Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 34(5): 1684-1708, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35134217

RESUMEN

As a critical part of plant immunity, cells that are attacked by pathogens undergo rapid transcriptional reprogramming to minimize virulence. Many bacterial phytopathogens use type III effector (T3E) proteins to interfere with plant defense responses, including this transcriptional reprogramming. Here, we show that Xanthomonas outer protein S (XopS), a T3E of Xanthomonas campestris pv. vesicatoria (Xcv), interacts with and inhibits proteasomal degradation of WRKY40, a transcriptional regulator of defense gene expression. Virus-induced gene silencing of WRKY40 in pepper (Capsicum annuum) enhanced plant tolerance to Xcv infection, indicating that WRKY40 represses immunity. Stabilization of WRKY40 by XopS reduces the expression of its targets, which include salicylic acid-responsive genes and the jasmonic acid signaling repressor JAZ8. Xcv bacteria lacking XopS display significantly reduced virulence when surface inoculated onto susceptible pepper leaves. XopS delivery by Xcv, as well as ectopic expression of XopS in Arabidopsis thaliana or Nicotiana benthamiana, prevented stomatal closure in response to bacteria and biotic elicitors. Silencing WRKY40 in pepper or N. benthamiana abolished XopS's ability to prevent stomatal closure. This suggests that XopS interferes with both preinvasion and apoplastic defense by manipulating WRKY40 stability and downstream gene expression, eventually altering phytohormone crosstalk to promote pathogen proliferation.


Asunto(s)
Arabidopsis , Capsicum , Xanthomonas campestris , Xanthomonas , Arabidopsis/metabolismo , Capsicum/genética , Capsicum/metabolismo , Capsicum/microbiología , Muerte Celular/genética , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/microbiología , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteína S/genética , Proteína S/metabolismo , Xanthomonas campestris/metabolismo
2.
BMC Plant Biol ; 23(1): 328, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37340342

RESUMEN

BACKGROUND: New vegetable production systems, such as vertical farming, but also well-established in-door production methods led to the implementation of light emitting diodes (LEDs). LEDs are the most important light sources in modern indoor-production systems and offer the possibility for enhancing growth and specific metabolites in planta. Even though the number of studies investigating the effects of LED lighting on vegetable quality has increased, the knowledge about genus variability is limited. In the present study, the effect of different LED spectra on the metabolic and transcriptional level of the carotenoid metabolism in five different Brassica sprouts was investigated. Cruciferous vegetables are one of the main food crops worldwide. Pak choi (Brassica rapa ssp. chinensis), cauliflower (Brassica oleracea var. botrytis), Chinese cabbage (Brassica rapa ssp. pekinensis), green kale (Brassica oleracea ssp. sabellica) and turnip cabbage (Brassica oleracea spp. gongylodes) sprouts were grown under a combination of blue & white LEDs, red & white LEDs or only white LEDs to elucidate the genus-specific carotenoid metabolism. RESULTS: Genus-specific changes in plant weight and on the photosynthetic pigment levels as well as transcript levels have been detected. Interestingly, the transcript levels of the three investigated carotenoid biosynthesis genes phytoene synthase (PSY), ß-cyclase (ßLCY) and ß-carotene hydroxylase (ßOHASE1) were increased under the combination of blue & white LEDs in the majority of the Brassica sprouts. However, only in pak choi, the combination of blue & white LEDs enhanced the carotenoid levels by 14% in comparison to only white LEDs and by ~ 19% in comparison to red & white LEDs. CONCLUSIONS: The effects of light quality differ within a genus which leads to the conclusion that production strategies have to be developed for individual species and cultivars to fully benefit from LED technology.


Asunto(s)
Brassica rapa , Brassica , Brassica/genética , Brassica/metabolismo , Carotenoides/metabolismo , Brassica rapa/genética , Luz , Expresión Génica
3.
Chem Res Toxicol ; 36(11): 1753-1767, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37875262

RESUMEN

Methyleugenol (ME), found in numerous plants and spices, is a rodent carcinogen and is classified as "possibly carcinogenic to humans". The hypothesis of a carcinogenic risk for humans is supported by the observation of ME-derived DNA adducts in almost all human liver and lung samples examined. Therefore, a risk assessment of ME is needed. Unfortunately, biomarkers of exposure for epidemiological studies are not yet available. We hereby present the first detection of N-acetyl-l-cysteine conjugates (mercapturic acids) of ME in human urine samples after consumption of a popular ME-containing meal, pasta with basil pesto. We synthesized mercapturic acid conjugates of ME, identified the major product as N-acetyl-S-[3'-(3,4-dimethoxyphenyl)allyl]-l-cysteine (E-3'-MEMA), and developed methods for its extraction and LC-MS/MS quantification in human urine. For conducting an exposure study in humans, a basil cultivar with a suitable ME content was grown for the preparation of basil pesto. A defined meal containing 100 g of basil pesto, corresponding to 1.7 mg ME, was served to 12 participants, who collected the complete urine at defined time intervals for 48 h. Using d6-E-3'-MEMA as an internal standard for LC-MS/MS quantification, we were able to detect E-3'-MEMA in urine samples of all participants collected after the ME-containing meal. Excretion was maximal between 2 and 6 h after the meal and was completed within about 12 h (concentrations below the limit of detection). Excreted amounts were only between 1 and 85 ppm of the ME intake, indicating that the ultimate genotoxicant, 1'-sulfooxy-ME, is formed to a subordinate extent or is not efficiently detoxified by glutathione conjugation and subsequent conversion to mercapturic acids. Both explanations may apply cumulatively, with the ubiquitous detection of ME DNA adducts in human lung and liver specimens arguing against an extremely low formation of 1'-sulfooxy-ME. Taken together, we hereby present the first noninvasive human biomarker reflecting an internal exposure toward reactive ME species.


Asunto(s)
Acetilcisteína , Ocimum basilicum , Animales , Humanos , Acetilcisteína/orina , Carcinógenos , Roedores , Cromatografía Liquida , Aductos de ADN , Espectrometría de Masas en Tándem
4.
Photochem Photobiol Sci ; 21(11): 1947-1959, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35895283

RESUMEN

Carotenoids have the potential to improve the human health which leads to an increasing consumer demand for carotenoid-rich vegetables. The implementation of new, less energy-consuming vegetable production systems using artificial light such as light-emitting diodes (LEDs) is essential. In the present study, pak choi (Brassica rapa ssp. chinensis 'Black Behi') sprouts were grown under a combination of blue and white LEDs, red and white LEDs or only white LEDs for 7 days. Total carotenoid levels of ~ 700 ng/mg DM were measured under white LEDs. The combination of blue and white LEDs increased the carotenoid levels by ~ 15% in comparison to only white LEDs, while red and white LEDs reduced them. The transcript levels of important carotenoid metabolism-related genes were enhanced under blue and white LEDs. Phytoene measurement after Norflurazon-treatment, a phytoene desaturase inhibitor, revealed that phytoene increased by 38% (37.5 µM Norflurazon) and by 56% (50.0 µM Norflurazon) after growth under blue and white LEDs in comparison to only white LEDs suggesting an up-regulation of the upper carotenoid biosynthetic pathway. Thus, the transcript levels and the enhanced phytoene levels correlated well with the higher accumulation of carotenoids under blue and white LEDs. Furthermore, a comparison to sprouts grown under blue LEDs without additional white LEDs showed that blue light alone does not increase the phytoene levels after Norflurazon-treatment. Overall, this study demonstrated a beneficial effect of a higher blue light percentage in growing carotenoid-rich pak choi sprouts, and implies that an increased biosynthesis within the upper carotenoid biosynthetic pathway is responsible for the enhanced carotenoid accumulation.


Asunto(s)
Brassica rapa , Humanos , Carotenoides/metabolismo , Luz , Vías Biosintéticas
5.
Plant Physiol ; 180(3): 1598-1613, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31015300

RESUMEN

In nature, plants interact with numerous beneficial or pathogenic soil-borne microorganisms. Plants have developed various defense strategies to expel pathogenic microbes, some of which function soon after pathogen infection. We used Medicago truncatula and its oomycete pathogen Aphanomyces euteiches to elucidate early responses of the infected root. A. euteiches causes root rot disease in legumes and is a limiting factor in legume production. Transcript profiling of seedlings and adult plant roots inoculated with A. euteiches zoospores for 2 h revealed specific upregulation of a gene encoding a putative sesquiterpene synthase (M. truncatula TERPENE SYNTHASE 10 [MtTPS10]) in both developmental stages. MtTPS10 was specifically expressed in roots upon oomycete infection. Heterologous expression of MtTPS10 in yeast led to production of a blend of sesquiterpenes and sesquiterpene alcohols, with NMR identifying a major peak corresponding to himalachol. Moreover, plants carrying a tobacco (Nicotiana tabacum) retrotransposon Tnt1 insertion in MtTPS10 lacked the emission of sesquiterpenes upon A. euteiches infection, supporting the assumption that the identified gene encodes a multiproduct sesquiterpene synthase. Mttps10 plants and plants with reduced MtTPS10 transcript levels created by expression of an MtTPS10-artificial microRNA in roots were more susceptible to A. euteiches infection than were the corresponding wild-type plants and roots transformed with the empty vector, respectively. Sesquiterpenes produced by expression of MtTPS10 in yeast also inhibited mycelial growth and A. euteiches zoospore germination. These data suggest that sesquiterpene production in roots by MtTPS10 plays a previously unrecognized role in the defense response of M. truncatula against A. euteiches.


Asunto(s)
Transferasas Alquil y Aril/genética , Resistencia a la Enfermedad/genética , Medicago truncatula/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Raíces de Plantas/genética , Transferasas Alquil y Aril/metabolismo , Aphanomyces/fisiología , Perfilación de la Expresión Génica/métodos , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , Medicago truncatula/enzimología , Medicago truncatula/microbiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Raíces de Plantas/enzimología , Raíces de Plantas/microbiología , Sesquiterpenos/metabolismo
6.
Molecules ; 23(5)2018 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-29772774

RESUMEN

Many biochemical processes are involved in regulating the consecutive transition of different phases of dormancy in sweet cherry buds. An evaluation based on a metabolic approach has, as yet, only been partly addressed. The aim of this work, therefore, was to determine which plant metabolites could serve as biomarkers for the different transitions in sweet cherry buds. The focus here was on those metabolites involved in oxidation-reduction processes during bud dormancy, as determined by targeted and untargeted mass spectrometry-based methods. The metabolites addressed included phenolic compounds, ascorbate/dehydroascorbate, reducing sugars, carotenoids and chlorophylls. The results demonstrate that the content of phenolic compounds decrease until the end of endodormancy. After a long period of constancy until the end of ecodormancy, a final phase of further decrease followed up to the phenophase open cluster. The main phenolic compounds were caffeoylquinic acids, coumaroylquinic acids and catechins, as well as quercetin and kaempferol derivatives. The data also support the protective role of ascorbate and glutathione in the para- and endodormancy phases. Consistent trends in the content of reducing sugars can be elucidated for the different phenophases of dormancy, too. The untargeted approach with principle component analysis (PCA) clearly differentiates the different timings of dormancy giving further valuable information.


Asunto(s)
Metabolismo Energético , Flores/crecimiento & desarrollo , Oxidación-Reducción , Latencia en las Plantas , Prunus avium/fisiología , Antioxidantes/metabolismo , Cromatografía Liquida , Espectrometría de Masas , Fenoles/metabolismo
7.
J Sci Food Agric ; 97(14): 4865-4871, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28382622

RESUMEN

BACKGROUND: Production and the quality of tomato fruits have a strong economic relevance. Microorganisms such as the plant growth-promoting bacterium (PGPB) Kosakonia radicincitans (DSM 16656) have been demonstrated to improve shoot and root growth of young tomato plants, but data on yield increase and fruit quality by K. radicincitans are lacking. RESULTS: This study investigated how K. radicincitans affects tomato fruits. After inoculation of tomato seeds with K. radicincitans or a sodium chloride buffer control solution, stalk length, first flowering and the amount of ripened fruits produced by inoculated and non-inoculated plants were monitored over a period of 21 weeks. Inoculation of tomato seeds with K. radicincitans accelerated flowering and ripening of tomato fruits. Sugars, acidity, amino acids, volatile organic compounds and carotenoids in the fruits were also analyzed. CONCLUSION: It was found that the PGPB K. radicincitans affected the amino acid, sugar and volatile composition of ripened fruits, contributing to a more pleasant-tasting fruit without forfeiting selected quality indicators. © 2017 Society of Chemical Industry.


Asunto(s)
Enterobacteriaceae/fisiología , Frutas/crecimiento & desarrollo , Solanum lycopersicum/microbiología , Inoculantes Agrícolas/fisiología , Aminoácidos/análisis , Frutas/química , Frutas/microbiología , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/química , Solanum lycopersicum/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Semillas/microbiología , Compuestos Orgánicos Volátiles/análisis
8.
J Org Chem ; 79(15): 6808-15, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25026389

RESUMEN

This study is focused on the synthesis and characterization of hydroxy-apo-10'-carotenal/quantum dot (QD) conjugates aiming at the in vivo visualization of ß-ionone, a carotenoid-derived volatile compound known for its important contribution to the flavor and aroma of many fruits, vegetables, and plants. The synthesis of nanoparticles bound to plant volatile precursors was achieved via coupling reaction of the QD to C27-aldehyde which was prepared from α-ionone via 12 steps in 2.4% overall yield. The formation of the QD-conjugate was confirmed by measuring its fluorescence spectrum to observe the occurrence of fluorescence resonance energy transfer.


Asunto(s)
Aldehídos/química , Carotenoides/síntesis química , Nanopartículas/química , Norisoprenoides/química , Puntos Cuánticos/química , Carotenoides/química , Transferencia Resonante de Energía de Fluorescencia
9.
Mycorrhiza ; 24(7): 565-70, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24706008

RESUMEN

Moringa is a mycorrhizal crop cultivated in the tropics and subtropics and appreciated for its nutritive and health-promoting value. As well as improving plant mineral nutrition, arbuscular mycorrhizal fungi (AMF) can affect plant synthesis of compounds bioactive against chronic diseases in humans. Rhizophagus intraradices and Funneliformis mosseae were used in a full factorial experiment to investigate the impact of AMF on the accumulation of glucosinolates, flavonoids, phenolic acids, carotenoids, and mineral elements in moringa leaves. Levels of glucosinolates were enhanced, flavonoids and phenolic acids were not affected, levels of carotenoids (including provitamin A) were species-specifically reduced, and mineral elements were affected differently, with only Cu and Zn being increased by the AMF. This study presents novel results on AMF effects on glucosinolates in leaves and supports conclusions that the impacts of these fungi on microelement concentrations in edible plants are species dependent. The nonspecific positive effects on glucosinolates and the species-specific negative effects on carotenoids encourage research on other AMF species to achieve general benefits on bioactive compounds in moringa.


Asunto(s)
Glomeromycota/crecimiento & desarrollo , Glucosinolatos/análisis , Minerales/análisis , Moringa oleifera/química , Moringa oleifera/microbiología , Micorrizas/crecimiento & desarrollo , Carotenoides/análisis , Elementos Químicos , Flavonoides/análisis , Hidroxibenzoatos/análisis , Hojas de la Planta/química
10.
ScientificWorldJournal ; 2014: 289780, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24592162

RESUMEN

Green algae are of great economic importance. Seaweed is consumed fresh or as seasoning in Japan. The commercial value is determined by quality, color, and flavor and is also strongly influenced by the production area. Our research, based on solid phase microextraction gas chromatography mass spectrometry (SPME-GC-MS), has revealed that volatile compounds differ intensely in the four varieties of commercial green algae. Accordingly, 41 major volatile compounds were identified. Heptadecene was the most abundant compound from Okayama (Ulva prolifera), Tokushima (Ulva prolifera), and Ehime prefecture (Ulva linza). Apocarotenoids, such as ionones, and their derivatives were prominent volatiles in algae from Okayama (Ulva prolifera) and Tokushima prefecture (Ulva prolifera). Volatile, short chained apocarotenoids are among the most potent flavor components and contribute to the flavor of fresh, processed algae, and algae-based products. Benzaldehyde was predominant in seaweed from Shizuoka prefecture (Monostroma nitidum). Multivariant statistical analysis (PCA) enabled simple discrimination of the samples based on their volatile profiles. This work shows the potential of SPME-GC-MS coupled with multivariant analysis to discriminate between samples of different geographical and botanical origins and form the basis for development of authentication methods of green algae products, including seasonings.


Asunto(s)
Alquenos/análisis , Benzaldehídos/análisis , Biotecnología , Carotenoides/análisis , Aceites Volátiles/análisis , Ulva/química , Cromatografía de Gases y Espectrometría de Masas
11.
Food Res Int ; 175: 113713, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38128982

RESUMEN

Strip/needle green teas (SGT/NGT) processed using innovative technologies are in high demand; however, mechanisms behind their color and flavor have not been comprehensively studied. We aimed to reveal the dynamics of major pigmented components (carotenoids, lipids, flavonoids, and Maillard products) and their contributions to the flavor of green teas. The total content of flavonoids in SGT and NGT were 255 ± 4.51 and 201 ± 3.91 mg·g-1, respectively; these values are slightly lower than that in fresh leaves (FLs), resulting in a fresh and sweet aftertaste. In average, carotene content in SGT/NGT (24.8 µg·g-1) was higher than in FL (17.4 µg·g-1), whilst xanthophyll content (603 µg·g-1) decreased to one-half of that in FL (310 µg·g-1). Among the 218 primary metabolites, glutamine, glutamic acid, and arginine were found to accumulate and were dominate contributors for the umami and sweet taste. Notably, more than 96 volatiles were screened and revealed their correlations with carotenoids, lipids, and amino acids. Overall, the synergism between pigments and their non-enzymatic derivates' contribution to GT characterized flavor was illustrated.


Asunto(s)
Camellia sinensis , , Té/química , Camellia sinensis/química , Flavonoides/análisis , Carotenoides , Lípidos
12.
Food Res Int ; 187: 114392, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763654

RESUMEN

Variations in cultivars and cultivation altitudes have significant impacts on tea flavour compounds however lack of comprehensive understanding. This study provided insights into differential accumulation of crucial flavour compounds in response to cultivars, cultivation altitudes, and processing. Twelve flavonoids (262.4 âˆ¼ 275.4 mg•g-1) and 20 amino acids (AAs) (56.5 âˆ¼ 64.8 mg•g-1) were comparative analyzed in 'Longjing 43' and 'Qunti' fresh leaves harvested at low (80 m, LA) and high (500 m, HA) altitudes. Additionally, an in-depth correlation unravelling of 31 alkaloids, 25 fatty acids, 31 saccharides, 8 organic acids, and 7 vitamins and flavonoids/AAs during green tea (GT) and black tea (BT) processing was performed. Enhenced flavonoid accumulation alongside higher AAs and saccharides in HA GT promoted a sweet/mellow flavour. Abundant flavonoids, AAs, and saccharides derivates in LA BT gave rise to a sweet aftertaste. The study presents an integrated illustration of major flavour compounds' differential accumulation patterns and their interrelations, providing new insights into the influence of cultivation conditions on tea flavour.


Asunto(s)
Altitud , Camellia sinensis , Flavonoides , Hojas de la Planta , , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Flavonoides/análisis , Té/química , Camellia sinensis/química , Camellia sinensis/crecimiento & desarrollo , Camellia sinensis/metabolismo , Gusto , Aminoácidos/análisis , Aminoácidos/metabolismo , Manipulación de Alimentos/métodos , Aromatizantes/análisis , Alcaloides/análisis , Alcaloides/metabolismo
13.
Nutrients ; 16(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38474753

RESUMEN

This study explores age- and time-dependent variations in postprandial micronutrient absorption after a micronutrient-rich intervention meal within the Biomiel (bioavailability of micronutrients in elderly) study. Comprising 43 healthy participants, the study compares young (n = 21; mean age 26.90 years) and old (n = 22; mean age 66.77 years) men and women, analyzing baseline concentrations and six-hour postprandial dynamics of iron (Fe), copper (Cu), zinc (Zn), selenium (Se), iodine (I), free zinc (fZn), vitamin C, retinol, lycopene, ß-carotene, α-tocopherol, and γ-tocopherol, along with 25(OH) vitamin D (quantified only at baseline). Methodologically, quantifications in serum or plasma were performed at baseline and also at 90, 180, 270, and 360 min postprandially. Results reveal higher baseline serum Zn and plasma lycopene concentrations in the young group, whereas Cu, Se, Cu/Zn ratio, 25(OH) vitamin D, α-tocopherol, and γ-tocopherol were higher in old participants. Postprandial variability of Zn, vitamin C, and lycopene showed a strong time-dependency. Age-related differences in postprandial metabolism were observed for Se, Cu, and I. Nevertheless, most of the variance was explained by individuality. Despite some limitations, this study provides insights into postprandial micronutrient metabolism (in serum/plasma), emphasizing the need for further research for a comprehensive understanding of this complex field. Our discoveries offer valuable insights for designing targeted interventions to address and mitigate micronutrient deficiencies in older adults, fostering optimal health and well-being across the lifespan.


Asunto(s)
Selenio , Oligoelementos , Masculino , Humanos , Femenino , Anciano , Adulto , Micronutrientes , Licopeno , alfa-Tocoferol , Carotenoides , gamma-Tocoferol , Vitaminas , Vitamina A , Zinc , Ácido Ascórbico , Vitamina D
14.
J Sci Food Agric ; 93(7): 1660-4, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23152164

RESUMEN

BACKGROUND: Carotenoids are a major class of plant pigments and fulfill many functions in different organisms that either produce or consume them. Although the color of the stamina of tea (Camellia sinensis) flowers is clearly due to the presence of carotenoids, the carotenoid profile and content remain to be discovered. RESULTS: We investigated the carotenoid profile of tea flowers and determined changes in concentrations over the floral development. The flowers contained oxygenated xanthophylls such as neoxanthin, lutein and zeaxanthin, as well as the hydrocarbons ß-carotene and α-carotene. Flowers of the tea plant contain to vegetables comparable amounts of carotenoids. The content of 9'-cis-epoxycarotenoids, which serve as abscisic acid precursors, as well as changes in concentration of abscisic acid were studied. The concentrations of carotenoids decreased whereas the abscisic acid content increased over the floral development. Exogenously applied S-abscisic acid affected water uptake, flower opening and carotenoid accumulation. CONCLUSION: In summary, this paper reports, for the first time, the carotenoid profile and content of tea flowers. The study revealed that carotenoids in tea flowers are an interesting target in respect of possible applications of tea flower extracts as well as biological functions of abscisic acid during floral development.


Asunto(s)
Ácido Abscísico , Camellia sinensis/metabolismo , Carotenoides/metabolismo , Flores/metabolismo , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas , Agua/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Camellia sinensis/efectos de los fármacos , Camellia sinensis/fisiología , Flores/efectos de los fármacos , Flores/fisiología , Desarrollo de la Planta/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , , Xantófilas/metabolismo , beta Caroteno/metabolismo
15.
Front Plant Sci ; 14: 1105162, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37082347

RESUMEN

Given its limited land and water use and the changing climate conditions, indoor farming of halophytes has a high potential to contribute significantly to global agriculture in the future. Notably, indoor farming and classical greenhouse cultivation differ in their light regime between artificial and solar lighting, which can influence plant metabolism, but how this affects the cultivation of halophytes has not yet been investigated. To address this question, we studied the yield and content of abscisic acid, carotenoids, and chlorophylls as well as chloride of three halophyte species (Cochlearia officinalis, Atriplex hortensis, and Salicornia europaea) differing in their salt tolerance mechanisms and following four salt treatments (no salt to 600 mM of NaCl) in two light regimes (greenhouse/indoor farming). In particular, salt treatment had a strong influence on chloride accumulation which is only slightly modified by the light regime. Moreover, fresh and dry mass was influenced by the light regime and salinity. Pigments exhibited different responses to salt treatment and light regime, reflecting their differing functions in the photosynthetic apparatus. We conclude that the interaction of light regime and salt treatment modulates the content of photosynthetic pigments. Our study highlights the potential applications of the cultivation of halophytes for indoor farming and underlines that it is a promising production system, which provides food alternatives for future diets.

16.
J Plant Physiol ; 291: 154124, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37944241

RESUMEN

Halophytes are potential future crops with a valuable nutritional profile. Produced in indoor farming, they are considered to contribute to sustainable and resilient food systems. Indoor farms operate using artificial light. In this context narrowband and low dose UVB radiation can be used to increase plant secondary metabolites, such as carotenoids, and provide an improved nutritional profile for a human diet. UVB radiation can cause eustress or distress in the plant depending on the lighting situation. The aim of this study was to identify the doses of UVB that lead to either eustress or distress and to analyze these responses in Salicornia europaea. Therefore, S. europaea plants were exposed to different UVB radiation levels, low, medium and high, and analyzed for reactive oxygen species (ROS), plant hormones, amino acids, and photosynthetic pigments. High UVB treatment was found to affect phenotype and growth, and the metabolite profile was affected in a UVB dose-dependent manner. Specifically, medium UVB radiation resulted in an increase in carotenoids, whereas high UVB resulted in a decrease. We also observed an altered oxidative stress status and increased SA and decreased ABA contents in response to UVB treatment. This was supported by the results of menadione treatment that induces oxidative stress in plants, which also indicated an altered oxidative stress status in combination with altered carotenoid content. Thus, we show that a moderate dose of UVB can increase the carotenoid content of S. europaea. Furthermore, the UVB stress-dependent response led to a better understanding of carotenoid accumulation upon UVB exposure, which can be used to improve lighting systems and in turn the nutritional profile of future crops in indoor farming.


Asunto(s)
Chenopodiaceae , Plantas Tolerantes a la Sal , Humanos , Rayos Ultravioleta , Carotenoides , Fotosíntesis
17.
Front Plant Sci ; 14: 1124750, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36866364

RESUMEN

In the face of a growing world population and limited land, there is an urgent demand for higher productivity of food crops, and cultivation systems must be adapted to future needs. Sustainable crop production should aim for not only high yields, but also high nutritional values. In particular, the consumption of bioactive compounds such as carotenoids and flavonoids is associated with a reduced incidence of non-transmissible diseases. Modulating environmental conditions by improving cultivation systems can lead to the adaption of plant metabolisms and the accumulation of bioactive compounds. The present study investigates the regulation of carotenoid and flavonoid metabolisms in lettuce (Lactuca sativa var capitate L.) grown in a protected environment (polytunnels) compared to plants grown without polytunnels. Carotenoid, flavonoid and phytohormone (ABA) contents were determined using HPLC-MS and transcript levels of key metabolic genes were analyzed by RT-qPCR. In this study, we observed inverse contents of flavonoids and carotenoids in lettuce grown without or under polytunnels. Flavonoid contents on a total and individual level were significantly lower, while total carotenoid content was higher in lettuce plants grown under polytunnels compared to without. However, the adaptation was specific to the level of individual carotenoids. For instance, the accumulation of the main carotenoids lutein and neoxanthin was induced while the ß-carotene content remained unchanged. In addition, our findings suggest that the flavonoid content of lettuce depends on transcript levels of the key biosynthetic enzyme, which is modulated by UV light. A regulatory influence can be assumed based on the relation between the concentration of the phytohormone ABA and the flavonoid content in lettuce. In contrast, the carotenoid content is not reflected in transcript levels of the key enzyme of either the biosynthetic or the degradation pathway. Nevertheless, the carotenoid metabolic flux determined using norflurazon was higher in lettuce grown under polytunnels, suggesting posttranscriptional regulation of carotenoid accumulation, which should be an integral part of future studies. Therefore, a balance needs to be found between the individual environmental factors, including light and temperature, in order to optimize the carotenoid or flavonoid contents and to obtain nutritionally highly valuable crops in protected cultivation.

18.
Bioengineering (Basel) ; 10(11)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-38002368

RESUMEN

Black scurf disease on potato caused by Rhizoctonia solani AG3 occurs worldwide and is difficult to control. The use of potato cultivars resistant to black scurf disease could be part of an integrated control strategy. Currently, the degree of resistance is based on symptom assessment in the field, but molecular measures could provide a more efficient screening method. We hypothesized that the degree of field resistance to black scurf disease in potato cultivars is associated with defense-related gene expression levels and salicylic acid (SA) concentration. Cultivars with a moderate and severe appearance of disease symptoms on tubers were selected and cultivated in the same field. In addition, experiments were conducted under controlled conditions in an axenic in vitro culture and in a sand culture to analyze the constitutive expression of defense-related genes and SA concentration. The more resistant cultivars did not show significantly higher constitutive expression levels of defense-related genes. Moreover, the level of free SA was increased in the more resistant cultivars only in the roots of the plantlets grown in the sand culture. These results indicate that neither expression levels of defense-related genes nor the amount of SA in potato plants can be used as reliable predictors of the field resistance of potato genotypes to black scurf disease.

19.
Mol Nutr Food Res ; 67(1): e2200619, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36373491

RESUMEN

SCOPE: Epithionitriles can be main glucosinolate hydrolysis products in Brassica vegetables such as cabbage or pak choi. Here, for the first time, the bioavailability and metabolism of longer-chain epithionitriles (C4-C5) is studied in a human intervention study. METHODS AND RESULTS: After consumption of a white cabbage or pak choi sprouts beverage, rich in either 1-cyano-2,3-epithiopropane (CETP) or 1-cyano-3,4-epithiobutane (CETB) and 1-cyano-4,5-epithiopentane (CETPent), blood and urine samples of nine participants are taken and the metabolites are analyzed. The corresponding N-acetyl-S-(cyano-(methylthio)alkyl)-l-cysteine metabolites are identified and quantified by isotope dilution method using UHPLC-TOF-MS. The standards for N-acetyl-S-(cyano-(methylthio)alkyl)-l-cysteine metabolites from CETB and CETPent are synthesized for the first time and their structure confirmed by NMR spectroscopy. In contrast to the metabolites of CETP and CETPent, the expected metabolite of CETB is not detectable. The recoveries of the CETP and CETPent metabolites are 28 ± 9% for CETP and 12 ± 3% for CETPent in urine within 24 h. CONCLUSION: CETP and CETPent are quickly uptaken, metabolized via the mercapturic acid pathway, and excreted via urine, while for CETB the corresponding metabolite is not detectable. Therefore, an additional metabolization pathway seems to exist.


Asunto(s)
Brassica , Glucosinolatos , Humanos , Glucosinolatos/metabolismo , Brassica/química , Verduras , Acetilcisteína
20.
J Sci Food Agric ; 92(10): 2128-32, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22298050

RESUMEN

BACKGROUND: Recently, tea (Camellia sinensis) flowers have attracted increasing interest because of their content of bioactive compounds such as catechins. The aim of this study was to investigate the occurrence of some characteristic compounds in tea flowers. RESULTS: A principal component analysis of metabolites using ultra-performance liquid chromatography/time-of-flight mass spectrometry showed differences in metabolite profile between flowers and leaves of C. sinensis var. Yabukita. Four spermidine derivatives were isolated from tea flowers. One of them was determined as N(1) ,N(5) ,N(10) -tricoumaroyl spermidine based on NMR, MS and UV data. The other three were identified as feruoyl dicoumaroyl spermidine, coumaroyl diferuoyl spermidine and triferuoyl spermidine based on MS(n) data. Tricoumaroyl spermidine as the major spermidine conjugate was not detected in tea leaves. Furthermore, it decreased during floral development and mainly occurred in anthers. CONCLUSION: This study has provided the first evidence that spermidine-phenolic acid conjugates occur in tea flowers in considerable amounts. Their presence should prompt a reconsideration of the ecological role of tea flowers. From an economic point of view, tea flowers might be suitable as a raw material in the healthcare food and pharmaceutical industries.


Asunto(s)
Camellia sinensis/química , Flores/química , Fenoles/análisis , Espermidina/análisis , Fenoles/aislamiento & purificación , Hojas de la Planta/química , Análisis de Componente Principal , Espermidina/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA