RESUMEN
Many animals exhibit partial migration, which occurs when populations contain coexisting contingents of migratory and resident individuals. This individual-level variation in migration behaviour may drive differences in growth, age at maturity and survival. Therefore, partial migration is widely considered to play a key role in shaping population demography. Otolith chemistry and microstructural analysis were used to identify the environmental- and individual-specific factors that influence migratory behaviour in the facultatively catadromous barramundi (Lates calcarifer) at two distinct life history stages: firstly, as juveniles migrating upstream into fresh water; and secondly, as adults or sub-adults returning to the estuarine/marine spawning habitat. Monsoonal climate played an important role in determining the migration propensity of juveniles: individuals born in the driest year examined (weak monsoon) were more than twice as likely to undergo migration to freshwater than those born in the wettest (strong monsoon) year. In contrast, the ontogenetic timing of return migrations to the estuary by adults and sub-adults was highly variable and not strongly associated with the environmental parameters examined. We propose that scarce resources within saline natal habitats during lower rainfall years may provide an ecological incentive for juveniles to migrate upstream, whereas more abundant resources in higher rainfall years may promote resident life histories within estuaries. We conclude that inter-annual climatic variation, here evidenced by monsoonal strength, likely plays an important role in driving the persistence of diversified life histories within wild barramundi populations.
Asunto(s)
Peces , Agua Dulce , Animales , Estaciones del Año , Ecosistema , EstuariosRESUMEN
Genetic data can be highly informative for answering questions relevant to practical conservation efforts, but remain one of the most neglected aspects of species recovery plans. Framing genetic questions with reference to practical and tractable conservation objectives can help bypass this limitation of the application of genetics in conservation. Using a single-nucleotide polymorphism dataset from reduced-representation sequencing (DArTSeq), we conducted a genetic assessment of remnant populations of the endangered forty-spotted pardalote (Pardalotus quadragintus), a songbird endemic to Tasmania, Australia. Our objectives were to inform strategies for the conservation of genetic diversity in the species and estimate effective population sizes and patterns of inter-population movement to identify management units relevant to population conservation and habitat restoration. We show population genetic structure and identify two small populations on mainland Tasmania as 'satellites' of larger Bruny Island populations connected by migration. Our data identify management units for conservation objectives relating to genetic diversity and habitat restoration. Although our results do not indicate the immediate need to genetically manage populations, the small effective population sizes we estimated for some populations indicate that they are vulnerable to genetic drift, highlighting the urgent need to implement habitat restoration to increase population size and to conduct genetic monitoring. We discuss how our genetic assessment can be used to inform management interventions for the forty-spotted pardalote and show that by assessing contemporary genetic aspects, valuable information for conservation planning and decision-making can be produced to guide actions that account for genetic diversity and increase chances of recovery in species of conservation concern.
Asunto(s)
Especies en Peligro de Extinción , Pájaros Cantores , Animales , Pájaros Cantores/genética , Flujo Genético , Polimorfismo de Nucleótido Simple , Densidad de Población , Conservación de los Recursos Naturales , Variación GenéticaRESUMEN
Genomic diversity is a fundamental component of Earth's total biodiversity, and requires explicit consideration in efforts to conserve biodiversity. To conserve genomic diversity, it is necessary to measure its spatial distribution, and quantify the contribution that any intraspecific evolutionary lineages make to overall genomic diversity. Here, we describe the range-wide population genomic structure of a threatened Australian rodent, the black-footed tree-rat (Mesembriomys gouldii), aiming to provide insight into the timing and extent of population declines across a large region with a dearth of long-term monitoring data. By estimating recent trajectories in effective population sizes at four localities, we confirm widespread population decline across the species' range, but find that the population in the peri-urban area of the Darwin region has been more stable. Based on current sampling, the Melville Island population made the greatest contribution to overall allelic richness of the species, and the prioritisation analysis suggested that conservation of the Darwin and Cobourg Peninsula populations would be the most cost-effective scenario to retain more than 90% of all alleles. Our results broadly confirm current sub-specific taxonomy, and provide crucial data on the spatial distribution of genomic diversity to help prioritise limited conservation resources. Along with additional sampling and genomic analysis from the far eastern and western edges of the black-footed tree-rat distribution, we suggest a range of conservation and research priorities that could help improve black-footed tree-rat population trajectories at large and fine spatial scales, including the retention and expansion of structurally complex habitat patches.
Asunto(s)
Conservación de los Recursos Naturales , Metagenómica , Animales , Ratas , Australia , Biodiversidad , EcosistemaRESUMEN
Billions of microorganisms perform critical below-ground functions in all terrestrial ecosystems. While largely invisible to the naked eye, they support all higher lifeforms, form symbiotic relationships with ~90% of terrestrial plant species, stabilize soils, and facilitate biogeochemical cycles. Global increases in the frequency of disturbances are driving major changes in the structure and function of forests. However, despite their functional significance, the disturbance responses of forest microbial communities are poorly understood. Here, we explore the influence of disturbance on the soil microbiome (archaea, fungi and bacteria) of some of the world's tallest and most carbon-dense forests, the Mountain Ash forests of south-eastern Australia. From 80 sites, we identified 23,277 and 19,056 microbial operational taxonomic units from the 0-10 cm and 20-30 cm depths of soil respectively. From this extensive data set, we found the diversity and composition of these often cryptic communities has been altered by human and natural disturbance events. For instance, the diversity of ectomycorrhizal fungi declined with clearcut logging, the diversity of archaea declined with salvage logging, and bacterial diversity and overall microbial diversity declined with the number of fires. Moreover, we identified key associations between edaphic (soil properties), environmental (slope, elevation) and spatial variables and the composition of all microbial communities. Specifically, we found that soil pH, manganese, magnesium, phosphorus, iron and nitrate were associated with the composition of all microbial communities. In a period of widespread degradation of global forest ecosystems, our findings provide an important and timely insight into the disturbance responses of soil microbial communities, which may influence key ecological functions.
Asunto(s)
Incendios , Microbiota , Micorrizas , Bosques , Humanos , Microbiota/genética , Suelo , Microbiología del SueloRESUMEN
Mammal declines across northern Australia are one of the major biodiversity loss events occurring globally. There has been no regional assessment of the implications of these species declines for genomic diversity. To address this, we conducted a species-wide assessment of genomic diversity in the northern quoll (Dasyurus hallucatus), an Endangered marsupial carnivore. We used next generation sequencing methods to genotype 10,191 single nucleotide polymorphisms (SNPs) in 352 individuals from across a 3220-km length of the continent, investigating patterns of population genomic structure and diversity, and identifying loci showing signals of putative selection. We found strong heterogeneity in the distribution of genomic diversity across the continent, characterized by (i) biogeographical barriers driving hierarchical population structure through long-term isolation, and (ii) severe reductions in diversity resulting from population declines, exacerbated by the spread of introduced toxic cane toads (Rhinella marina). These results warn of a large ongoing loss of genomic diversity and associated adaptive capacity as mammals decline across northern Australia. Encouragingly, populations of the northern quoll established on toad-free islands by translocations appear to have maintained most of the initial genomic diversity after 16 years. By mapping patterns of genomic diversity within and among populations, and investigating these patterns in the context of population declines, we can provide conservation managers with data critical to informed decision-making. This includes the identification of populations that are candidates for genetic management, the importance of remnant island and insurance/translocated populations for the conservation of genetic diversity, and the characterization of putative evolutionarily significant units.
Asunto(s)
Marsupiales , Metagenómica , Animales , Bufo marinus/genética , Conducta Predatoria , Marsupiales/genética , Australia/epidemiologíaRESUMEN
While mouthbrooding is not an uncommon parental care strategy in fishes, paternal mouthbrooding only occurs in eight fish families and is little studied. The high cost of paternal mouthbrooding to the male implies a low risk of investment in another male's offspring but genetic parentage patterns are poorly known for paternal mouthbrooders. Here, we used single-nucleotide polymorphism genetic data to investigate parentage relationships of broods of two mouthbrooders of northern Australian rivers, mouth almighty Glossamia aprion and blue catfish Neoarius graeffei. For N. graeffei, we found that the parentage pattern was largely monogamous with the brooder male as the sire. For G. aprion, the parentage pattern was more heterogeneous including observations of monogamous broods with the brooder male as the sire (73%), polygyny (13%), cuckoldry (6%) and a brood genetically unrelated to the brooder male (6%). Findings demonstrate the potential for complex interrelationships of male care, paternity confidence and mating behaviour in mouthbrooding fishes.
Asunto(s)
Reproducción , Conducta Sexual Animal , Animales , Australia , Peces , Humanos , Masculino , Conducta PaternaRESUMEN
Sex-specific reproductive roles contribute to sexual dimorphic morphological trait variations. In uniparental mouth-brooding fishes, the mouth performs a reproductive function in addition to its key roles in feeding and respiration, resulting in the potential for sex-specific functional performance trade-offs. Trait differences related to parental care may occur when the individual matures or be restricted to periods when the parent is mouth-brooding. This study explored sexual dimorphism and morphological trait adaptations related to feeding, breeding, respiration and locomotion performance in two paternal mouth-brooding freshwater fishes (Glossamia aprion and Neoarius graeffei). Eight morphological traits were evaluated for sexual dimorphism (non-brooder males vs. females) and male breeding state differences (brooders vs. non-brooders). Male breeding state was a significant predictor of trait variation in both species. Brooders differed in buccal volume and in several feeding and locomotory traits compared to non-brooder males. Non-brooder males had bigger buccal volumes and relative eye diameters (G. aprion) and larger relative gape sizes (N. graeffei) compared to females, a potential response to both mouth-brooding and feeding requirements. Although there were clear trait differences between brooder and non-brooder males, further research is required to confirm whether individuals return to their former morphology once mouth-brooding has ceased or if trait differences are maintained post-brooding. This study highlights the importance of considering the potential impacts of intraspecific trait variation on the performance of critical life functions, such as feeding, respiration and locomotion across the life history.
Asunto(s)
Peces , Perciformes , Animales , Femenino , Masculino , Boca , Fenotipo , Reproducción , Caracteres SexualesRESUMEN
Human and natural disturbances are key drivers of change in forest ecosystems. Yet, the direct and indirect mechanisms which underpin these changes remain poorly understood at the ecosystem level. Here, using structural equation modelling across a 150+ year chronosequence, we disentangle the direct and indirect effects of major disturbances in a temperate forest ecosystem. We show that wildfires, logging and post-fire (salvage) logging can affect plant and microbial communities and abiotic soil properties both directly and indirectly through plant-soil-microbial interactions. We quantified 68 direct and indirect disturbance effects across these components, with the majority resulting in ecosystem-wide adverse effects. Indirect disturbance effects accounted for 43% of total disturbance effects, with some amplifying or partially mitigating direct disturbance effects. Overall, human disturbances were associated with more negative effects than natural disturbances. Our analyses provide novel insights into the multifaceted dynamics of forest disturbances and the mechanisms which underpin their relative impacts.
Asunto(s)
Incendios , Incendios Forestales , Ecosistema , Bosques , Humanos , SueloRESUMEN
Understanding local adaptation is critical for conservation management under rapidly changing environmental conditions. Local adaptation inferred from genotype-environment associations may show different genomic patterns depending on the spatial scale of sampling, due to differences in the slope of environmental gradients and the level of gene flow. We compared signatures of local adaptation across the genome of mountain ash (Eucalyptus regnans) at two spatial scales: A species-wide data set and a topographically-complex subregional data set. We genotyped 367 individual trees at over 3700 single-nucleotide polymorphisms (SNPs), quantified patterns of spatial genetic structure among populations, and used two analytical methods to identify loci associated with at least one of three environmental variables at each spatial scale. Together, the analyses identified 549 potentially adaptive SNPs at the subregion scale, and 435 SNPs at the range-wide scale. A total of 39 genic or near-genic SNPs, associated with 28 genes, were identified at both spatial scales, although no SNP was identified by both methods at both scales. We observed that nongenic regions had significantly higher homozygote excess than genic regions, possibly due to selective elimination of inbred genotypes during stand development. Our results suggest that strong environmental selection occurs in mountain ash, and that the identification of putatively adaptive loci can differ substantially depending on the spatial scale of analyses. We also highlight the importance of multiple adaptive genetic architectures for understanding patterns of local adaptation across large heterogenous landscapes, with comparison of putatively adaptive loci among spatial scales providing crucial insights into the process of adaptation.
Asunto(s)
Selección Genética , Árboles , Aclimatación , Adaptación Fisiológica/genética , Genética de Población , Genotipo , Polimorfismo de Nucleótido Simple/genéticaRESUMEN
Conservation management is improved by incorporating information about the spatial distribution of population genetic diversity into planning strategies. Northern Australia is the location of some of the world's most severe ongoing declines of endemic mammal species, yet we have little genetic information from this regional mammal assemblage to inform a genetic perspective on conservation assessment and planning. We used next-generation sequencing data from remnant populations of the threatened brush-tailed rabbit-rat (Conilurus penicillatus) to compare patterns of genomic diversity and differentiation across the landscape and investigate standardised hierarchical genomic diversity metrics to better understand brush-tailed rabbit-rat population genomic structure. We found strong population structuring, with high levels of differentiation between populations (FST = 0.21-0.78). Two distinct genomic lineages between the Tiwi Islands and mainland are also present. Prioritisation analysis showed that one population in both lineages would need to be conserved to retain at least ~80% of alleles for the species. Analysis of standardised genomic diversity metrics showed that approximately half of the total diversity occurs among lineages (δ = 0.091 from grand total γ = 0.184). We suggest that a focus on conserving remnant island populations may not be appropriate for the preservation of species-level genomic diversity and adaptive potential, as these populations represent a small component of the total diversity and a narrow subset of the environmental conditions in which the species occurs. We also highlight the importance of considering both genomic and ecological differentiation between source and receiving populations when considering translocations for conservation purposes.
Asunto(s)
Genética de Población , Metagenómica , Roedores , Animales , Australia , Conservación de los Recursos Naturales , Variación Genética , Genoma , Genómica , Mamíferos , Roedores/genéticaRESUMEN
For decades, studies have focused on how dispersal and mating systems influence genetic structure across populations or social groups. However, we still lack a thorough understanding of how these processes and their interaction shape spatial genetic patterns over a finer scale (tens-hundreds of metres). Using uniparentally inherited markers may help answer these questions, yet their potential has not been fully explored. Here, we use individual-level simulations to investigate the effects of dispersal and mating system on fine-scale genetic structure at autosomal, mitochondrial and Y chromosome markers. Using genetic spatial autocorrelation analysis, we found that dispersal was the major driver of fine-scale genetic structure across maternally, paternally and biparentally inherited markers. However, when dispersal was restricted (mean distance = 100 m), variation in mating behaviour created strong differences in the comparative level of structure detected at maternally and paternally inherited markers. Promiscuity reduced spatial genetic structure at Y chromosome loci (relative to monogamy), whereas structure increased under polygyny. In contrast, mitochondrial and autosomal markers were robust to differences in the specific mating system, although genetic structure increased across all markers when reproductive success was skewed towards fewer individuals. Comparing males and females at Y chromosome vs. mitochondrial markers, respectively, revealed that some mating systems can generate similar patterns to those expected under sex-biased dispersal. This demonstrates the need for caution when inferring ecological and behavioural processes from genetic results. Comparing patterns between the sexes, across a range of marker types, may help us tease apart the processes shaping fine-scale genetic structure.
Asunto(s)
Patrón de Herencia/genética , Mamíferos/genética , Conducta Sexual Animal , Migración Animal , Animales , ADN Mitocondrial/genética , Femenino , Marcadores Genéticos , Masculino , Cromosoma Y/genéticaRESUMEN
Disturbances are key drivers of plant community composition, structure, and function. Plant functional traits, including life forms and reproductive strategies are critical to the resilience and resistance of plant communities in the event of disturbance. Climate change and increasing anthropogenic disturbance are altering natural disturbance regimes globally. When these regimes shift beyond the adaptive resilience of plant functional traits, local populations and ecosystem functions can become compromised. We tested the influence of multiple disturbances, of varying intensity and frequency, on the composition and abundance of vascular plant communities and their respective functional traits (life forms and reproductive strategies) in the wet sclerophyll, Mountain Ash Eucalyptus regnans forests of southeastern Australia. Specifically, we quantified the effect of the type and number of disturbances (including fires, clearcut logging, and salvage logging) on plant community composition. We found that clearcut and salvage logging and the number of fires significantly influenced plant community composition and functional traits. Specifically, multiple fires resulted in lower populations of species that depend on on-site seeding for persistence. This includes the common tree species Eucalyptus regnans, Pomaderris aspera, and Acacia dealbata. In contrast, clearcut and salvage logged sites supported abundant on-site seeder species. However, species that depend on resprouting by surviving individuals, such as common and keystone "tree ferns" Dicksonia antarctica and Cyathea australis, declined significantly. Our data have important implications for understanding the relationship between altered disturbance regimes and plant communities and the respective effects on ecosystem function. In a period of rapid global environmental change, with disturbances predicted to increase and intensify, it is critical to address the impact of altered disturbance regimes on biodiversity.
Asunto(s)
Incendios , Bosques , Biodiversidad , Eucalyptus , Agricultura Forestal , VictoriaRESUMEN
Understanding how landscape heterogeneity mediates the effects of fire on biodiversity is increasingly important under global changes in fire regimes. We used a simulation experiment to investigate how fire regimes interact with topography and weather to shape neutral and selection-driven genetic diversity under alternative dispersal scenarios, and to explore the conditions under which microrefuges can maintain genetic diversity of populations exposed to recurrent fire. Spatial heterogeneity in simulated fire frequency occurred in topographically complex landscapes, with fire refuges and fire-prone "hotspots" apparent. Interannual weather variability reduced the effect of topography on fire patterns, with refuges less apparent under high weather variability. Neutral genetic diversity was correlated with long-term fire frequency under spatially heterogeneous fire regimes, being higher in fire refuges than fire-prone areas, except under high dispersal or low fire severity (low mortality). This generated different spatial genetic structures in fire-prone and fire-refuge components of the landscape, despite similar dispersal. In contrast, genetic diversity was only associated with time since the most recent fire in flat landscapes without predictable refuges and hotspots. Genetic effects of selection driven by fire-related conditions depended on selection pressure, migration distance and spatial heterogeneity in fire regimes. Allele frequencies at a locus conferring higher fitness under successional environmental conditions followed a pattern of "temporal adaptation" to contemporary conditions under strong selection pressure and high migration. However, selected allele frequencies were correlated with spatial variation in long-term mean fire frequency (relating to environmental predictability) under weak dispersal, low selection pressure and strong spatial heterogeneity in fire regimes.
Asunto(s)
Ecosistema , Incendios , Variación Genética , Tiempo (Meteorología) , Australia , Biodiversidad , Simulación por Computador , Frecuencia de los Genes , Aptitud Genética , Modelos Genéticos , Selección Genética , Análisis Espacio-TemporalRESUMEN
Genetic analyses can reveal a wealth of hitherto undiscovered cryptic biodiversity. For co-occurring and morphologically similar species, the combination of molecular, ecological and morphological analyses provides an excellent opportunity for understanding some of the processes that can lead to divergence and speciation. The Australian endemic brown macroalga Durvillaea potatorum (Phaeophyceae) was examined with a combination of genetic and morphological approaches to confirm the presence of two separate species and to infer the processes that led to their divergence. A total of 331 individuals from 11 sites around coastal Tasmania were collected and measured in situ for a range of morphological and ecological characteristics. Tissue samples were also collected for each individual to allow genetic analyses using mitochondrial (COI) and nuclear (28S) markers. Genetic analyses confirmed the presence of two deeply divergent clades. The significant morphological differentiation, despite high levels of intra-lineage variability, further supported their recognition as distinct species. We describe a new species, D. amatheiae sp. nov., which is characterised by a narrower and proportionately shorter stipe, shorter total length, and higher number of stipitate lateral blades and branches than D. potatorum (sensu stricto). The occurrence of both species in sympatry along Tasmania's eastern and western coasts, as well as their contrasting patterns of haplotype diversity, supports a hypothesis of geographical isolation, allopatric speciation and subsequent secondary contact in response to sea level and ocean current change throughout the Pleistocene glaciation cycles. This research contributes to resolving the phylogenetic relationships, taxonomy and evolution of the ecologically keystone kelp genus Durvillaea.
Asunto(s)
Variación Genética , Kelp/clasificación , Kelp/genética , Filogenia , Simpatría/genética , Australia , Secuencia de Bases , ADN Mitocondrial/genética , Ecosistema , Geografía , Haplotipos , Análisis MultivarianteRESUMEN
Habitat loss and fragmentation are major threats to biodiversity and ecosystem processes. Our current understanding of the impacts of habitat loss and fragmentation is based largely on studies that focus on either short-term or long-term responses. Short-term responses are often used to predict long-term responses and make management decisions. The lack of studies comparing short- and long-term responses to fragmentation means we do not adequately understand when and how well short-term responses can be extrapolated to predict long-term responses, and when or why they cannot. To address this gap, we used data from one of the world's longest-running fragmentation experiments, The Wog Wog Habitat Fragmentation Experiment. Using data for carabid beetles, we found that responses in the long term (more than 22 yr post-fragmentation ≈22 generations) often contrasted markedly with those in the short term (5 yr post-fragmentation). The total abundance of all carabids, species richness and the occurrence of six species declined in the short term in the fragments but increased over the long term. The occurrence of three species declined initially and continued to decline, whilst another species was positively affected initially but decreased in the long term. Species' responses to the matrix that surrounds the fragments strongly predicted both the direction (increase/decline in occurrence) and magnitude of their responses to fragmentation. Additionally, species' responses to the matrix were somewhat predicted by their preferences for different types of native habitat (open vs. shaded). Our study highlights the degree of the matrix's influence in fragmented landscapes, and how this influence can change over time. We urge caution in using short-term responses to forecast long-term responses in cases where the matrix (1) impacts species' responses to fragmentation (by isolating them, creating new habitat or altering fragment habitat) and (2) is likely to change through time.
Asunto(s)
Ecosistema , Animales , Biodiversidad , EscarabajosRESUMEN
Emerging pathogens can drive evolutionary shifts in host life-history traits, yet this process remains poorly documented in vertebrate hosts. Amphibian chytridiomycosis, caused by infection with the fungal pathogen Batrachochytrium dendrobatidis (Bd), is the worst recorded wildlife disease and has caused the extinction of over 100 species across multiple continents. A similar number of additional species have experienced mass declines and Bd remains a major source of mortality in many populations of declined species now persisting with the pathogen. Life-history theory predicts that increased extrinsic mortality in Bd-infected populations may alter amphibian life-history traits, but this has not been examined. Here, we investigate whether population Bd status is associated with age and size at maturity by comparing long-exposed Bd-infected populations, Bd-free populations, and museum specimens collected prior to Bd emergence for the endangered Australian frog Litoria verreauxii alpina. We show that Bd-infected populations have a higher proportion of males that mature at 1 year of age, and females that mature at 2 years of age, compared to Bd-free populations. Earlier maturation was associated with reduced size at maturity in males. Consistent with life-history theory, our findings may represent an adaptive evolutionary shift towards earlier maturation in response to high Bd-induced mortality. To our knowledge, this study provides the first evidence for a post-metamorphic Bd-associated shift in an amphibian life-history trait. Given high mortality in other Bd-challenged species, we suggest that chytridiomycosis may be a substantial new selection pressure shaping life-history traits in impacted amphibian species across multiple continents.
Asunto(s)
Anuros , Micosis , Animales , Anuros/microbiología , Australia , Quitridiomicetos , Femenino , Masculino , Micosis/microbiologíaRESUMEN
Dispersal fundamentally influences spatial population dynamics but little is known about dispersal variation in landscapes where spatial heterogeneity is generated predominantly by disturbance and succession. We tested the hypothesis that habitat succession following fire inhibits dispersal, leading to declines over time in genetic diversity in the early successional gecko Nephrurus stellatus We combined a landscape genetics field study with a spatially explicit simulation experiment to determine whether successional patterns in genetic diversity were driven by habitat-mediated dispersal or demographic effects (declines in population density leading to genetic drift). Initial increases in genetic structure following fire were likely driven by direct mortality and rapid population expansion. Subsequent habitat succession increased resistance to gene flow and decreased dispersal and genetic diversity inN. stellatus Simulated changes in population density alone did not reproduce these results. Habitat-mediated reductions in dispersal, combined with changes in population density, were essential to drive the field-observed patterns. Our study provides a framework for combining demographic, movement and genetic data with simulations to discover the relative influence of demography and dispersal on patterns of landscape genetic structure. Our results suggest that succession can inhibit connectivity among individuals, opening new avenues for understanding how disturbance regimes influence spatial population dynamics.
Asunto(s)
Distribución Animal , Variación Genética , Lagartos/fisiología , Animales , Ecosistema , Femenino , Incendios , Lagartos/genética , Masculino , Modelos Biológicos , Dinámica Poblacional , Australia del SurRESUMEN
Understanding the impacts of natural and human disturbances on forest biota is critical for improving forest management. Many studies have examined the separate impacts on fauna and flora of wildfire, conventional logging, and salvage logging, but empirical comparisons across a broad gradient of simultaneous disturbances are lacking. We quantified species richness and frequency of occurrence of vascular plants, and functional group responses, across a gradient of disturbances that occurred concurrently in 2009 in the mountain ash forests of southeastern Australia. Our study encompassed replicated sites in undisturbed forest (~70 yr post fire), forest burned at low severity, forest burned at high severity, unburned forest that was clearcut logged, and forest burned at high severity that was clearcut salvage logged post-fire. All sites were sampled 2 and 3 yr post fire. Mean species richness decreased across the disturbance gradient from 30.1 species/site on low-severity burned sites and 28.9 species/site on high-severity burned sites, to 25.1 species/site on clearcut sites and 21.7 species/site on salvage logged sites. Low-severity burned sites were significantly more species-rich than clearcut sites and salvage logged sites; high-severity burned sites supported greater species richness than salvage logged sites. Specific traits influenced species' sensitivity to disturbance. Resprouting species dominated undisturbed mountain ash forests, but declined significantly across the gradient. Fern and midstory trees decreased significantly in frequency of occurrence across the gradient. Ferns (excluding bracken) decreased from 34% of plants in undisturbed forest to 3% on salvage logged sites. High-severity burned sites supported a greater frequency of occurrence and species richness of midstory trees compared to clearcut and salvage logged sites. Salvage logging supported fewer midstory trees than any other disturbance category, and were distinctly different from clearcut sites. Plant life form groups, including midstory trees, shrubs, and ferns, were dominated by very few species on logged sites. The differences in biotic response across the gradient of natural and human disturbances have significant management implications, particularly the need to reduce mechanical disturbance overall and to leave specific areas with no mechanical disturbance across the cut area during logging operations, to ensure the persistence of resprouting taxa.
Asunto(s)
Biodiversidad , Incendios , Agricultura Forestal , Plantas/clasificación , Australia , Conservación de los Recursos Naturales , Monitoreo del Ambiente , BosquesRESUMEN
Fire is a major ecological process in ecosystems globally. Its impacts on fauna can be both direct (e.g., mortality) and indirect (e.g., altered habitat), resulting in population recovery being driven by several possible mechanisms. Separating direct from indirect impacts of fire on faunal population recovery can be valuable in guiding management of biodiversity in fire-prone environments. However, resolving the influence of direct and indirect processes remains a key challenge because many processes affecting fauna can change concomitantly with time since fire. We explore the mechanisms influencing bird response to fire by posing the question, can temporal changes in vegetation structure predict changes in bird occurrence on sites, and can these be separated from other temporal changes using the surrogate of time since fire? We conducted a 12-yr study of bird and vegetation responses to fire at 124 sites across six vegetation classes in Booderee National Park, Australia. Approximately half of these sites, established in 2002, were burned by a large (>3000 ha) wildfire in 2003. To disentangle collinear effects of temporal changes in vegetation and direct demographic effects on population recovery that are subsumed by time since fire, we incorporated both longitudinal and cross-sectional vegetation effects in addition to time since fire within logistic structural equation models. We identified temporal changes in vegetation structure and richness of plant and bird species that characterized burned and unburned sites in all vegetation classes. For nine bird species, a significant component of the year trend was driven by temporal trends in one of three vegetation variables (number of understory or midstory plant species, or midstory cover). By contrast, we could not separate temporal effects between time since fire and vegetation attributes for bird species richness, reporting rate, and the occurrence of 11 other bird species. Our findings help identify species for which indirect effects of vegetation dominate recovery and thus may benefit from vegetation management where conservation actions are required and, conversely, those species for which direct effects of time since fire drive recovery, where simply leaving a system to recover following the last disturbance will be sufficient.
Asunto(s)
Biodiversidad , Aves/fisiología , Incendios , Plantas/clasificación , Animales , Australia , Conservación de los Recursos Naturales/métodos , Estudios Transversales , Monitoreo del Ambiente , Dinámica Poblacional , Factores de TiempoRESUMEN
Fire is a major ecological process in many ecosystems worldwide. We sought to identify which attributes of fire regimes affect temporal change in the presence and abundance of Australian native mammals. Our detailed study was underpinned by time series data on 11 mammal species at 97 long-term sites in southeastern Australia between 2003 and 2013. We explored how temporal aspects of fire regimes influenced the presence and conditional abundance of species. The key fire regime components examined were: (1) severity of a major fire in 2003, (2) interval between the last major fire (2003) and the fire prior to that, and (3) number of past fires. Our long-term data set enabled quantification of the interactions between survey year and each fire regime variable: an ecological relationship missing from temporally restricted studies. We found no evidence of any appreciable departures from the assumption of independence of the sites. Multiple aspects of fire regimes influenced temporal variation in the presence and abundance of mammals. The best models indicated that six of the 11 species responded to two or more fire regime variables, with two species influenced by all three fire regime attributes. Almost all species responded to time since fire, either as an interaction with survey year or as a main effect. Fire severity or its interaction with survey year was important for most terrestrial rodents. The number of fires at a site was significant for terrestrial rodents and several other species. Our findings contain evidence of the effects on native mammals of heterogeneity in fire regimes. Temporal response patterns of mammal species were influenced by multiple fire regime attributes, often in conjunction with survey year. This underscores the critical importance of long-term studies of biota that are coupled with data sets characterized by carefully documented fire history, severity, and frequency. Long-term studies are essential to predict animal responses to fires and guide management of when and where (prescribed) fire or, conversely, long-unburned vegetation is needed. The complexity of observed responses highlights the need for large reserves in which patterns of heterogeneity in fire regimes can be sustained in space and over time.