viral/genética , ARN Viral/metabolismo , Proteínas Virales/genética
15.
Elife ; 62017 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-28758638

RESUMEN

Influenza virus expresses transcripts early in infection and transitions towards genome replication at later time points. This process requires de novo assembly of the viral replication machinery, large ribonucleoprotein complexes (RNPs) composed of the viral polymerase, genomic RNA and oligomeric nucleoprotein (NP). Despite the central role of RNPs during infection, the factors dictating where and when they assemble are poorly understood. Here we demonstrate that human protein kinase C (PKC) family members regulate RNP assembly. Activated PKCδ interacts with the polymerase subunit PB2 and phospho-regulates NP oligomerization and RNP assembly during infection. Consistent with its role in regulating RNP assembly, knockout of PKCδ impairs virus infection by selectively disrupting genome replication. However, primary transcription from pre-formed RNPs deposited by infecting particles is unaffected. Thus, influenza virus exploits host PKCs to regulate RNP assembly, a step required for the transition from primary transcription to genome replication during the infectious cycle.


Asunto(s)
Interacciones Huésped-Patógeno , Subtipo H1N1 del Virus de la Influenza A/genética , Proteína Quinasa C-delta/genética , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética , Ribonucleoproteínas/genética , Proteínas Virales/genética , Replicación Viral , Células A549 , Animales , Perros , Regulación de la Expresión Génica , Células HEK293 , Humanos , Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Células de Riñón Canino Madin Darby , Modelos Moleculares , Mutación , Fosforilación , Unión Proteica , Conformación Proteica , Proteína Quinasa C-delta/metabolismo , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Ribonucleoproteínas/metabolismo , Transducción de Señal , Transcripción Genética , Proteínas Virales/metabolismo
16.
Viruses ; 8(7)2016 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-27347991

RESUMEN

Influenza A viruses (IAV) cause annual seasonal human respiratory disease epidemics. In addition, IAV have been implicated in occasional pandemics with inordinate health and economic consequences. Studying IAV, in vitro or in vivo, requires the use of laborious secondary methodologies to identify virus-infected cells. To circumvent this requirement, replication-competent IAV expressing an easily traceable reporter protein can be used. Here we discuss the development and applications of recombinant replication-competent IAV harboring diverse fluorescent or bioluminescent reporter genes in different locations of the viral genome. These viruses have been employed for in vitro and in vivo studies, such as the screening of neutralizing antibodies or antiviral compounds, the identification of host factors involved in viral replication, cell tropism, the development of vaccines, or the assessment of viral infection dynamics. In summary, reporter-expressing, replicating-competent IAV represent a powerful tool for the study of IAV both in vitro and in vivo.


Asunto(s)
Expresión Génica , Genes Reporteros , Virus de la Influenza A/genética , Virus de la Influenza A/fisiología , Coloración y Etiquetado/métodos , Replicación Viral , Humanos , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/genética , Recombinación Genética , Genética Inversa , Virología/métodos
17.
Virus Res ; 216: 26-40, 2016 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-26220478

RESUMEN

The diverse host range, high transmissibility, and rapid evolution of influenza A viruses justify the importance of containing pathogenic viruses studied in the laboratory. Other than physically or mechanically changing influenza A virus containment procedures, modifying the virus to only replicate for a single round of infection similarly ensures safety and consequently decreases the level of biosafety containment required to study highly pathogenic members in the virus family. This biological containment is more ideal because it is less apt to computer, machine, or human error. With many necessary proteins that can be deleted, generation of single-cycle infectious influenza A viruses (sciIAV) can be achieved using a variety of approaches. Here, we review the recent burst in sciIAV generation and summarize the applications and findings on this important human pathogen using biocontained viral mimics.


Asunto(s)
Virus de la Influenza A/fisiología , Gripe Humana/virología , Animales , Humanos , Virus de la Influenza A/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral
18.
PLoS One ; 11(6): e0156906, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27272307

RESUMEN

Influenza A virus is a significant public health threat, but little is understood about the viral RNA structure and function. Current vaccines and therapeutic options to control influenza A virus infections are mostly protein-centric and of limited effectiveness. Here, we report using an ensemble defect approach to design mutations to misfold regions of conserved mRNA structures in influenza A virus segments 7 and 8. Influenza A mutant viruses inhibit pre-mRNA splicing and attenuate viral replication in cell culture, thus providing evidence for functions of the targeted regions. Targeting these influenza A viral RNA regions provides new possibilities for designing vaccines and therapeutics against this important human respiratory pathogen. The results also demonstrate that the ensemble defect approach is an efficient way to test for function of RNA sequences.


Asunto(s)
Virus de la Influenza A/fisiología , Mutación , ARN Viral/química , ARN Viral/genética , Células A549 , Animales , Técnicas de Cultivo de Célula , Secuencia Conservada , Perros , Células HEK293 , Humanos , Virus de la Influenza A/genética , Células de Riñón Canino Madin Darby , Modelos Moleculares , Conformación de Ácido Nucleico , Pliegue del ARN , Empalme del ARN , Replicación Viral
19.
PLoS One ; 11(1): e0147723, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26809059

RESUMEN

Influenza A and B viruses (IAV and IBV, respectively) cause annual seasonal human respiratory disease epidemics. In addition, IAVs have been implicated in occasional pandemics with inordinate health and economic consequences. Studying influenza viruses in vitro or in vivo requires the use of laborious secondary methodologies to identify infected cells. To circumvent this requirement, replication-competent infectious influenza viruses expressing an easily traceable fluorescent reporter protein can be used. Timer is a fluorescent protein that undergoes a time-dependent color emission conversion from green to red. The rate of spectral change is independent of Timer protein concentration and can be used to chronologically measure the duration of its expression. Here, we describe the generation of replication-competent IAV and IBV where the viral non-structural protein 1 (NS1) was fused to the fluorescent dynamic Timer protein. Timer-expressing IAV and IBV displayed similar plaque phenotypes and growth kinetics to wild-type viruses in tissue culture. Within infected cells, Timer's spectral shift can be used to measure the rate and cell-to-cell spread of infection using fluorescent microscopy, plate readers, or flow cytometry. The progression of Timer-expressing IAV infection was also evaluated in a mouse model, demonstrating the feasibility to characterize IAV cell-to-cell infections in vivo. By providing the ability to chronologically track viral spread, Timer-expressing influenza viruses are an excellent option to evaluate the in vitro and in vivo dynamics of viral infection.


Asunto(s)
Virus de la Influenza A/fisiología , Virus de la Influenza B/fisiología , Gripe Humana/metabolismo , Proteínas Luminiscentes/metabolismo , Animales , Perros , Células HEK293 , Humanos , Virus de la Influenza A/genética , Virus de la Influenza B/genética , Gripe Humana/genética , Proteínas Luminiscentes/genética , Replicación Viral/genética , Replicación Viral/fisiología
20.
Virus Res ; 225: 1-9, 2016 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-27596738

RESUMEN

Influenza virus neuraminidase (NA) plays a pivotal role during viral growth since its sialidase activity allows the efficient release of nascent virions from infected cells. Consequently, mutations in the NA catalytic site affecting sialic acid (SA) cleavage may influence the biological properties of influenza viruses. This study reports two amino acid substitutions (N386K and P431S) in the NA of the influenza A(H1N1)pdm09 virus that emerged in 2009 in Mexico. The NA sialidase activity to cleave SA-like substrates, and viral growth were examined and the mutant viruses had various deficiencies. NA mutations N386K and P431S together or separately, and in the presence or absence of H275Y were further evaluated using recombinant influenza A/California/04/2009 (pH1N1) viruses containing single, double, or triple mutations. Viral growth was reduced in the presence of mutation P431S alone or combined with N386K and/or H275Y. Substrates hydrolysis was reduced when recombinant pH1N1 viruses were analyzed by NA inhibitory assays. Moreover, elution assays with guinea pig red blood cells indicated an unbalanced hemagglutinin (HA):NA functionality. Altogether, our data underline the functional significance of mutations at highly conserved sites in influenza virus NA glycoprotein and the occurrence of permissive mutations to compensate virus viability in vitro.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/enzimología , Subtipo H1N1 del Virus de la Influenza A/genética , Mutación , Neuraminidasa/genética , Neuraminidasa/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Sustitución de Aminoácidos , Animales , Antivirales/farmacología , Línea Celular , Relación Dosis-Respuesta a Droga , Activación Enzimática , Cobayas , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA