Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 171(5): 1165-1175.e13, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29149605

RESUMEN

Biased agonism has been proposed as a means to separate desirable and adverse drug responses downstream of G protein-coupled receptor (GPCR) targets. Herein, we describe structural features of a series of mu-opioid-receptor (MOR)-selective agonists that preferentially activate receptors to couple to G proteins or to recruit ßarrestin proteins. By comparing relative bias for MOR-mediated signaling in each pathway, we demonstrate a strong correlation between the respiratory suppression/antinociception therapeutic window in a series of compounds spanning a wide range of signaling bias. We find that ßarrestin-biased compounds, such as fentanyl, are more likely to induce respiratory suppression at weak analgesic doses, while G protein signaling bias broadens the therapeutic window, allowing for antinociception in the absence of respiratory suppression.


Asunto(s)
Analgésicos Opioides/administración & dosificación , Analgésicos Opioides/efectos adversos , Receptores Opioides mu/agonistas , Animales , Fentanilo/administración & dosificación , Proteínas de Unión al GTP/metabolismo , Ratones , Morfina/administración & dosificación , Receptores Opioides mu/química , Sistema Respiratorio/efectos de los fármacos , Transducción de Señal , beta-Arrestinas/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34819362

RESUMEN

The ability of a ligand to preferentially promote engagement of one signaling pathway over another downstream of GPCR activation has been referred to as signaling bias, functional selectivity, and biased agonism. The presentation of ligand bias reflects selectivity between active states of the receptor, which may result in the display of preferential engagement with one signaling pathway over another. In this study, we provide evidence that the G protein-biased mu opioid receptor (MOR) agonists SR-17018 and SR-14968 stabilize the MOR in a wash-resistant yet antagonist-reversible G protein-signaling state. Furthermore, we demonstrate that these structurally related biased agonists are noncompetitive for radiolabeled MOR antagonist binding, and while they stimulate G protein signaling in mouse brains, partial agonists of this class do not compete with full agonist activation. Importantly, opioid antagonists can readily reverse their effects in vivo. Given that chronic treatment with SR-17018 does not lead to tolerance in several mouse pain models, this feature may be desirable for the development of long-lasting opioid analgesics that remain sensitive to antagonist reversal of respiratory suppression.


Asunto(s)
Receptores Acoplados a Proteínas G/metabolismo , Receptores Opioides mu/metabolismo , Transducción de Señal/efectos de los fármacos , Analgésicos Opioides/farmacología , Animales , Bencimidazoles/farmacología , Proteínas de Unión al GTP/metabolismo , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Antagonistas de Narcóticos/farmacología , Piperidinas/farmacología , Receptores Acoplados a Proteínas G/fisiología , Receptores Opioides mu/agonistas , Receptores Opioides mu/fisiología , Transducción de Señal/fisiología , Arrestina beta 2/metabolismo
3.
Circ Res ; 128(3): 335-357, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33539225

RESUMEN

RATIONALE: Diabetic cardiomyopathy (DbCM) is a major complication in type-1 diabetes, accompanied by altered cardiac energetics, impaired mitochondrial function, and oxidative stress. Previous studies indicate that type-1 diabetes is associated with increased cardiac expression of KLF5 (Krüppel-like factor-5) and PPARα (peroxisome proliferator-activated receptor) that regulate cardiac lipid metabolism. OBJECTIVE: In this study, we investigated the involvement of KLF5 in DbCM and its transcriptional regulation. METHODS AND RESULTS: KLF5 mRNA levels were assessed in isolated cardiomyocytes from cardiovascular patients with diabetes and were higher compared with nondiabetic individuals. Analyses in human cells and diabetic mice with cardiomyocyte-specific FOXO1 (Forkhead box protein O1) deletion showed that FOXO1 bound directly on the KLF5 promoter and increased KLF5 expression. Diabetic mice with cardiomyocyte-specific FOXO1 deletion had lower cardiac KLF5 expression and were protected from DbCM. Genetic, pharmacological gain and loss of KLF5 function approaches and AAV (adeno-associated virus)-mediated Klf5 delivery in mice showed that KLF5 induces DbCM. Accordingly, the protective effect of cardiomyocyte FOXO1 ablation in DbCM was abolished when KLF5 expression was rescued. Similarly, constitutive cardiomyocyte-specific KLF5 overexpression caused cardiac dysfunction. KLF5 caused oxidative stress via direct binding on NADPH oxidase (NOX)4 promoter and induction of NOX4 (NADPH oxidase 4) expression. This was accompanied by accumulation of cardiac ceramides. Pharmacological or genetic KLF5 inhibition alleviated superoxide formation, prevented ceramide accumulation, and improved cardiac function in diabetic mice. CONCLUSIONS: Diabetes-mediated activation of cardiomyocyte FOXO1 increases KLF5 expression, which stimulates NOX4 expression, ceramide accumulation, and causes DbCM.


Asunto(s)
Cardiomiopatías Diabéticas/metabolismo , Proteína Forkhead Box O1/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , PPAR alfa/metabolismo , Anciano , Animales , Línea Celular , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/patología , Modelos Animales de Enfermedad , Femenino , Proteína Forkhead Box O1/genética , Regulación de la Expresión Génica , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Miocitos Cardíacos/patología , PPAR alfa/genética , Transcripción Genética
4.
Bioorg Chem ; 139: 106747, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37531819

RESUMEN

Ceramides impact a diverse array of biological functions and have been implicated in disease pathogenesis. The enzyme neutral ceramidase (nCDase) is a zinc-containing hydrolase and mediates the metabolism of ceramide to sphingosine (Sph), both in cells and in the intestinal lumen. nCDase inhibitors based on substrate mimetics, for example C6-urea ceramide, have limited potency, aqueous solubility, and micelle-free fraction. To identify non-ceramide mimetic nCDase inhibitors, hit compounds from an HTS campaign were evaluated in biochemical, cell based and in silico modeling approaches. A majority of small molecule nCDase inhibitors contained pharmacophores capable of zinc interaction but retained specificity for nCDase over zinc-containing acid and alkaline ceramidases, as well as matrix metalloprotease-3 and histone deacetylase-1. nCDase inhibitors were refined by SAR, were shown to be substrate competitive and were active in cellular assays. nCDase inhibitor compounds were modeled by in silico DOCK screening and by molecular simulation. Modeling data supports zinc interaction and a similar compound binding pose with ceramide. nCDase inhibitors were identified with notably improved activity and solubility in comparison with the reference lipid-mimetic C6-urea ceramide.


Asunto(s)
Ceramidas , Ceramidasa Neutra , Dominio Catalítico , Ceramidas/química , Ceramidasa Neutra/antagonistas & inhibidores , Esfingosina/química
5.
Circulation ; 143(11): 1139-1156, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33430631

RESUMEN

BACKGROUND: We previously showed that cardiomyocyte Krϋppel-like factor (KLF) 5 regulates cardiac fatty acid oxidation. As heart failure has been associated with altered fatty acid oxidation, we investigated the role of cardiomyocyte KLF5 in lipid metabolism and pathophysiology of ischemic heart failure. METHODS: Using real-time polymerase chain reaction and Western blot, we investigated the KLF5 expression changes in a myocardial infarction (MI) mouse model and heart tissue from patients with ischemic heart failure. Using 2D echocardiography, we evaluated the effect of KLF5 inhibition after MI using pharmacological KLF5 inhibitor ML264 and mice with cardiomyocyte-specific KLF5 deletion (αMHC [α-myosin heavy chain]-KLF5-/-). We identified the involvement of KLF5 in regulating lipid metabolism and ceramide accumulation after MI using liquid chromatography-tandem mass spectrometry, and Western blot and real-time polymerase chain reaction analysis of ceramide metabolism-related genes. We lastly evaluated the effect of cardiomyocyte-specific KLF5 overexpression (αMHC-rtTA [reverse tetracycline-controlled transactivator]-KLF5) on cardiac function and ceramide metabolism, and rescued the phenotype using myriocin to inhibit ceramide biosynthesis. RESULTS: KLF5 mRNA and protein levels were higher in human ischemic heart failure samples and in rodent models at 24 hours, 2 weeks, and 4 weeks post-permanent left coronary artery ligation. αMHC-KLF5-/- mice and mice treated with ML264 had higher ejection fraction and lower ventricular volume and heart weight after MI. Lipidomic analysis showed that αMHC-KLF5-/- mice with MI had lower myocardial ceramide levels compared with littermate control mice with MI, although basal ceramide content of αMHC-KLF5-/- mice was not different in control mice. KLF5 ablation suppressed the expression of SPTLC1 and SPTLC2 (serine palmitoyltransferase [SPT] long-chain base subunit ()1 2, respectively), which regulate de novo ceramide biosynthesis. We confirmed our previous findings that myocardial SPTLC1 and SPTLC2 levels are increased in heart failure patients. Consistently, αMHC-rtTA-KLF5 mice showed increased SPTLC1 and SPTLC2 expression, higher myocardial ceramide levels, and systolic dysfunction beginning 2 weeks after KLF5 induction. Treatment of αMHC-rtTA-KLF5 mice with myriocin that inhibits SPT, suppressed myocardial ceramide levels and alleviated systolic dysfunction. CONCLUSIONS: KLF5 is induced during the development of ischemic heart failure in humans and mice and stimulates ceramide biosynthesis. Genetic or pharmacological inhibition of KLF5 in mice with MI prevents ceramide accumulation, alleviates eccentric remodeling, and increases ejection fraction. Thus, KLF5 emerges as a novel therapeutic target for the treatment of ischemic heart failure.


Asunto(s)
Cardiomiopatías/fisiopatología , Ceramidas/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Miocitos Cardíacos/metabolismo , Remodelación Ventricular/fisiología , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones
6.
Biochem J ; 475(18): 2941-2953, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30068530

RESUMEN

A series of compounds formerly identified by high-throughput screening was studied for their ability to serve as pharmacoperones for the vasopressin type 2 receptor (V2R) mutant L83Q, which is known to cause nephrogenic diabetes insipidus (NDI). Three compounds were particularly effective in rerouting the mutant receptor in a concentration-dependent manner, were neither agonists nor antagonists, and displayed low cellular toxicity. Compound 1 was most effective and can be used as a molecular probe for future studies of how small molecules may affect NDI caused by mutant V2R. These compounds, however, failed to rescue the V2R Y128S mutant, indicating that the compounds described may not work in the rescue of all known mutants of V2R. Taken collectively, the present studies have now identified a promising lead compound that could function as a pharmacoperone to correct the trafficking defect of the NDI-associated mutant V2R L83Q and thus has the therapeutic potential for the treatment of NDI.


Asunto(s)
Chaperonas Moleculares/farmacología , Sondas Moleculares/farmacología , Mutación Missense , Receptores de Vasopresinas/metabolismo , Sustitución de Aminoácidos , Diabetes Insípida Nefrogénica/tratamiento farmacológico , Diabetes Insípida Nefrogénica/genética , Diabetes Insípida Nefrogénica/metabolismo , Células HeLa , Humanos , Chaperonas Moleculares/química , Receptores de Vasopresinas/química , Receptores de Vasopresinas/genética
7.
Chemistry ; 24(38): 9535-9541, 2018 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-29775502

RESUMEN

The first selective PdII -catalysed γ-C(sp3 )-H and γ-C(sp2 )-H arylation of free amino esters using a commercially available catalytic transient directing group. A variety of free amino esters, including α-amino esters and ß-amino esters, amino monoesters and amino bis-esters, are shown to react with a diverse range of simple aryl and heteroaryl iodide reagents.

8.
J Org Chem ; 81(5): 2194-200, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26828413

RESUMEN

Sempervirine and analogues were synthesized using a route featuring Sonogashira and Larock Pd-catalyzed reactions. Structure-activity relationships were investigated using three human cancer cell lines. 10-Fluorosempervirine is the most potently cytotoxic member of the family yet described.


Asunto(s)
Antineoplásicos/síntesis química , Paladio/química , Alcaloides de Triptamina Secologanina/síntesis química , Alcaloides de Triptamina Secologanina/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Catálisis , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Alcaloides de Triptamina Secologanina/química , Relación Estructura-Actividad
9.
Tetrahedron Lett ; 56(15): 1949-4952, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-27087706

RESUMEN

A novel synthetic route to 1,3,5,7-tetrasubstituted pyrimido[4,5-d]pyrimidine-2,4-diones, of interest for potential antitumor activity, is reported. The route uses 1,3-disubstituted 6-amino uracils as starting materials. The key step is a hydrazine-induced cyclization reaction to form the fused pyrimidine ring. By choosing different uracils, acylation reagents and alkylation reagents, substituents at N-1, N-3, C-5, and C-7 may be selectively varied to provide a structurally diverse set of compounds for biological evaluation.

10.
European J Org Chem ; 2015(8): 1764-1770, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26257580

RESUMEN

In the course of an SAR study of pyrrole[3,4-d]pyridazinones we optimized conditions for a one pot directed lithiation / alkylation reaction that also promoted in situ cleavage of a Boc-protecting group on the pyrrole ring. The efficiency of the process allowed access to a number of substituted analogues of interest as possible antitumor agents.

11.
J Org Chem ; 79(3): 1467-72, 2014 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-24393145

RESUMEN

A direct and scalable route to γ-keto-α,ß-unsaturated esters, useful intermediates in medicinal chemistry and natural products synthesis, is reported. The key step involves the use of Grubbs' second-generation olefin metathesis catalyst for cross-metathesis of alkyl acrylates and 2° allylic alcohols. The metathesis step is followed by oxidation to give the desired products in high yield on scales of up to 25 g.


Asunto(s)
Productos Biológicos/química , Cetonas/síntesis química , Catálisis , Química Farmacéutica , Ésteres , Cetonas/química , Estructura Molecular , Oxidación-Reducción , Estereoisomerismo
12.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38256920

RESUMEN

Rheumatoid arthritis is a systemic autoimmune inflammatory disease that affects millions of people worldwide. There are multiple disease-modifying anti-rheumatic drugs available; however, many patients do not respond to any treatment. A disintegrin and metalloproteinase 10 has been suggested as a potential new target for RA due to its role in the release of multiple pro- and anti-inflammatory factors from cell surfaces. In the present study, we determined the pharmacokinetic parameters and in vivo efficacy of a compound CID3117694 from a novel class of non-zinc-binding inhibitors. Oral bioavailability was demonstrated in the blood and synovial fluid after a 10 mg/kg dose. To test efficacy, we established the collagen-induced arthritis model in mice. CID3117694 was administered orally at 10, 30, and 50 mg/kg/day for 28 days. CID3117694 was able to dose-dependently improve the disease score, decrease RA markers in the blood, and decrease signs of inflammation, hyperplasia, pannus formation, and cartilage erosion in the affected joints compared to the untreated control. Additionally, mice treated with CID 3117694 did not exhibit any clinical signs of distress, suggesting low toxicity. The results of this study suggest that the inhibition of ADAM10 exosite can be a viable therapeutic approach to RA.

13.
Eur J Med Chem ; 263: 115935, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37989057

RESUMEN

A series of hybrid inhibitors, combining pharmacophores of known kinase inhibitors bearing anilino-purines (ruxolitinib, ibrutinib) and benzohydroxamate HDAC inhibitors (nexturastat A), were generated in the present study. The compounds have been synthesized and tested against solid and hematological tumor cell lines. Compounds 4d-f were the most promising in cytotoxicity assays (IC50 ≤ 50 nM) vs. hematological cells and displayed moderate activity in solid tumor models (EC50 = 9.3-21.7 µM). Compound 4d potently inhibited multiple kinase targets of interest for anticancer effects, including JAK2, JAK3, HDAC1, and HDAC6. Molecular dynamics simulations showed that 4d has stable interactions with HDAC and members of the JAK family, with differences in the hinge binding energy conferring selectivity for JAK3 and JAK2 over JAK1. The kinase inhibition profile of compounds 4d-f allows selective cytotoxicity, with minimal effects on non-tumorigenic cells. Moreover, these compounds have favorable pharmacokinetic profiles, with high stability in human liver microsomes (e.g., see t1/2: >120 min for 4f), low intrinsic clearance, and lack of significant inhibition of four major CYP450 isoforms.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/química , Quinasas Janus , Purinas/farmacología , Línea Celular Tumoral , Proliferación Celular
14.
Bioorg Med Chem Lett ; 23(6): 1592-9, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23416002

RESUMEN

SAR and lead optimization studies for Rock inhibitors based on amino acid-derived quinazolines are described. Studies demonstrated that these amino acid derived quinazolinones were mainly pan-Rock (I & II) inhibitors. While selectivity against other kinases could be achieved, selectivity for most of these compounds against PKA was not achieved. This is distinct from Rock inhibitors based on non-amino acid derived quinazolinones, where high selectivity against PKA could be obtained.(22) The inhibitors presented here in some cases possessed sub-nanomolar inhibition of Rock, nanomolar potency in ppMLC cell based assays, low to fair cytochrome P-450 inhibition, and good human microsomal stability.


Asunto(s)
Aminoácidos/química , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Quinazolinas/química , Quinasas Asociadas a rho/antagonistas & inhibidores , Sitios de Unión , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Humanos , Microsomas/metabolismo , Simulación del Acoplamiento Molecular , Unión Proteica , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/metabolismo , Estructura Terciaria de Proteína , Quinazolinas/síntesis química , Quinazolinas/metabolismo , Relación Estructura-Actividad , Quinasas Asociadas a rho/metabolismo
15.
Biomolecules ; 13(6)2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37371516

RESUMEN

Opioid analgesics such as morphine and fentanyl induce mu-opioid receptor (MOR)-mediated hyperactivity in mice. Herein, we show that morphine, fentanyl, SR-17018, and oliceridine have submaximal intrinsic efficacy in the mouse striatum using 35S-GTPγS binding assays. While all of the agonists act as partial agonists for stimulating G protein coupling in striatum, morphine, fentanyl, and oliceridine are fully efficacious in stimulating locomotor activity; meanwhile, the noncompetitive biased agonists SR-17018 and SR-15099 produce submaximal hyperactivity. Moreover, the combination of SR-17018 and morphine attenuates hyperactivity while antinociceptive efficacy is increased. The combination of oliceridine with morphine increases hyperactivity, which is maintained over time. These findings provide evidence that noncompetitive agonists at MOR can be used to suppress morphine-induced hyperactivity while enhancing antinociceptive efficacy; moreover, they demonstrate that intrinsic efficacy measured at the receptor level is not directly proportional to drug efficacy in the locomotor activity assay.


Asunto(s)
Morfina , Compuestos de Espiro , Ratones , Animales , Morfina/farmacología , Analgésicos Opioides/farmacología , Fentanilo/farmacología
16.
SLAS Discov ; 28(3): 95-101, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36646172

RESUMEN

The SARS coronavirus 2 (SARS-CoV-2) pandemic remains a major problem in many parts of the world and infection rates remain at extremely high levels. This high prevalence drives the continued emergence of new variants, and possibly ones that are more vaccine-resistant and that can drive infections even in highly vaccinated populations. The high rate of variant evolution makes clear the need for new therapeutics that can be clinically applied to minimize or eliminate the effects of COVID-19. With a hurdle of 10 years, on average, for first in class small molecule therapeutics to achieve FDA approval, the fastest way to identify therapeutics is by drug repurposing. To this end, we developed a high throughput cell-based screen that incorporates the essential viral 3C-like protease and its peptide cleavage site into a luciferase complementation assay to evaluate the efficacy of known drugs encompassing approximately 15,000 clinical-stage or FDA-approved small molecules. Confirmed inhibitors were also tested to determine their cytotoxic properties. Medicinal chemistry efforts to optimize the hits identified Tranilast as a potential lead. Here, we report the rapid screening and identification of potentially relevant drugs that exhibit selective inhibition of the SARS-CoV-2 viral 3C-like protease.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Ensayos Analíticos de Alto Rendimiento , Péptido Hidrolasas , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/química
17.
Sci Rep ; 13(1): 21006, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38030668

RESUMEN

We report a series of 1,3-diphenylureido hydroxamate HDAC inhibitors evaluated against sensitive and drug-resistant P. falciparum strains. Compounds 8a-d show potent antiplasmodial activity, indicating that a phenyl spacer allows improved potency relative to cinnamyl and di-hydrocinnamyl linkers. In vitro, mechanistic studies demonstrated target activity for PfHDAC1 on a recombinant level, which agreed with cell quantification of the acetylated histone levels. Compounds 6c, 7c, and 8c, identified as the most active in phenotypic assays and PfHDAC1 enzymatic inhibition. Compound 8c stands out as a remarkable inhibitor, displaying an impressive 85% inhibition of PfHDAC1, with an IC50 value of 0.74 µM in the phenotypic screening on Pf3D7 and 0.8 µM against multidrug-resistant PfDd2 parasites. Despite its potent inhibition of PfHDAC1, 8c remains the least active on human HDAC1, displaying remarkable selectivity. In silico studies suggest that the phenyl linker has an ideal length in the series for permitting effective interactions of the hydroxamate with PfHDAC1 and that this compound series could bind as well as in HsHDAC1. Taken together, these results highlight the potential of diphenylurea hydroxamates as a privileged scaffold for the generation of potent antimalarial HDAC inhibitors with improved selectivity over human HDACs.


Asunto(s)
Antimaláricos , Antagonistas del Ácido Fólico , Humanos , Inhibidores de Histona Desacetilasas/farmacología , Antimaláricos/farmacología , Ácidos Hidroxámicos/farmacología , Antagonistas del Ácido Fólico/farmacología , Relación Estructura-Actividad , Histona Desacetilasa 1
18.
SLAS Discov ; 27(1): 8-19, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35058179

RESUMEN

The severe acute respiratory syndrome coronavirus 2 responsible for COVID-19 remains a persistent threat to mankind, especially for the immunocompromised and elderly for which the vaccine may have limited effectiveness. Entry of SARS-CoV-2 requires a high affinity interaction of the viral spike protein with the cellular receptor angiotensin-converting enzyme 2. Novel mutations on the spike protein correlate with the high transmissibility of new variants of SARS-CoV-2, highlighting the need for small molecule inhibitors of virus entry into target cells. We report the identification of such inhibitors through a robust high-throughput screen testing 15,000 small molecules from unique libraries. Several leads were validated in a suite of mechanistic assays, including whole cell SARS-CoV-2 infectivity assays. The main lead compound, calpeptin, was further characterized using SARS-CoV-1 and the novel SARS-CoV-2 variant entry assays, SARS-CoV-2 protease assays and molecular docking. This study reveals calpeptin as a potent and specific inhibitor of SARS-CoV-2 and some variants.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Inhibidores de Cisteína Proteinasa/farmacología , Dipéptidos/farmacología , Acoplamiento Viral/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Catepsina L/antagonistas & inhibidores , Línea Celular , Chlorocebus aethiops , Evaluación Preclínica de Medicamentos , Reposicionamiento de Medicamentos , Células HEK293 , Humanos , Simulación del Acoplamiento Molecular , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/crecimiento & desarrollo , Serina Endopeptidasas/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero
19.
Bioorg Med Chem Lett ; 21(23): 7113-8, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22018789

RESUMEN

Therapeutic interventions with Rho kinase (ROCK) inhibitors may effectively treat several disorders such as hypertension, stroke, cancer, and glaucoma. Herein we disclose the optimization and biological evaluation of potent novel ROCK inhibitors based on substituted indole and 7-azaindole core scaffolds. Substitutions on the indole C3 position and on the indole NH and/or amide NH positions all yielded potent and selective ROCK inhibitors (25, 42, and 50). Improvement of aqueous solubility and tailoring of in vitro and in vivo DMPK properties could be achieved through these substitutions.


Asunto(s)
Descubrimiento de Drogas , Indoles/síntesis química , Agua/química , Quinasas Asociadas a rho/antagonistas & inhibidores , Animales , Sitios de Unión , Inhibidores Enzimáticos del Citocromo P-450 , Activación Enzimática/efectos de los fármacos , Humanos , Indoles/química , Indoles/farmacología , Concentración 50 Inhibidora , Modelos Moleculares , Estructura Molecular , Ratas , Solubilidad
20.
Bioorg Med Chem Lett ; 21(23): 7107-12, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22004718

RESUMEN

Rho kinase (ROCK) inhibitors are potential therapeutic agents to treat disorders such as hypertension, multiple sclerosis, cancers, and glaucoma. Here, we disclose the synthesis, optimization, biological evaluation of potent indole and 7-azaindole based ROCK inhibitors that have high potency on ROCK (IC(50)=1 nM) with 740-fold selectivity over PKA (47). Moreover, 47 showed very good DMPK properties making it a good candidate for further development. Finally, docking studies with a homology model of ROCK-II were performed to rationalize the binding mode of these compounds and showed the compounds bound in both orientations to take advantage to H-bonds with Lys-121 of ROCK-II.


Asunto(s)
Descubrimiento de Drogas , Indoles/síntesis química , Quinasas Asociadas a rho/antagonistas & inhibidores , Sitios de Unión , Inhibidores Enzimáticos del Citocromo P-450 , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Indoles/química , Indoles/farmacología , Concentración 50 Inhibidora , Modelos Moleculares , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA