Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 8296, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097654

RESUMEN

Reservoir computing is a concept involving mapping signals onto a high-dimensional phase space of a dynamical system called "reservoir" for subsequent recognition by an artificial neural network. We implement this concept in a nanodevice consisting of a sandwich of a semiconductor phonon waveguide and a patterned ferromagnetic layer. A pulsed write-laser encodes input signals into propagating phonon wavepackets, interacting with ferromagnetic magnons. The second laser reads the output signal reflecting a phase-sensitive mix of phonon and magnon modes, whose content is highly sensitive to the write- and read-laser positions. The reservoir efficiently separates the visual shapes drawn by the write-laser beam on the nanodevice surface in an area with a size comparable to a single pixel of a modern digital camera. Our finding suggests the phonon-magnon interaction as a promising hardware basis for realizing on-chip reservoir computing in future neuromorphic architectures.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(2 Pt 2): 026311, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18352126

RESUMEN

A generalized model for the behavior of the stress tensor in non-Newtonian fluids is investigated for spatially homogeneous plane Couette flow, showing a variety of nonlinear responses and deterministic chaos. Mapping of chaotic solutions is achieved through the largest Lyapunov exponent for the two main parameters: The shear rate and the temperature and/or density. Bifurcation diagrams and stability analysis are used to reveal some of the rich dynamics that can be found. Suggested mechanisms for stability loss in these complex fluids include Hopf, saddle-node, and period-doubling bifurcations.

3.
Artículo en Inglés | MEDLINE | ID: mdl-26382480

RESUMEN

We investigate the onset of broadband microwave chaos in the miniband semiconductor superlattice coupled to an external resonator. Our analysis shows that the transition to chaos, which is confirmed by calculation of Lyapunov exponents, is associated with the intermittency scenario. The evolution of the laminar phases and the corresponding Poincare maps with variation of a supercriticality parameter suggest that the observed dynamics can be classified as type I intermittency. We study the spatiotemporal patterns of the charge concentration and discuss how the frequency band of the chaotic current oscillations in semiconductor superlattice depends on the voltage applied.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA