Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(19)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37833959

RESUMEN

Due to their ability to produce isomaltulose, sucrose isomerases are enzymes that have caught the attention of researchers and entrepreneurs since the 1950s. However, their low activity and stability at temperatures above 40 °C have been a bottleneck for their industrial application. Specifically, the instability of these enzymes has been a challenge when it comes to their use for the synthesis and manufacturing of chemicals on a practical scale. This is because industrial processes often require biocatalysts that can withstand harsh reaction conditions, like high temperatures. Since the 1980s, there have been significant advancements in the thermal stabilization engineering of enzymes. Based on the literature from the past few decades and the latest achievements in protein engineering, this article systematically describes the strategies used to enhance the thermal stability of sucrose isomerases. Additionally, from a theoretical perspective, we discuss other potential mechanisms that could be used for this purpose.


Asunto(s)
Isomerasas , Ingeniería de Proteínas , Temperatura , Sacarosa , Estabilidad de Enzimas
2.
Chem Res Toxicol ; 28(6): 1144-55, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26039340

RESUMEN

There is strong epidemiologic evidence linking chronic exposure to inorganic arsenic (iAs) to myriad adverse health effects, including cancer of the bladder. We set out to identify DNA methylation patterns associated with arsenic and its metabolites in exfoliated urothelial cells (EUCs) that originate primarily from the urinary bladder, one of the targets of arsenic-induced carcinogenesis. Genome-wide, gene-specific promoter DNA methylation levels were assessed in EUCs from 46 residents of Chihuahua, Mexico, and the relationship was examined between promoter methylation profiles and the intracellular concentrations of total arsenic and arsenic species. A set of 49 differentially methylated genes was identified with increased promoter methylation associated with EUC tAs, iAs, and/or monomethylated As (MMAs) enriched for their roles in metabolic disease and cancer. Notably, no genes had differential methylation associated with EUC dimethylated As (DMAs), suggesting that DMAs may influence DNA methylation-mediated urothelial cell responses to a lesser extent than iAs or MMAs. Further analysis showed that 22 of the 49 arsenic-associated genes (45%) are also differentially methylated in bladder cancer tissue identified using The Cancer Genome Atlas repository. Both the arsenic- and cancer-associated genes are enriched for the binding sites of common transcription factors known to play roles in carcinogenesis, demonstrating a novel potential mechanistic link between iAs exposure and bladder cancer.


Asunto(s)
Arsénico/toxicidad , Metilación de ADN/efectos de los fármacos , Neoplasias de la Vejiga Urinaria/inducido químicamente , Neoplasias de la Vejiga Urinaria/genética , Urotelio/citología , Urotelio/efectos de los fármacos , Adulto , Anciano , Arsénico/metabolismo , Transformación Celular Neoplásica/inducido químicamente , Metilación de ADN/genética , Femenino , Humanos , Persona de Mediana Edad , Neoplasias de la Vejiga Urinaria/patología , Adulto Joven
3.
ACS Omega ; 9(1): 196-203, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38222520

RESUMEN

Apple (Malus domestica Borkh) is an appreciated source of polyphenols. Phenolic compounds are known as natural antioxidants and have a wide range of applications in different industries. Apple pomace has the potential of being an alternative source of polyphenols. To determine the polyphenolic profile of apple pomace, samples from the skin at two different stages of ripening were extracted with 80-20% EtOH-water/acetic acid 5% (S1) and 20-80% EtOH-water/acetic acid 5% (S2) in order to determine the solvent system. Ripe skins extracted with S1 showed a higher total polyphenol content or TPC (1.21 g of polyphenols per 100 g of fresh weight (FW)) than unripe apple skin, being the most effective system tested and a mean degree of polymerization of 2.47. Commercial apple pomace was extracted with S1, resulting in a TPC of 0.5615 ± 0.007 g of polyphenols per 100 g of FW. Meanwhile, the RP-HPLC-MS analysis led to the tentative identification of several polyphenolic compounds.

4.
Toxins (Basel) ; 15(7)2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37505685

RESUMEN

Chihuahua is the largest state in Mexico. The ecosystem of this region is composed of large area of bushes, forests, and grasslands, which allows for a specific diversity of fauna; among them are interesting species of non-lethal scorpions. Most of the Chihuahuan scorpions have been previously morphologically and molecularly described; however, this manuscript could be the first to describe the composition of those venoms. This work aimed at the collection of two scorpion species from the region of Jiménez (Southwest of the State of Chihuahua), which belong to the species Chihuahuanus cohauilae and Chihuahuanus crassimanus; the two species were taxonomically and molecularly identified using a 16S DNA marker. Reverse-phase high-performance liquid chromatography (RP-HPLC) of C. coahuilae and C. crassimanus venoms allowed the identification of three fractions lethal to mice. Additionally, three fractions of each scorpion displayed an effect on house crickets. In the end, three new fractions from the venom of C. coahuilae were positive for antimicrobial activity, although none from C. crassimanus venom displayed growth inhibition. Despite being a preliminary study, the venom biochemical analysis of these two uncharacterized scorpion species opens the opportunity to find new molecules with potential applications in the biomedical and biotechnological fields.


Asunto(s)
Venenos de Escorpión , Ponzoñas , Animales , Ratones , Escorpiones/química , México , Ecosistema , Venenos de Escorpión/química
5.
Chem Res Toxicol ; 25(1): 216-24, 2012 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-22136492

RESUMEN

Glutathione S-transferases, including GST-T1 and GST-M1, are known to be involved in the phase II detoxification pathways for xenobiotics as well as in the metabolism of endogenous compounds. Polymorphisms in these genes have been linked to an increased susceptibility to carcinogenesis and associated with risk factors that predispose to certain inflammatory diseases. In addition, GST-T1 and GST-M1 null genotypes have been shown to be responsible for interindividual variations in the metabolism of arsenic, a known human carcinogen. To assess the specific GST genotypes in the Mexican population chronically exposed to arsenic, we have developed a multiplex High Resolution Melting PCR (HRM-PCR) analysis using a LightCycler480 instrument. This method is based on analysis of the PCR product melting curve that discriminates PCR products according to their lengths and base sequences. Three pairs of primers that specifically recognize GST-T1, GST-M1, and ß-globin, an internal control, to produce amplicons of different length were designed and combined with LightCycler480 High Resolution Melting Master Mix containing ResoLight, a completely saturating DNA dye. Data collected from melting curve analysis were evaluated using LightCycler480 software to determine specific melting temperatures of individual melting curves representing target genes. Using this newly developed multiplex HRM-PCR analysis, we evaluated GST-T1 and GST-M1 genotypes in 504 DNA samples isolated from the blood of individuals residing in Zimapan, Lagunera, and Chihuahua regions in Mexico. We found that the Zimapan and Lagunera populations have similar GST-T1 and GST-M1 genotype frequencies which differ from those of the Chihuahua population. In addition, 14 individuals have been identified as carriers of the double null genotype, i.e., null genotypes in both GST-T1 and GST-M1 genes. Although this procedure does not distinguish between biallelic (+/+) and monoallelic (+/-) genotypes, it can be used in an automated workflow as a simple, sensitive, and time and money saving procedure for rapid identification of the GST-T1 and GST-M1 positive or null genotypes.


Asunto(s)
Genotipo , Glutatión Transferasa/genética , Reacción en Cadena de la Polimerasa Multiplex/métodos , Adulto , Anciano , ADN/genética , Femenino , Hepatocitos/enzimología , Humanos , Masculino , México , Persona de Mediana Edad , Polimorfismo Genético , Globinas beta/genética
6.
Artículo en Inglés | MEDLINE | ID: mdl-34444278

RESUMEN

Natural zeolites have been employed to adsorb contaminants in water. This study is aimed to evaluate the cation and anion leaching from the zeolite after the wastewater was passed through filters packed with a natural zeolite (heulandite-CaAl2Si7O18·6H2O). Eight treatments were evaluated in a 2 × 2 × 2 factorial treatment design. Factor A was the zeolite with two levels: 127 g and 80.4 g. Factor B was the nanoparticles with two levels: one bag (3.19 g) and two bags (6.39 g); and Factor C was the use of a magnet: with and without. There were two replications; hence, a total of 16 filters were employed. The water was obtained from a municipal wastewater treatment plant (MWTP). The cations (Na+, K+; Mg+2 and Ca+2) and anions (F-, Cl- and SO42-) were measured before (influent = IW) and after filtering (effluent = EW) three times. All treatments leached the cations Na+ (EW in a range of 175 to 232 ppm), K+ (EW in a range of 15.4 to 33.2 ppm), and Mg+2 (EW in a range of 7.40 to 10.8 ppm) but did not leach Ca+2. Likewise, the treatments leached the anions F- (EW in a range of 7.59 to 8.87 ppm), Cl- (EW in a range of 85.9 to 120 ppm), and SO42- (EW in a range of 139 to 146 ppm). We conclude that this natural zeolite leaches cations (except Ca+2) and anions in MWTP passed through filters. Therefore, its application in wastewater treatment should be considered for purposes such as agriculture and animal production and not for drinking water.


Asunto(s)
Nanopartículas , Purificación del Agua , Zeolitas , Aniones , Cationes
7.
J Hazard Mater ; 384: 121392, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31704117

RESUMEN

Arsenic (As) removal from water, subject to sulfate-reducing conditions has been shown to result in safe As levels. We evaluated sulfate-reducing activity and arsenic removal by an anaerobic sludge enriched with sulfate-reducing bacteria (SRB), using zero valent iron (ZVI) as electron donor and different concentrations of AsV or AsIII (up to 5 mg/L). Sulfate and As removal were monitored in aqueous samples of batch assays. Likewise, precipitates resulting from As removal were characterized in solids. Sulfate-reducing activity on the part of anaerobic sludge was slightly decreased by AsIII and it was 50% decreased, particularly at 5 mg/L AsV, for which arsenic removal equaled 98%. At all other As concentrations assayed, 100% As was removed. The co-existence of S, As and Fe in solids from assays with As, was demonstrated by scanning electron microscopy (SEM-EDS) and by micro-X-ray fluorescence, corroborating the possible formation of Fe-As-S type minerals for As precipitation. Pharmacosiderite and scorodite minerals were identified by micro-X-ray absorption near edge structure and confirmed by extended X-ray adsorption fine structure, and these were related to the oxidation of arsenopyrite during analysis. Results indicate the suitability of the anaerobic sludge for bioremediating arsenic-contaminated groundwater under sulfidogenic conditions with ZVI as electron donor.


Asunto(s)
Arsénico/análisis , Agua Subterránea/química , Hierro/metabolismo , Aguas del Alcantarillado/microbiología , Bacterias Reductoras del Azufre/metabolismo , Contaminantes Químicos del Agua/análisis , Arsénico/metabolismo , Biodegradación Ambiental , Transporte de Electrón , Contaminantes Químicos del Agua/metabolismo
8.
Polymers (Basel) ; 12(1)2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-31968601

RESUMEN

Paper recycling has increased in recent years. A principal consequence of this process is the problem of addressing some polymeric components known as stickies. A deep characterization of stickies sampled over one year in a recycled paper industry in México was performed. Based on their chemical structure, an enzymatic assay was performed using lipases. Compounds found in stickies by Fourier-transform infrared spectrometry were poly (butyl-acrylate), dioctyl phthalate, poly (vinyl-acetate), and poly (vinyl-acrylate). Pulp with 4% (w/w) consistency and pH = 6.2 was sampled directly from the mill once macrostickies were removed. Stickies were quantified by counting the tacky macrostructures in the liquid fraction of the pulp using a Neubauer chamber before the paper was made, and they were analyzed with rhodamine dye and a UV lamp. Of the two commercial enzymes evaluated, the best treatment condition used Lipase 30 G (Specialty Enzymes & Biotechnologies Co®, Chino, CA, USA) at a concentration of 0.44 g/L, which decreased 35.59% of stickies. SebOil DG (Specialty Enzymes & Biotechnologies®) showed a stickies reduction of 21.5% when used at a concentration of 0.33 g/L. Stickies in kraft paper processes were actively controlled by the action of lipases, and future research should focus on how this enzyme recognizes its substrate and should apply synthetic biology to improve lipase specificity.

9.
Environ Int ; 123: 292-300, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30553202

RESUMEN

BACKGROUND: Exposure to inorganic arsenic (iAs) via drinking water is a serious global health threat. Various factors influence susceptibility to iAs-associated health outcomes, including differences in iAs metabolism. Previous studies have shown that obesity is associated with iAs metabolism. It has been hypothesized that this association can be explained by confounding from nutritional factors involved in one-carbon metabolism, such as folate or other B vitamins, whose intake may differ across BMI categories and is known be associated with iAs metabolism. However, no studies have explored whether this association is confounded by nutritional factors. METHODS: We investigated the relationship between body mass index (BMI) and the distribution of urinary arsenic species in a cross-sectional cohort of 1166 adults living in Chihuahua, Mexico from 2008 to 2013. Nutrient intake related to one-carbon metabolism, including folate, vitamin B2, and vitamin B12, was assessed using a food frequency questionnaire developed for Mexican populations. Multivariable linear regression was used to estimate the association between BMI and the distribution of urinary arsenic metabolites. Effect modification by drinking water iAs level and sex was also examined. RESULTS: After adjusting for potential confounders, including age, educational attainment, smoking, alcohol consumption, seafood consumption, water iAs, and sex, BMI was negatively associated with the proportion of urinary inorganic arsenic (%U-iAs) and urinary monomethylated arsenic (%U-MMAs) and positively associated with urinary dimethylated arsenic (%U-DMAs). This relationship was not influenced by additional adjustment for folate, vitamin B2, or vitamin B12 intake. Additionally, there was significant effect modification by both drinking water iAs level and sex. CONCLUSIONS: This study provides further evidence for an association between BMI and arsenic metabolism. However, contrary to previous hypotheses, these results suggest that this association is not confounded by the intake of micronutrients involved in one-carbon metabolism.


Asunto(s)
Arsénico/orina , Índice de Masa Corporal , Carbono/metabolismo , Nutrientes/metabolismo , Adulto , Arsénico/análisis , Estudios de Cohortes , Estudios Transversales , Exposición a Riesgos Ambientales , Femenino , Humanos , Masculino , México , Estado Nutricional , Fumar
10.
Artículo en Inglés | MEDLINE | ID: mdl-29757264

RESUMEN

Pollution of freshwater ecosystems from polycyclic aromatic hydrocarbons (PAHs) is a global concern. The US Environmental Protection Agency (EPA) has included the PAHs pyrene, phenanthrene, and naphthalene among the 16 priority compounds of special concern for their toxicological effects. The aim of this study was to adapt and characterize a microbial consortium from ore waste with the potential to remove these three PAHs from water. This microbial consortium was exposed to the target PAHs at levels of 5, 10, 20, 50, and 100 mg L−1 for 14 days. PAH bioremoval was measured using the analytical technique of solid phase microextraction, followed by gas chromatography mass spectrometry (SPME-GC/MS). The results revealed that up to 90% of the target PAHs can be removed from water after 14 days at a concentration level of 100 mg L−1. The predominant group of microorganisms identified at the phylum taxonomic level were the Proteobacteria, while the Actinobacteria were the predominant subgroup. The removal of phenanthrene, naphthalene, and pyrene predominantly occurred in specimens of genera Stenotrophomonas, Williamsia, and Chitinophagaceae, respectively. This study demonstrates that the use of specific microorganisms is an alternative method of reducing PAH levels in water.


Asunto(s)
Actinobacteria/metabolismo , Consorcios Microbianos , Hidrocarburos Policíclicos Aromáticos/metabolismo , Proteobacteria/metabolismo , Contaminantes Químicos del Agua/metabolismo , Biodegradación Ambiental , Cromatografía de Gases y Espectrometría de Masas , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis
11.
Artículo en Inglés | MEDLINE | ID: mdl-28441345

RESUMEN

The availability of good quality water resources is essential to ensure healthy crops and livestock. The objective of this study was to evaluate the level of pollution in Bustillos Lagoon in northern Mexico. Physical-chemical parameters like sodium, chloride, sulfate, electrical conductivity, nitrates, and the pesticide dichlorodiphenyltrichloroethane (DDT) were analyzed to determine the water quality available in the lagoon. Although DDT has been banned in several countries, it is still used for agricultural purposes in Mexico and its presence in this area had not been analyzed previously. Bustillos Lagoon was divided into three zones for the evaluation: (1) industrial; (2) communal lands; and (3) agricultural. The highest concentrations of sodium (2360 mg/L) and SAR (41 meq/L) reported in the industrial zone are values exceeding the United Nations Food and Agricultural Organization (FAO) irrigation water quality guidelines. DDT and its metabolites were detected in all of the 21 sites analyzed, in the agricultural zone ∑DDTs = 2804 ng/mL, this level is much higher than those reported for other water bodies in Mexico and around the world where DDT has been used heavily. The water in the communal zone is the least contaminated, but can only be recommended for irrigation of plants with high stress tolerance and not for crops.


Asunto(s)
Riego Agrícola , DDT/análisis , Agua Potable/análisis , Plaguicidas/análisis , Contaminantes Químicos del Agua/análisis , Calidad del Agua , Animales , DDT/metabolismo , Monitoreo del Ambiente , Ganado , México
12.
Polymers (Basel) ; 9(11)2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-30965872

RESUMEN

High-resistance paper was manufactured by laccase-grafting of carboxymethyl cellulose (CMC) and chitosan (CPX) on Kraft pulp fiber. The reaction was mediated in the presence of laccase by one of the following polyphenols in the presence of air: gallic acid (GA), vanillic acid (VA) and catechol (1,2⁻DHB). Enzyme was added at constant loading (24 kg ton-1), 1% pulp consistency, 0.005% CMC, pH = 6.3 ± 0.5 and 2 mM of mediator. CPX content was assessed at two levels (0% and 0.005%). Treated pulps were analyzed by different mechanical tests (ring crush, mullen, corrugating medium test (CMT) flat crush of corrugating medium test and tension). An improvement in these parameters was obtained by biopolymer coupling and selected mediator. When using GA, three parameters increased more than 40%, while ring crush increased 120%. For the case of VA, properties were enhanced from 74% to 88% when CPX was added. For 1,2⁻DHB, there was not found a statistically significant difference between the results in the presence of CPX. Scanning electron microscopy, confocal microscopy, FTIR and 13C NMR were used in all papers in order to evaluate grafting. Hence, it was possible to correlate polymerization with an improvement of paper's mechanical properties.

13.
Toxicol Sci ; 153(1): 112-23, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27370415

RESUMEN

Variants in AS3MT, the gene encoding arsenic (+3 oxidation state) methyltranserase, have been shown to influence patterns of inorganic arsenic (iAs) metabolism. Several studies have suggested that capacity to metabolize iAs may vary depending on levels of iAs exposure. However, it is not known whether the influence of variants in AS3MT on iAs metabolism also vary by level of exposure. We investigated, in a population of Mexican adults exposed to drinking water As, whether associations between 7 candidate variants in AS3MT and urinary iAs metabolites were consistent with prior studies, and whether these associations varied depending on the level of exposure. Overall, associations between urinary iAs metabolites and AS3MT variants were consistent with the literature. Referent genotypes, defined as the genotype previously associated with a higher percentage of urinary dimethylated As (DMAs%), were associated with significant increases in the DMAs% and ratio of DMAs to monomethylated As (MAs), and significant reductions in MAs% and iAs%. For 3 variants, associations between genotypes and iAs metabolism were significantly stronger among subjects exposed to water As >50 versus ≤50 ppb (water As X genotype interaction P < .05). In contrast, for 1 variant (rs17881215), associations were significantly stronger at exposures ≤50 ppb. Results suggest that iAs exposure may influence the extent to which several AS3MT variants affect iAs metabolism. The variants most strongly associated with iAs metabolism-and perhaps with susceptibility to iAs-associated disease-may vary in settings with exposure level.


Asunto(s)
Arsénico/toxicidad , Agua Potable/química , Exposición a Riesgos Ambientales , Metiltransferasas/metabolismo , Adulto , Arsénico/análisis , Arsénico/orina , Estudios Transversales , Femenino , Genotipo , Humanos , Límite de Detección , Masculino , Metiltransferasas/genética , Polimorfismo de Nucleótido Simple
14.
Environ Health Perspect ; 124(1): 104-11, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26068977

RESUMEN

BACKGROUND: Exposure to arsenic (As) concentrations in drinking water > 150 µg/L has been associated with risk of diabetes and cardiovascular disease, but little is known about the effects of lower exposures. OBJECTIVE: This study aimed to examine whether moderate As exposure, or indicators of individual As metabolism at these levels of exposure, are associated with cardiometabolic risk. METHODS: We analyzed cross-sectional associations between arsenic exposure and multiple markers of cardiometabolic risk using drinking-water As measurements and urinary As species data obtained from 1,160 adults in Chihuahua, Mexico, who were recruited in 2008-2013. Fasting blood glucose and lipid levels, the results of an oral glucose tolerance test, and blood pressure were used to characterize cardiometabolic risk. Multivariable logistic, multinomial, and linear regression were used to assess associations between cardiometabolic outcomes and water As or the sum of inorganic and methylated As species in urine. RESULTS: After multivariable adjustment, concentrations in the second quartile of water As (25.5 to < 47.9 µg/L) and concentrations of total speciated urinary As (< 55.8 µg/L) below the median were significantly associated with elevated triglycerides, high total cholesterol, and diabetes. However, moderate water and urinary As levels were also positively associated with HDL cholesterol. Associations between arsenic exposure and both dysglycemia and triglyceridemia were higher among individuals with higher proportions of dimethylarsenic in urine. CONCLUSIONS: Moderate exposure to As may increase cardiometabolic risk, particularly in individuals with high proportions of urinary dimethylarsenic. In this cohort, As exposure was associated with several markers of increased cardiometabolic risk (diabetes, triglyceridemia, and cholesterolemia), but exposure was also associated with higher rather than lower HDL cholesterol. CITATION: Mendez MA, González-Horta C, Sánchez-Ramírez B, Ballinas-Casarrubias L, Hernández Cerón R, Viniegra Morales D, Baeza Terrazas FA, Ishida MC, Gutiérrez-Torres DS, Saunders RJ, Drobná Z, Fry RC, Buse JB, Loomis D, García-Vargas GG, Del Razo LM, Stýblo M. 2016. Chronic exposure to arsenic and markers of cardiometabolic risk: a cross-sectional study in Chihuahua, Mexico. Environ Health Perspect 124:104-111; http://dx.doi.org/10.1289/ehp.1408742.


Asunto(s)
Arsénico/toxicidad , Enfermedades Cardiovasculares/sangre , Diabetes Mellitus/sangre , Adulto , Estudios Transversales , Femenino , Humanos , Modelos Lineales , Masculino , México , Persona de Mediana Edad , Contaminantes Químicos del Agua/toxicidad
15.
Chem Cent J ; 9: 46, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26361495

RESUMEN

BACKGROUND: Malathion (R,S)-diethyl-2-[(dimethoxyphosphorothioyl)sulfanyl]butanedioate is a chiral organophosphorus compound used widely as pesticide for suppression of harmful insects such as mosquitoes. It is well known that in biological systems (R)-malathion is the active enantiomer, therefore a sustainable approach could be the use of only the biologically active enantiomer. The resolution of the commercial racemic mixture to obtain the pure active enantiomer combined with a recycling of the undesired enantiomer through a racemization process could be an attractive alternative to reduce the environmental impact of this pesticide. Thus, this work evaluates the use of four commercially available lipases for enantioselective hydrolysis and separation of malathion enantiomers from the commercial racemic mixture. RESULTS: Several lipases were methodologically assessed, considering parameters such as enzyme concentration, temperature and reaction rates. Among them, Candida rugosa lipase exhibited the best performance, in terms of enantioselectivity, E = 185 (selective to the (S)-enantiomer). In this way, the desired unreacted (R)-enantiomer was recovered in a 49.42 % yield with an enantiomeric excess of 87 %. The monohydrolized (S)-enantiomer was recovered and racemized in basic media, followed by esterification to obtain the racemic malathion, which was recycled. In this way, an enantioenriched mixture of (R)-malathion was obtained with a conversion of 65.80 % considering the recycled (S)-enantiomer. CONCLUSION: This work demonstrated the feasibility of exploiting Candida rugosa lipase to kinetically resolve racemic malathion through an environmentally friendly recycling of the undesired (S)-enantiomer. Graphical AbstractLipase catalyzed enantioselective resolution of (R)-malathion in aqueous solvent.

16.
Int J Environ Res Public Health ; 12(5): 4587-601, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25918912

RESUMEN

Inorganic arsenic (iAs) and fluoride (F-) are naturally occurring drinking water contaminants. However, co-exposure to these contaminants and its effects on human health are understudied. The goal of this study was examined exposures to iAs and F- in Chihuahua, Mexico, where exposure to iAs in drinking water has been associated with adverse health effects. All 1119 eligible Chihuahua residents (>18 years) provided a sample of drinking water and spot urine samples. iAs and F- concentrations in water samples ranged from 0.1 to 419.8 µg As/L and from 0.05 to 11.8 mg F-/L. Urinary arsenic (U-tAs) and urinary F- (U-F-) levels ranged from 0.5 to 467.9 ng As/mL and from 0.1 to 14.4 µg F-/mL. A strong positive correlation was found between iAs and F- concentrations in drinking water (rs = 0.741). Similarly, U-tAs levels correlated positively with U-F- concentrations (rs = 0.633). These results show that Chihuahua residents exposed to high iAs concentrations in drinking water are also exposed to high levels of F-, raising questions about possible contribution of F- exposure to the adverse effects that have so far been attributed only to iAs exposure. Thus, investigation of possible interactions between iAs and F- exposures and its related health risks deserves immediate attention.


Asunto(s)
Arsénico/orina , Agua Potable/análisis , Fluoruros/orina , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Agua Subterránea/análisis , Humanos , Masculino , México , Persona de Mediana Edad , Fosfatos , Adulto Joven
17.
Toxicol Sci ; 144(2): 338-46, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25577196

RESUMEN

Chronic exposure to inorganic arsenic (iAs) has been linked to an increased risk of diabetes, yet the specific disease phenotype and underlying mechanisms are poorly understood. In the present study we set out to identify iAs exposure-associated metabolites with altered abundance in nondiabetic and diabetic individuals in an effort to understand the relationship between exposure, metabolomic response, and disease status. A nested study design was used to profile metabolomic shifts in urine and plasma collected from 90 diabetic and 86 nondiabetic individuals matched for varying iAs concentrations in drinking water, body mass index, age, and sex. Diabetes diagnosis was based on measures of fasting plasma glucose and 2-h blood glucose. Multivariable models were used to identify metabolites with altered abundance associated with iAs exposure among diabetic and nondiabetic individuals. A total of 132 metabolites were identified to shift in urine or plasma in response to iAs exposure characterized by the sum of iAs metabolites in urine (U-tAs). Although many metabolites were altered in both diabetic and nondiabetic 35 subjects, diabetic individuals displayed a unique response to iAs exposure with 59 altered metabolites including those that play a role in tricarboxylic acid cycle and amino acid metabolism. Taken together, these data highlight the broad impact of iAs exposure on the human metabolome, and demonstrate some specificity of the metabolomic response between diabetic and nondiabetic individuals. These data may provide novel insights into the mechanisms and phenotype of diabetes associated with iAs exposure.


Asunto(s)
Arsénico/toxicidad , Diabetes Mellitus/epidemiología , Metabolómica , Adolescente , Adulto , Anciano , Diabetes Mellitus/sangre , Diabetes Mellitus/inducido químicamente , Diabetes Mellitus/orina , Femenino , Humanos , Masculino , México , Persona de Mediana Edad , Estudios Prospectivos , Factores de Riesgo , Adulto Joven
18.
Environ Health Perspect ; 122(10): 1088-94, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25000461

RESUMEN

BACKGROUND: A growing number of studies link chronic exposure to inorganic arsenic (iAs) with the risk of diabetes. Many of these studies assessed iAs exposure by measuring arsenic (As) species in urine. However, this approach has been criticized because of uncertainties associated with renal function and urine dilution in diabetic individuals. OBJECTIVES: Our goal was to examine associations between the prevalence of diabetes and concentrations of As species in exfoliated urothelial cells (EUC) as an alternative to the measures of As in urine. METHODS: We measured concentrations of trivalent and pentavalent iAs methyl-As (MAs) and dimethyl-As (DMAs) species in EUC from 374 residents of Chihuahua, Mexico, who were exposed to iAs in drinking water. We used fasting plasma glucose, glucose tolerance tests, and self-reported diabetes diagnoses or medication to identify diabetic participants. Associations between As species in EUC and diabetes were estimated using logistic and linear regression, adjusting for age, sex, and body mass index. RESULTS: Interquartile-range increases in trivalent, but not pentavalent, As species in EUC were positively and significantly associated with diabetes, with ORs of 1.57 (95% CI: 1.19, 2.07) for iAsIII, 1.63 (1.24, 2.15) for MAsIII, and 1.31 (0.96, 1.84) for DMAsIII. DMAs/MAs and DMAs/iAs ratios were negatively associated with diabetes (OR = 0.62; 95% CI: 0.47, 0.83 and OR = 0.72; 95% CI: 0.55, 0.96, respectively). CONCLUSIONS: Our data suggest that uncertainties associated with measures of As species in urine may be avoided by using As species in EUC as markers of iAs exposure and metabolism. Our results provide additional support to previous findings suggesting that trivalent As species may be responsible for associations between diabetes and chronic iAs exposure.


Asunto(s)
Arsénico/orina , Diabetes Mellitus/epidemiología , Exposición a Riesgos Ambientales/estadística & datos numéricos , Urotelio/metabolismo , Contaminantes Químicos del Agua/orina , Adulto , Arsénico/análisis , Arsénico/metabolismo , Intoxicación por Arsénico , Arsenicales/análisis , Arsenicales/metabolismo , Arsenicales/orina , Biomarcadores/metabolismo , Glucemia/análisis , Diabetes Mellitus/inducido químicamente , Exposición a Riesgos Ambientales/efectos adversos , Células Epiteliales/química , Células Epiteliales/metabolismo , Femenino , Prueba de Tolerancia a la Glucosa , Humanos , Masculino , México/epidemiología , Persona de Mediana Edad , Prevalencia , Urotelio/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Abastecimiento de Agua/análisis , Abastecimiento de Agua/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA