Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(24)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34948351

RESUMEN

The polybasic juxtamembrane region (5RK) of the plasma membrane neuronal SNARE, syntaxin1A (Syx), was previously shown by us to act as a fusion clamp in PC12 cells, as charge neutralization of 5RK promotes spontaneous and inhibits Ca2+-triggered release. Using a Syx-based FRET probe (CSYS), we demonstrated that 5RK is required for a depolarization-induced Ca+2-dependent opening (close-to-open transition; CDO) of Syx, which involves the vesicular SNARE synaptobrevin2 and occurs concomitantly with Ca2+-triggered release. Here, we investigated the mechanism underlying the CDO requirement for 5RK and identified phosphorylation of Syx at Ser-14 (S14) by casein kinase 2 (CK2) as a crucial molecular determinant. Thus, following biochemical verification that both endogenous Syx and CSYS are constitutively S14 phosphorylated in PC12 cells, dynamic FRET analysis of phospho-null and phospho-mimetic mutants of CSYS and the use of a CK2 inhibitor revealed that the S14 phosphorylation confers the CDO requirement for 5RK. In accord, amperometric analysis of catecholamine release revealed that the phospho-null mutant does not support Ca2+-triggered release. These results identify a functionally important CK2 phosphorylation of Syx that is required for the 5RK-regulation of CDO and for concomitant Ca2+-triggered release. Further, also spontaneous release, conferred by charge neutralization of 5RK, was abolished in the phospho-null mutant.


Asunto(s)
Calcio/metabolismo , Quinasa de la Caseína II/metabolismo , Células Neuroendocrinas/metabolismo , Sintaxina 1/metabolismo , Animales , Células Cultivadas , Exocitosis , Células Neuroendocrinas/citología , Células PC12 , Fosforilación , Ratas , Sintaxina 1/química , Xenopus
2.
J Neurosci ; 38(1): 220-231, 2018 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-29133430

RESUMEN

The exact function of the polybasic juxtamembrane region (5RK) of the plasma membrane neuronal SNARE, syntaxin 1A (Syx), in vesicle exocytosis, although widely studied, is currently not clear. Here, we addressed the role of 5RK in Ca2+-triggered release, using our Syx-based intramolecular fluorescence resonance energy transfer (FRET) probe, which previously allowed us to resolve a depolarization-induced Ca2+-dependent close-to-open transition (CDO) of Syx that occurs concomitant with evoked release, both in PC12 cells and hippocampal neurons and was abolished upon charge neutralization of 5RK. First, using dynamic FRET analysis in PC12 cells, we show that CDO occurs following assembly of SNARE complexes that include the vesicular SNARE, synaptobrevin 2, and that the participation of 5RK in CDO goes beyond its participation in the final zippering of the complex, because mutations of residues adjacent to 5RK, believed to be crucial for final zippering, do not abolish this transition. In addition, we show that CDO is contingent on membrane phosphatidylinositol 4,5-bisphosphate (PIP2), which is fundamental for maintaining regulated exocytosis, as depletion of membranal PIP2 abolishes CDO. Prompted by these results, which underscore a potentially significant role of 5RK in exocytosis, we next amperometrically analyzed catecholamine release from PC12 cells, revealing that charge neutralization of 5RK promotes spontaneous and inhibits Ca2+-triggered release events. Namely, 5RK acts as a fusion clamp, making release dependent on stimulation by Ca2+SIGNIFICANCE STATEMENT Syntaxin 1A (Syx) is a central protein component of the SNARE complex, which underlies neurotransmitter release. Although widely studied in relation to its participation in SNARE complex formation and its interaction with phosphoinositides, the function of Syx's polybasic juxtamembrane region (5RK) remains unclear. Previously, we showed that a conformational transition of Syx, related to calcium-triggered release, reported by a Syx-based FRET probe, is abolished upon charge neutralization of 5RK (5RK/A). Here we show that this conformational transition is dependent on phosphatidylinositol 4,5-bisphosphate (PIP2) and is related to SNARE complex formation. Subsequently, we show that the 5RK/A mutation enhances spontaneous release and inhibits calcium-triggered release in neuroendocrine cells, indicating a previously unrecognized role of 5RK in neurotransmitter release.


Asunto(s)
Señalización del Calcio/fisiología , Células Neuroendocrinas/fisiología , Sintaxina 1/genética , Sintaxina 1/fisiología , Animales , Señalización del Calcio/genética , Exocitosis/fisiología , Hipocampo/citología , Hipocampo/fisiología , Mutación/genética , Neuronas/fisiología , Células PC12 , Fosfatidilinositol 4,5-Difosfato/farmacología , Ratas , Proteínas SNARE/fisiología , Sintaxina 1/antagonistas & inhibidores
3.
Proc Natl Acad Sci U S A ; 112(25): E3291-9, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-26056260

RESUMEN

Stabilization of neuronal activity by homeostatic control systems is fundamental for proper functioning of neural circuits. Failure in neuronal homeostasis has been hypothesized to underlie common pathophysiological mechanisms in a variety of brain disorders. However, the key molecules regulating homeostasis in central mammalian neural circuits remain obscure. Here, we show that selective inactivation of GABAB, but not GABA(A), receptors impairs firing rate homeostasis by disrupting synaptic homeostatic plasticity in hippocampal networks. Pharmacological GABA(B) receptor (GABA(B)R) blockade or genetic deletion of the GB(1a) receptor subunit disrupts homeostatic regulation of synaptic vesicle release. GABA(B)Rs mediate adaptive presynaptic enhancement to neuronal inactivity by two principle mechanisms: First, neuronal silencing promotes syntaxin-1 switch from a closed to an open conformation to accelerate soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly, and second, it boosts spike-evoked presynaptic calcium flux. In both cases, neuronal inactivity removes tonic block imposed by the presynaptic, GB(1a)-containing receptors on syntaxin-1 opening and calcium entry to enhance probability of vesicle fusion. We identified the GB(1a) intracellular domain essential for the presynaptic homeostatic response by tuning intermolecular interactions among the receptor, syntaxin-1, and the Ca(V)2.2 channel. The presynaptic adaptations were accompanied by scaling of excitatory quantal amplitude via the postsynaptic, GB(1b)-containing receptors. Thus, GABA(B)Rs sense chronic perturbations in GABA levels and transduce it to homeostatic changes in synaptic strength. Our results reveal a novel role for GABA(B)R as a key regulator of population firing stability and propose that disruption of homeostatic synaptic plasticity may underlie seizure's persistence in the absence of functional GABA(B)Rs.


Asunto(s)
Hipocampo/fisiología , Homeostasis , Neuronas/metabolismo , Receptores de GABA-B/metabolismo , Animales , Células Cultivadas , Potenciales Evocados , Hipocampo/citología , Ratones , Ratones Endogámicos BALB C
4.
J Cell Sci ; 126(Pt 13): 2914-23, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23641074

RESUMEN

A key issue for understanding exocytosis is elucidating the various protein interactions and the associated conformational transitions underlying soluble N-ethylmeleimide-sensitive factor attachment protein receptor (SNARE) protein assembly. To monitor dynamic changes in syntaxin 1A (Syx) conformation along exocytosis, we constructed a novel fluorescent Syx-based probe that can be efficiently incorporated within endogenous SNARE complexes, support exocytosis, and report shifts in Syx between 'closed' and 'open' conformations by fluorescence resonance energy transfer analysis. Using this probe we resolve two distinct Syx conformational transitions during membrane depolarization-induced exocytosis in PC12 cells: a partial 'opening' in the absence of Ca(2+) entry and an additional 'opening' upon Ca(2+) entry. The Ca(2+)-dependent transition is abolished upon neutralization of the basic charges in the juxtamembrane regions of Syx, which also impairs exocytosis. These novel findings provide evidence of two conformational transitions in Syx during exocytosis, which have not been reported before: one transition directly induced by depolarization and an additional transition that involves the juxtamembrane region of Syx. The superior sensitivity of our probe also enabled detection of subtle Syx conformational changes upon interaction with VAMP2, which were absolutely dependent on the basic charges of the juxtamembrane region. Hence, our results further suggest that the Ca(2+)-dependent transition in Syx involves zippering between the membrane-proximal juxtamembrane regions of Syx and VAMP2 and support the recently implied existence of this zippering in the final phase of SNARE assembly to catalyze exocytosis.


Asunto(s)
Calcio/metabolismo , Exocitosis/genética , Sintaxina 1/química , Proteína 2 de Membrana Asociada a Vesículas/química , Animales , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes , Expresión Génica , Imagen Molecular , Células PC12 , Conformación Proteica , Estructura Terciaria de Proteína , Ratas , Electricidad Estática , Sintaxina 1/genética , Sintaxina 1/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/genética , Proteína 2 de Membrana Asociada a Vesículas/metabolismo , Xenopus laevis/metabolismo
5.
Front Mol Neurosci ; 17: 1431549, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39296283

RESUMEN

Alpha-synuclein (aSyn) aggregates in the central nervous system are the main pathological hallmark of Parkinson's disease (PD). ASyn aggregates have also been detected in many peripheral tissues, including the skin, thus providing a novel and accessible target tissue for the detection of PD pathology. Still, a well-established validated quantitative biomarker for early diagnosis of PD that also allows for tracking of disease progression remains lacking. The main goal of this research was to characterize aSyn aggregates in skin biopsies as a comparative and quantitative measure for PD pathology. Using direct stochastic optical reconstruction microscopy (dSTORM) and computational tools, we imaged total and phosphorylated-aSyn at the single molecule level in sweat glands and nerve bundles of skin biopsies from healthy controls (HCs) and PD patients. We developed a user-friendly analysis platform that offers a comprehensive toolkit for researchers that combines analysis algorithms and applies a series of cluster analysis algorithms (i.e., DBSCAN and FOCAL) onto dSTORM images. Using this platform, we found a significant decrease in the ratio of the numbers of neuronal marker molecules to phosphorylated-aSyn molecules, suggesting the existence of damaged nerve cells in fibers highly enriched with phosphorylated-aSyn molecules. Furthermore, our analysis found a higher number of aSyn aggregates in PD subjects than in HC subjects, with differences in aggregate size, density, and number of molecules per aggregate. On average, aSyn aggregate radii ranged between 40 and 200 nm and presented an average density of 0.001-0.1 molecules/nm2. Our dSTORM analysis thus highlights the potential of our platform for identifying quantitative characteristics of aSyn distribution in skin biopsies not previously described for PD patients while offering valuable insight into PD pathology by elucidating patient aSyn aggregation status.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA