Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 52(10): 5561-5570, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29673249

RESUMEN

Nitrogen is an essential nutrient for life on Earth, but in excess, it can lead to environmental issues (e.g., N saturation, loss of biodiversity, acidification of lakes, etc.). Understanding the nitrogen budget (i.e., inputs and outputs) is essential to evaluate the prospective decay of the ecosystem services (e.g., freshwater quality, erosion control, loss of high patrimonial-value plant species, etc.) that subalpine headwater catchments provide, especially as these ecosystems experience high atmospheric nitrogen deposition. Here, we use a multi-isotopic tracer (Δ17O, δ15N and δ18O) of nitrate in aerosols, snow, and streams to assess the fate of atmospherically deposited nitrate in the subalpine watershed of the Lautaret Pass (French Alps). We show that atmospheric N deposition contributes significantly to stream nitrate pool year-round, either by direct inputs (up to 35%) or by in situ nitrification of atmospheric ammonium (up to 35%). Snowmelt in particular leads to high exports of atmospheric nitrate, most likely fast enough to impede assimilation by surrounding ecosystems. Yet, in a context of climate change, with shorter snow seasons, and increasing nitrogen emissions, our results hint at possibly stronger ecological consequences of nitrogen atmospheric deposition in the close future.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Nitratos , Nitrógeno , Estudios Prospectivos , Ríos
2.
Rapid Commun Mass Spectrom ; 30(24): 2635-2644, 2016 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-27676138

RESUMEN

RATIONALE: Triple oxygen and nitrogen isotope ratios in nitrate are powerful tools for assessing atmospheric nitrate formation pathways and their contribution to ecosystems. N2 O decomposition using microwave-induced plasma (MIP) has been used only for measurements of oxygen isotopes to date, but it is also possible to measure nitrogen isotopes during the same analytical run. METHODS: The main improvements to a previous system are (i) an automated distribution system of nitrate to the bacterial medium, (ii) N2 O separation by gas chromatography before N2 O decomposition using the MIP, (iii) use of a corundum tube for microwave discharge, and (iv) development of an automated system for isotopic measurements. Three nitrate standards with sample sizes of 60, 80, 100, and 120 nmol were measured to investigate the sample size dependence of the isotope measurements. RESULTS: The δ17 O, δ18 O, and Δ17 O values increased with increasing sample size, although the δ15 N value showed no significant size dependency. Different calibration slopes and intercepts were obtained with different sample amounts. The slopes and intercepts for the regression lines in different sample amounts were dependent on sample size, indicating that the extent of oxygen exchange is also dependent on sample size. The sample-size-dependent slopes and intercepts were fitted using natural log (ln) regression curves, and the slopes and intercepts can be estimated to apply to any sample size corrections. When using 100 nmol samples, the standard deviations of residuals from the regression lines for this system were 0.5‰, 0.3‰, and 0.1‰, respectively, for the δ18 O, Δ17 O, and δ15 N values, results that are not inferior to those from other systems using gold tube or gold wire. CONCLUSIONS: An automated system was developed to measure triple oxygen and nitrogen isotopes in nitrate using N2 O decomposition by MIP. This system enables us to measure both triple oxygen and nitrogen isotopes in nitrate with comparable precision and sample throughput (23 min per sample on average), and minimal manual treatment. Copyright © 2016 John Wiley & Sons, Ltd.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA