Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 618(7964): 252-256, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37286648

RESUMEN

The fast solar wind that fills the heliosphere originates from deep within regions of open magnetic field on the Sun called 'coronal holes'. The energy source responsible for accelerating the plasma is widely debated; however, there is evidence that it is ultimately magnetic in nature, with candidate mechanisms including wave heating1,2 and interchange reconnection3-5. The coronal magnetic field near the solar surface is structured on scales associated with 'supergranulation' convection cells, whereby descending flows create intense fields. The energy density in these 'network' magnetic field bundles is a candidate energy source for the wind. Here we report measurements of fast solar wind streams from the Parker Solar Probe (PSP) spacecraft6 that provide strong evidence for the interchange reconnection mechanism. We show that the supergranulation structure at the coronal base remains imprinted in the near-Sun solar wind, resulting in asymmetric patches of magnetic 'switchbacks'7,8 and bursty wind streams with power-law-like energetic ion spectra to beyond 100 keV. Computer simulations of interchange reconnection support key features of the observations, including the ion spectra. Important characteristics of interchange reconnection in the low corona are inferred from the data, including that the reconnection is collisionless and that the energy release rate is sufficient to power the fast wind. In this scenario, magnetic reconnection is continuous and the wind is driven by both the resulting plasma pressure and the radial Alfvénic flow bursts.

2.
Nature ; 576(7786): 223-227, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31802005

RESUMEN

NASA's Parker Solar Probe mission1 recently plunged through the inner heliosphere of the Sun to its perihelia, about 24 million kilometres from the Sun. Previous studies farther from the Sun (performed mostly at a distance of 1 astronomical unit) indicate that solar energetic particles are accelerated from a few kiloelectronvolts up to near-relativistic energies via at least two processes: 'impulsive' events, which are usually associated with magnetic reconnection in solar flares and are typically enriched in electrons, helium-3 and heavier ions2, and 'gradual' events3,4, which are typically associated with large coronal-mass-ejection-driven shocks and compressions moving through the corona and inner solar wind and are the dominant source of protons with energies between 1 and 10 megaelectronvolts. However, some events show aspects of both processes and the electron-proton ratio is not bimodally distributed, as would be expected if there were only two possible processes5. These processes have been very difficult to resolve from prior observations, owing to the various transport effects that affect the energetic particle population en route to more distant spacecraft6. Here we report observations of the near-Sun energetic particle radiation environment over the first two orbits of the probe. We find a variety of energetic particle events accelerated both locally and remotely including by corotating interaction regions, impulsive events driven by acceleration near the Sun, and an event related to a coronal mass ejection. We provide direct observations of the energetic particle radiation environment in the region just above the corona of the Sun and directly explore the physics of particle acceleration and transport.

3.
Nature ; 576(7786): 228-231, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31802006

RESUMEN

The prediction of a supersonic solar wind1 was first confirmed by spacecraft near Earth2,3 and later by spacecraft at heliocentric distances as small as 62 solar radii4. These missions showed that plasma accelerates as it emerges from the corona, aided by unidentified processes that transport energy outwards from the Sun before depositing it in the wind. Alfvénic fluctuations are a promising candidate for such a process because they are seen in the corona and solar wind and contain considerable energy5-7. Magnetic tension forces the corona to co-rotate with the Sun, but any residual rotation far from the Sun reported until now has been much smaller than the amplitude of waves and deflections from interacting wind streams8. Here we report observations of solar-wind plasma at heliocentric distances of about 35 solar radii9-11, well within the distance at which stream interactions become important. We find that Alfvén waves organize into structured velocity spikes with duration of up to minutes, which are associated with propagating S-like bends in the magnetic-field lines. We detect an increasing rotational component to the flow velocity of the solar wind around the Sun, peaking at 35 to 50 kilometres per second-considerably above the amplitude of the waves. These flows exceed classical velocity predictions of a few kilometres per second, challenging models of circulation in the corona and calling into question our understanding of how stars lose angular momentum and spin down as they age12-14.

4.
Nature ; 576(7786): 237-242, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31802007

RESUMEN

During the solar minimum, when the Sun is at its least active, the solar wind1,2 is observed at high latitudes as a predominantly fast (more than 500 kilometres per second), highly Alfvénic rarefied stream of plasma originating from deep within coronal holes. Closer to the ecliptic plane, the solar wind is interspersed with a more variable slow wind3 of less than 500 kilometres per second. The precise origins of the slow wind streams are less certain4; theories and observations suggest that they may originate at the tips of helmet streamers5,6, from interchange reconnection near coronal hole boundaries7,8, or within coronal holes with highly diverging magnetic fields9,10. The heating mechanism required to drive the solar wind is also unresolved, although candidate mechanisms include Alfvén-wave turbulence11,12, heating by reconnection in nanoflares13, ion cyclotron wave heating14 and acceleration by thermal gradients1. At a distance of one astronomical unit, the wind is mixed and evolved, and therefore much of the diagnostic structure of these sources and processes has been lost. Here we present observations from the Parker Solar Probe15 at 36 to 54 solar radii that show evidence of slow Alfvénic solar wind emerging from a small equatorial coronal hole. The measured magnetic field exhibits patches of large, intermittent reversals that are associated with jets of plasma and enhanced Poynting flux and that are interspersed in a smoother and less turbulent flow with a near-radial magnetic field. Furthermore, plasma-wave measurements suggest the existence of electron and ion velocity-space micro-instabilities10,16 that are associated with plasma heating and thermalization processes. Our measurements suggest that there is an impulsive mechanism associated with solar-wind energization and that micro-instabilities play a part in heating, and we provide evidence that low-latitude coronal holes are a key source of the slow solar wind.

5.
Geophys Res Lett ; 49(9): e2021GL096986, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35864893

RESUMEN

We report observations of reconnection exhausts in the Heliospheric Current Sheet (HCS) during Parker Solar Probe Encounters 08 and 07, at 16 R s and 20 R s , respectively. Heliospheric current sheet (HCS) reconnection accelerated protons to almost twice the solar wind speed and increased the proton core energy by a factor of ∼3, due to the Alfvén speed being comparable to the solar wind flow speed at these near-Sun distances. Furthermore, protons were energized to super-thermal energies. During E08, energized protons were found to have leaked out of the exhaust along separatrix field lines, appearing as field-aligned energetic proton beams in a broad region outside the HCS. Concurrent dropouts of strahl electrons, indicating disconnection from the Sun, provide further evidence for the HCS being the source of the beams. Around the HCS in E07, there were also proton beams but without electron strahl dropouts, indicating that their origin was not the local HCS reconnection exhaust.

6.
Phys Rev Lett ; 127(25): 255101, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-35029449

RESUMEN

The high temperatures and strong magnetic fields of the solar corona form streams of solar wind that expand through the Solar System into interstellar space. At 09:33 UT on 28 April 2021 Parker Solar Probe entered the magnetized atmosphere of the Sun 13 million km above the photosphere, crossing below the Alfvén critical surface for five hours into plasma in casual contact with the Sun with an Alfvén Mach number of 0.79 and magnetic pressure dominating both ion and electron pressure. The spectrum of turbulence below the Alfvén critical surface is reported. Magnetic mapping suggests the region was a steady flow emerging on rapidly expanding coronal magnetic field lines lying above a pseudostreamer. The sub-Alfvénic nature of the flow may be due to suppressed magnetic reconnection at the base of the pseudostreamer, as evidenced by unusually low densities in this region and the magnetic mapping.

7.
Geophys Res Lett ; 47(20): e2020GL090115, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33380758

RESUMEN

The solar wind is slowed, deflected, and heated as it encounters Venus's induced magnetosphere. The importance of kinetic plasma processes to these interactions has not been examined in detail, due to a lack of constraining observations. In this study, kinetic-scale electric field structures are identified in the Venusian magnetosheath, including plasma double layers. The double layers may be driven by currents or mixing of inhomogeneous plasmas near the edge of the magnetosheath. Estimated double-layer spatial scales are consistent with those reported at Earth. Estimated potential drops are similar to electron temperature gradients across the bow shock. Many double layers are found in few high cadence data captures, suggesting that their amplitudes are high relative to other magnetosheath plasma waves. These are the first direct observations of plasma double layers beyond near-Earth space, supporting the idea that kinetic plasma processes are active in many space plasma environments.

8.
Phys Rev Lett ; 114(24): 245003, 2015 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-26196982

RESUMEN

We propose a self-similar kinetic theory of thermal conductivity in a magnetized plasma, and discuss its application to the solar wind. We study a collisional kinetic equation in a spatially expanding magnetic flux tube, assuming that the magnetic field strength, the plasma density, and the plasma temperature decline as power laws of distance along the tube. We demonstrate that the electron kinetic equation has a family of scale-invariant solutions for a particular relation among the magnetic-, density-, and temperature-scaling exponents. These solutions describe the heat flux as a function of the temperature Knudsen number γ, which we require to be constant along the flux tube. We observe that self-similarity may be realized in the solar wind; for the Helios data 0.3-1 AU we find that the scaling exponents for density, temperature, and heat flux are close to those dictated by scale invariance. We find steady-state solutions of the self-similar kinetic equation numerically, and show that these solutions accurately reproduce the electron strahl population seen in the solar wind, as well as the measured heat flux.

9.
Geophys Res Lett ; 41(22): 8081-8088, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-26074642

RESUMEN

The power spectrum of magnetic fluctuations in the solar wind at 1 AU displays a break between two power laws in the range of spacecraft-frame frequencies 0.1 to 1 Hz. These frequencies correspond to spatial scales in the plasma frame near the proton gyroradius ρi and proton inertial length di. At 1 AU it is difficult to determine which of these is associated with the break, since [Formula: see text] and the perpendicular ion plasma beta is typically ß⊥i∼1. To address this, several exceptional intervals with ß⊥i≪1 and ß⊥i≫1 were investigated, during which these scales were well separated. It was found that for ß⊥i≪1 the break occurs at di and for ß⊥i≫1 at ρi, i.e., the larger of the two scales. Possible explanations for these results are discussed, including Alfvén wave dispersion, damping, and current sheets.

10.
Phys Rev Lett ; 111(23): 235002, 2013 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-24476280

RESUMEN

Huge numbers of double layers carrying electric fields parallel to the local magnetic field line have been observed on the Van Allen probes in connection with in situ relativistic electron acceleration in the Earth's outer radiation belt. For one case with adequate high time resolution data, 7000 double layers were observed in an interval of 1 min to produce a 230,000 V net parallel potential drop crossing the spacecraft. Lower resolution data show that this event lasted for 6 min and that more than 1,000,000 volts of net parallel potential crossed the spacecraft during this time. A double layer traverses the length of a magnetic field line in about 15 s and the orbital motion of the spacecraft perpendicular to the magnetic field was about 700 km during this 6 min interval. Thus, the instantaneous parallel potential along a single magnetic field line was the order of tens of kilovolts. Electrons on the field line might experience many such potential steps in their lifetimes to accelerate them to energies where they serve as the seed population for relativistic acceleration by coherent, large amplitude whistler mode waves. Because the double-layer speed of 3100 km/s is the order of the electron acoustic speed (and not the ion acoustic speed) of a 25 eV plasma, the double layers may result from a new electron acoustic mode. Acceleration mechanisms involving double layers may also be important in planetary radiation belts such as Jupiter, Saturn, Uranus, and Neptune, in the solar corona during flares, and in astrophysical objects.

11.
Phys Rev Lett ; 111(24): 241101, 2013 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-24483639

RESUMEN

In situ observations of the solar wind frequently show the temperature of α particles (fully ionized helium) Tα to significantly differ from that of protons (ionized hydrogen) Tp. Many heating processes in the plasma act preferentially on α particles, even as collisions among ions act to gradually establish thermal equilibrium. Measurements from the Wind spacecraft's Faraday cups reveal that, at r=1.0 AU from the Sun, the observed values of the α-proton temperature ratio, θαp≡Tα/Tp, has a complex, bimodal distribution. This study applied a simple model for the radial evolution of θαp to these data to compute expected values of θαp at r=0.1 AU. These inferred θαp values have no trace of the bimodality seen in the θαp values measured at r=1.0 AU but are instead consistent with the actions of the known mechanisms for α-particle preferential heating. This result underscores the importance of collisional processes in the dynamics of the solar wind and suggests that similar mechanisms may lead to preferential α-particle heating in both slow and fast wind.

12.
Nat Genet ; 11(4): 453-5, 1995 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-7493031

RESUMEN

Although pathogenic keratin mutations have been well characterized in inherited epidermal disorders, analogous defects in keratins expressed in non-epidermal epithelia have yet to be described. White sponge nevus (WSN) is a rare autosomal dominant disorder of non-cornifying squamous epithelial differentiation that presents clinically as bilateral white, soft, thick plaques of the oral mucosa. Less frequently the mucous membranes of the nose, esophagus, genitalia and rectum are involved. Histopathological features, including epithelial thickening, parakeratosis, extensive vacuolization of the suprabasal keratinocytes and compact aggregates of keratin intermediate filaments (KIF) in the upper spinous layers, resemble those found in epidermal disorders due to keratin defects. We analysed a multigenerational family with WSN and found cosegregation of the disease with the keratin gene cluster on chromosome 17. We identified a missense mutation in one allele of keratin 13 that leads to proline substitution for a conserved leucine. The mutation occurred within the conserved 1A region of the helical rod domain, which is critical for KIF stability and is the site of most pathogenic keratin mutations. This mutation enlarges the spectrum of keratins with disease-causing defects to include mucosally expressed keratin 13, and extends the known keratin diseases to disorders of non-cornifying stratified squamous epithelia.


Asunto(s)
Hamartoma/genética , Queratinas/genética , Leucoplasia Bucal/genética , Mucosa Bucal/química , Mutación Puntual , Secuencia de Aminoácidos , Secuencia de Bases , Cromosomas Humanos Par 17 , Análisis Mutacional de ADN , Epitelio , Femenino , Ligamiento Genético , Hamartoma/metabolismo , Humanos , Leucoplasia Bucal/química , Masculino , Datos de Secuencia Molecular , Familia de Multigenes , Linaje
13.
Nat Genet ; 9(3): 279-83, 1995 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-7773290

RESUMEN

We recently mapped the disease locus for severe autosomal recessive lamellar ichthyosis (LI) to chromosome 14q11 and showed complete linkage with TGM1, the gene encoding transglutaminase 1. We have now identified point mutations in TGM1 in two of the multiplex LI families used in the linkage study. Each nucleotide change causes a non-conservative amino acid substitution of histidine for one of two adjacent arginine residues in exon 3 of the gene (Arg141His, Arg142His). Within the transglutaminase family, these arginines are invariant within a conserved region, distant from the catalytic site of the enzyme. We hypothesize that these mutations adversely affect formation of crosslinks essential in production of cornified cell envelopes and a normal stratum corneum layer of the skin.


Asunto(s)
Ictiosis Lamelar/enzimología , Ictiosis Lamelar/genética , Mutación Puntual , Transglutaminasas/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Mapeo Cromosómico , Cromosomas Humanos Par 14 , Secuencia Conservada , ADN/genética , Cartilla de ADN/genética , Femenino , Genes Recesivos , Ligamiento Genético , Humanos , Masculino , Datos de Secuencia Molecular , Linaje , Reacción en Cadena de la Polimerasa , Homología de Secuencia de Aminoácido
14.
Nat Genet ; 20(4): 366-9, 1998 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-9843209

RESUMEN

Erythrokeratodermia variabilis (EKV, OMIM 133200) is an autosomal dominant genodermatosis with considerable intra- and interfamilial variability. It has a disfiguring phenotype characterized by the independent occurrence of two morphologic features: transient figurate red patches and localized or generalized hyperkeratosis. Both features can be triggered by external factors such as trauma to the skin. After initial linkage to the RH locus on 1p, EKV was mapped to an interval of 2.6 cM on 1p34-p35, and a candidate gene (GJA4) encoding the gap junction protein alpha-4 (connexin 31, Cx31) was excluded by sequence analysis. Evidence in mouse suggesting that the EKV region harbours a cluster of epidermally expressed connexin genes led us to characterize the human homologues of GJB3 (encoding Cx31) and GJB5 (encoding Cx31.1). GJB3, GJB5 and GJA4 were localized to a 1.1-Mb YAC in the candidate interval. We detected heterozygous missense mutations in GJB3 in four EKV families leading to substitution of a conserved glycine by charged residues (G12R and G12D), or change of a cysteine (C86S). These mutations are predicted to interfere with normal Cx31 structure and function, possibly due to a dominant inhibitory effect. Our results implicate Cx31 in the pathogenesis of EKV, and provide evidence that intercellular communication mediated by Cx31 is crucial for epidermal differentiation and response to external factors.


Asunto(s)
Conexinas/genética , Eritema/genética , Mutación , Secuencia de Aminoácidos , Secuencia de Bases , Cromosomas Humanos Par 1 , Femenino , Ligamiento Genético , Humanos , Masculino , Datos de Secuencia Molecular , Linaje , Homología de Secuencia de Aminoácido
15.
Nat Genet ; 1(4): 301-5, 1992 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-1284546

RESUMEN

We investigated the molecular genetics of epidermolytic hyperkeratosis (EHK), a dominant disorder characterized by epidermal blistering, hyperkeratosis, vacuolar degeneration and clumping of keratin filaments. Based on this pathology, we have excluded by linkage analysis several candidate genes for the disease; in contrast, complete linkage was obtained with the type II keratin, K1, on 12q11-q13. Linkage in this region of chromosome 12 was confirmed using several other markers, and multi-locus linkage analyses further supported this location. Keratins are excellent EHK gene candidates since their expression is specific to the suprabasal epidermal layers. In the pedigree studied here, a type II keratin gene, very probably K1, is implicated as the site of the molecular defect causing EHK.


Asunto(s)
Cromosomas Humanos Par 12 , Hiperqueratosis Epidermolítica/genética , Queratinas/genética , Familia de Multigenes , Secuencia de Bases , Mapeo Cromosómico , ADN/genética , ADN/aislamiento & purificación , ADN Satélite/genética , Femenino , Ligamiento Genético , Marcadores Genéticos , Genotipo , Humanos , Hiperqueratosis Epidermolítica/patología , Escala de Lod , Masculino , Datos de Secuencia Molecular , Oligodesoxirribonucleótidos , Reacción en Cadena de la Polimerasa/métodos , Polimorfismo de Longitud del Fragmento de Restricción , Piel/patología
16.
Nat Genet ; 28(4): 376-80, 2001 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11455388

RESUMEN

Hermansky-Pudlak syndrome (HPS) is a rare autosomal recessive disorder characterized by oculocutaneous albinism and a storage pool deficiency due to an absence of platelet dense bodies. Lysosomal ceroid lipofuscinosis, pulmonary fibrosis and granulomatous colitis are occasional manifestations of the disease. HPS occurs with a frequency of one in 1800 in north-west Puerto Rico due to a founder effect. Several non-Puerto Rican patients also have mutations in HPS1, which produces a protein of unknown function. Another gene, ADTB3A, causes HPS in the pearl mouse and in two brothers with HPS-2 (refs. 11,12). ADTB3A encodes a coat protein involved in vesicle formation, implicating HPS as a disorder of membrane trafficking. We sought to identify other HPS-causing genes. Using homozygosity mapping on pooled DNA of 6 families from central Puerto Rico, we localized a new HPS susceptibility gene to a 1.6-cM interval on chromosome 3q24. The gene, HPS3, has 17 exons, and a putative 113.7-kD product expected to reveal how new vesicles form in specialized cells. The homozygous, disease-causing mutation is a large deletion and represents the second example of a founder mutation causing HPS on the small island of Puerto Rico. We also present an allele-specific assay for diagnosing individuals heterozygous or homozygous for this mutation.


Asunto(s)
Proteínas Portadoras/genética , Cromosomas Humanos Par 3/genética , Síndrome de Hermanski-Pudlak/genética , Alelos , Secuencia de Aminoácidos , Northern Blotting , Análisis Mutacional de ADN , Femenino , Efecto Fundador , Tamización de Portadores Genéticos , Predisposición Genética a la Enfermedad , Genotipo , Síndrome de Hermanski-Pudlak/epidemiología , Homocigoto , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Datos de Secuencia Molecular , Mutación , Especificidad de Órganos , Linaje , Fenotipo , Mapeo Físico de Cromosoma , Puerto Rico/epidemiología , Eliminación de Secuencia
17.
Space Sci Rev ; 219(2): 18, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36874191

RESUMEN

A detailed overview of the knowledge gaps in our understanding of the heliospheric interaction with the largely unexplored Very Local Interstellar Medium (VLISM) are provided along with predictions of with the scientific discoveries that await. The new measurements required to make progress in this expanding frontier of space physics are discussed and include in-situ plasma and pick-up ion measurements throughout the heliosheath, direct sampling of the VLISM properties such as elemental and isotopic composition, densities, flows, and temperatures of neutral gas, dust and plasma, and remote energetic neutral atom (ENA) and Lyman-alpha (LYA) imaging from vantage points that can uniquely discern the heliospheric shape and bring new information on the interaction with interstellar hydrogen. The implementation of a pragmatic Interstellar Probe mission with a nominal design life to reach 375 Astronomical Units (au) with likely operation out to 550 au are reported as a result of a 4-year NASA funded mission study.

18.
Phys Rev Lett ; 109(3): 035001, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22861861

RESUMEN

We present a measurement of the spectral index of density fluctuations between ion and electron scales in solar wind turbulence using the EFI instrument on the ARTEMIS spacecraft. The mean spectral index at 1 AU was found to be -2.75±0.06, steeper than predictions for pure whistler or kinetic Alfvén wave turbulence but consistent with previous magnetic field measurements. The steep spectra are also consistent with expectations of increased intermittency or damping of some of the turbulent energy over this range of scales. Neither the spectral index nor the flattening of the density spectra before ion scales were found to depend on the proximity to the pressure anisotropy instability thresholds, suggesting that they are features inherent to the turbulent cascade.

19.
Phys Rev Lett ; 108(2): 025002, 2012 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-22324692

RESUMEN

Whistler wave trains are observed in the foot region of high Mach number quasiperpendicular shocks. The waves are oblique with respect to the ambient magnetic field as well as the shock normal. The Poynting flux of the waves is directed upstream in the shock normal frame starting from the ramp of the shock. This suggests that the waves are an integral part of the shock structure with the dispersive shock as the source of the waves. These observations lead to the conclusion that the shock ramp structure of supercritical high Mach number shocks is formed as a balance of dispersion and nonlinearity.

20.
Phys Rev Lett ; 107(20): 201101, 2011 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-22181718

RESUMEN

Temperature anisotropy in the solar wind results from a combination of mechanisms of anisotropic heating (e.g., cyclotron-resonant heating and dissipation of kinetic Alfvén waves) and cooling (e.g., Chew-Goldberger-Low double-adiabatic expansion). In contrast, anisotropy-driven instabilities such as the cyclotron, mirror, and firehose instabilities limit the allowable departure of the plasma from isotropy. This study used data from the Faraday cups on the Wind spacecraft to examine scalar temperature and temperature components of protons. Plasma unstable to the mirror or firehose instability was found to be about 3-4 times hotter than stable plasma. Since anisotropy-driven instabilities are not understood to heat the plasma, these results suggest that heating processes are more effective than cooling processes at creating and maintaining proton temperature anisotropy in the solar wind.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA