Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Materials (Basel) ; 15(2)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35057340

RESUMEN

This study describes the water vapour effect on the oxidation resistance of 9Cr creep resistant steels. Boiler P91 and MarBN steels were oxidized for 3000 h in a simulated humid atmosphere with ~10% water vapour. The oxidation kinetics had a stable course for 1000 h and was evaluated by the weight gain curves for both experimental steels and both oxidation temperatures. The oxidation rate was higher at 650 °C versus 600 °C, as reflected by the oxidation rate coefficient. A significant increase occurred after 1000 h of oxidation, which was related to the local breakdown oxide scale and oxide nodules were formed on steel. This oxidation behavior was influenced by the fact that a compact spinel structure of iron oxides and alloying elements were not formed on the steel. Analysis after 3000 h of exposure showed hematite Fe2O3 formed on the outer layer, magnetite Fe3O4 on the middle layer, and the bottom layer consisted of iron-chromium-spinel (Fe,Cr)2O3.

2.
Materials (Basel) ; 14(12)2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208438

RESUMEN

This paper deals with the determination of the basic corrosion characteristics of metallic materials used as components in car construction to achieve a lighter vehicle with higher rigidity, a more complex "hybrid" of diverse materials is needed for the car body structure. Due to the different types of material used in the manufacture of components and their interactions, the issue of assessing the impact of bimetallic corrosion is currently relevant. Based on the potential difference at the end of the corrosion test, it was possible to determine the "anode index", which determines the risk of degradation of materials due to bimetallic corrosion. In our case, a hot-galvanized steel sheet/Al alloy EN AW-6060 couple in deicing salt and hot-galvanized steel sheet/steel S355J0 couple in simulated acid rain solution (SARS) has proven to be "safest" and usable even for more aggressive environments. Hot-galvanized steel sheet/Al alloy EN AW-6060 in SARS solution is suitable for slightly aggressive environments. Stainless steel AISI 304/silumin A356 in deicing salt, stainless steel AISI 304/Al alloy EN AW-6060 in deicing salt, and stainless steel AISI 306/Al alloy EN AW-6060 in simulated exhaust gas environment (SEG solution) are not suitable for non-aggressive environments.

3.
Materials (Basel) ; 14(14)2021 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-34300778

RESUMEN

Corrosion of boiler tubes remains an operational and economic limitation in municipal waste power plants. The understanding of the nature, mechanism, and related factors can help reduce the degradation process caused by corrosion. The chlorine content in the fuel has a significant effect on the production of gaseous components (e.g., HCl) and condensed phases on the chloride base. This study aimed to analyze the effects of flue gases on the outer surface and saturated steam on the inner surface of the evaporator tube. The influence of gaseous chlorides and sulfates or their deposits on the course and intensity of corrosion was observed. The salt melts reacted with the steel surface facing the flue gas flow and increased the thickness of the oxide layer up to a maximum of 30 mm. On the surface not facing the flue gas flow, they disrupted the corrosive layer, reduced its adhesion, and exposed the metal surface. Beneath the massive deposits, a local overheating of the inner surface of the evaporator tubes occurred, which resulted in the release of the protective magnetite layer from the surface. Ash deposits reduce the boiler's thermal efficiency because they act as a thermal resistor for heat transfer between the flue gases and the working medium in the pipes. The effect of insufficient feedwater treatment was evinced in the presence of mineral salts in the corrosion layer on the inner surface of the tube.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA