Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Eur Heart J ; 45(26): 2320-2332, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38747976

RESUMEN

BACKGROUND AND AIMS: Brugada syndrome (BrS) is an inherited arrhythmia with a higher disease prevalence and more lethal arrhythmic events in Asians than in Europeans. Genome-wide association studies (GWAS) have revealed its polygenic architecture mainly in European populations. The aim of this study was to identify novel BrS-associated loci and to compare allelic effects across ancestries. METHODS: A GWAS was conducted in Japanese participants, involving 940 cases and 1634 controls, followed by a cross-ancestry meta-analysis of Japanese and European GWAS (total of 3760 cases and 11 635 controls). The novel loci were characterized by fine-mapping, gene expression, and splicing quantitative trait associations in the human heart. RESULTS: The Japanese-specific GWAS identified one novel locus near ZSCAN20 (P = 1.0 × 10-8), and the cross-ancestry meta-analysis identified 17 association signals, including six novel loci. The effect directions of the 17 lead variants were consistent (94.1%; P for sign test = 2.7 × 10-4), and their allelic effects were highly correlated across ancestries (Pearson's R = .91; P = 2.9 × 10-7). The genetic risk score derived from the BrS GWAS of European ancestry was significantly associated with the risk of BrS in the Japanese population [odds ratio 2.12 (95% confidence interval 1.94-2.31); P = 1.2 × 10-61], suggesting a shared genetic architecture across ancestries. Functional characterization revealed that a lead variant in CAMK2D promotes alternative splicing, resulting in an isoform switch of calmodulin kinase II-δ, favouring a pro-inflammatory/pro-death pathway. CONCLUSIONS: This study demonstrates novel susceptibility loci implicating potentially novel pathogenesis underlying BrS. Despite differences in clinical expressivity and epidemiology, the polygenic architecture of BrS was substantially shared across ancestries.


Asunto(s)
Síndrome de Brugada , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Síndrome de Brugada/genética , Japón/epidemiología , Masculino , Europa (Continente)/epidemiología , Predisposición Genética a la Enfermedad/genética , Femenino , Población Blanca/genética , Persona de Mediana Edad , Pueblo Asiatico/genética , Estudios de Casos y Controles , Adulto , Polimorfismo de Nucleótido Simple/genética
2.
Eur Heart J ; 44(35): 3357-3370, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37528649

RESUMEN

AIMS: Calmodulinopathy due to mutations in any of the three CALM genes (CALM1-3) causes life-threatening arrhythmia syndromes, especially in young individuals. The International Calmodulinopathy Registry (ICalmR) aims to define and link the increasing complexity of the clinical presentation to the underlying molecular mechanisms. METHODS AND RESULTS: The ICalmR is an international, collaborative, observational study, assembling and analysing clinical and genetic data on CALM-positive patients. The ICalmR has enrolled 140 subjects (median age 10.8 years [interquartile range 5-19]), 97 index cases and 43 family members. CALM-LQTS and CALM-CPVT are the prevalent phenotypes. Primary neurological manifestations, unrelated to post-anoxic sequelae, manifested in 20 patients. Calmodulinopathy remains associated with a high arrhythmic event rate (symptomatic patients, n = 103, 74%). However, compared with the original 2019 cohort, there was a reduced frequency and severity of all cardiac events (61% vs. 85%; P = .001) and sudden death (9% vs. 27%; P = .008). Data on therapy do not allow definitive recommendations. Cardiac structural abnormalities, either cardiomyopathy or congenital heart defects, are present in 30% of patients, mainly CALM-LQTS, and lethal cases of heart failure have occurred. The number of familial cases and of families with strikingly different phenotypes is increasing. CONCLUSION: Calmodulinopathy has pleiotropic presentations, from channelopathy to syndromic forms. Clinical severity ranges from the early onset of life-threatening arrhythmias to the absence of symptoms, and the percentage of milder and familial forms is increasing. There are no hard data to guide therapy, and current management includes pharmacological and surgical antiadrenergic interventions with sodium channel blockers often accompanied by an implantable cardioverter-defibrillator.


Asunto(s)
Calmodulina , Síndrome de QT Prolongado , Taquicardia Ventricular , Niño , Humanos , Calmodulina/genética , Muerte Súbita Cardíaca/etiología , Síndrome de QT Prolongado/diagnóstico , Síndrome de QT Prolongado/genética , Mutación/genética , Sistema de Registros , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/genética
3.
Circulation ; 145(5): 333-344, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34874747

RESUMEN

BACKGROUND: Symptomatic children with catecholaminergic polymorphic ventricular tachycardia (CPVT) are at risk for recurrent arrhythmic events. ß-Blockers decrease this risk, but studies comparing individual ß-blockers in sizeable cohorts are lacking. We aimed to assess the association between risk for arrhythmic events and type of ß-blocker in a large cohort of symptomatic children with CPVT. METHODS: From 2 international registries of patients with CPVT, RYR2 variant-carrying symptomatic children (defined as syncope or sudden cardiac arrest before ß-blocker initiation and age at start of ß-blocker therapy <18 years), treated with a ß-blocker were included. Cox regression analyses with time-dependent covariates for ß-blockers and potential confounders were used to assess the hazard ratio (HR). The primary outcome was the first occurrence of sudden cardiac death, sudden cardiac arrest, appropriate implantable cardioverter-defibrillator shock, or syncope. The secondary outcome was the first occurrence of any of the primary outcomes except syncope. RESULTS: We included 329 patients (median age at diagnosis, 12 [interquartile range, 7-15] years, 35% females). Ninety-nine (30.1%) patients experienced the primary outcome and 74 (22.5%) experienced the secondary outcome during a median follow-up of 6.7 (interquartile range, 2.8-12.5) years. Two-hundred sixteen patients (66.0%) used a nonselective ß-blocker (predominantly nadolol [n=140] or propranolol [n=70]) and 111 (33.7%) used a ß1-selective ß-blocker (predominantly atenolol [n=51], metoprolol [n=33], or bisoprolol [n=19]) as initial ß-blocker. Baseline characteristics did not differ. The HRs for both the primary and secondary outcomes were higher for ß1-selective compared with nonselective ß-blockers (HR, 2.04 [95% CI, 1.31-3.17]; and HR, 1.99 [95% CI, 1.20-3.30], respectively). When assessed separately, the HR for the primary outcome was higher for atenolol (HR, 2.68 [95% CI, 1.44-4.99]), bisoprolol (HR, 3.24 [95% CI, 1.47-7.18]), and metoprolol (HR, 2.18 [95% CI, 1.08-4.40]) compared with nadolol, but did not differ from propranolol. The HR of the secondary outcome was only higher in atenolol compared with nadolol (HR, 2.68 [95% CI, 1.30-5.55]). CONCLUSIONS: ß1-selective ß-blockers were associated with a significantly higher risk for arrhythmic events in symptomatic children with CPVT compared with nonselective ß-blockers, specifically nadolol. Nadolol, or propranolol if nadolol is unavailable, should be the preferred ß-blocker for treating symptomatic children with CPVT.


Asunto(s)
Antagonistas Adrenérgicos beta/uso terapéutico , Taquicardia Ventricular/tratamiento farmacológico , Adolescente , Antagonistas Adrenérgicos beta/farmacología , Niño , Estudios de Cohortes , Femenino , Humanos , Masculino
4.
Hum Mutat ; 43(9): 1333-1342, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35819174

RESUMEN

Arrhythmogenic cardiomyopathy with right dominant form (ACR) is a rare heritable cardiac cardiomyopathy disorder associated with sudden cardiac death. Pathogenic variants (PVs) in desmosomal genes have been causally related to ACR in 40% of cases. Other genes encoding nondesmosomal proteins have been described in ACR, but their contribution in this pathology is still debated. A panel of 71 genes associated with inherited cardiopathies was screened in an ACR population of 172 probands and 856 individuals from the general population. PVs and uncertain significance variants (VUS) have been identified in 36% and 18.6% of patients, respectively. Among the cardiopathy-associated genes, burden tests show a significant enrichment in PV and VUS only for desmosomal genes PKP2 (plakophilin-2), DSP (desmoplakin), DSC2 (desmocollin-2), and DSG2 (desmoglein-2). Importantly, VUS may account for 15% of ACR cases and should then be considered for molecular diagnosis. Among the other genes, no evidence of enrichment was detected, suggesting an extreme caution in the interpretation of these genetic variations without associated functional or segregation data. Genotype-phenotype correlation points to (1) a more severe and earlier onset of the disease in PV and VUS carriers, underlying the importance to carry out presymptomatic diagnosis in relatives and (2) to a more prevalent left ventricular dysfunction in DSP variant carriers.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Displasia Ventricular Derecha Arritmogénica/diagnóstico , Displasia Ventricular Derecha Arritmogénica/genética , Displasia Ventricular Derecha Arritmogénica/metabolismo , Desmosomas/genética , Desmosomas/metabolismo , Estudios de Asociación Genética , Heterocigoto , Humanos , Placofilinas/genética , Placofilinas/metabolismo
5.
Circulation ; 142(4): 324-338, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32429735

RESUMEN

BACKGROUND: Long QT syndrome (LQTS) is a rare genetic disorder and a major preventable cause of sudden cardiac death in the young. A causal rare genetic variant with large effect size is identified in up to 80% of probands (genotype positive) and cascade family screening shows incomplete penetrance of genetic variants. Furthermore, a proportion of cases meeting diagnostic criteria for LQTS remain genetically elusive despite genetic testing of established genes (genotype negative). These observations raise the possibility that common genetic variants with small effect size contribute to the clinical picture of LQTS. This study aimed to characterize and quantify the contribution of common genetic variation to LQTS disease susceptibility. METHODS: We conducted genome-wide association studies followed by transethnic meta-analysis in 1656 unrelated patients with LQTS of European or Japanese ancestry and 9890 controls to identify susceptibility single nucleotide polymorphisms. We estimated the common variant heritability of LQTS and tested the genetic correlation between LQTS susceptibility and other cardiac traits. Furthermore, we tested the aggregate effect of the 68 single nucleotide polymorphisms previously associated with the QT-interval in the general population using a polygenic risk score. RESULTS: Genome-wide association analysis identified 3 loci associated with LQTS at genome-wide statistical significance (P<5×10-8) near NOS1AP, KCNQ1, and KLF12, and 1 missense variant in KCNE1(p.Asp85Asn) at the suggestive threshold (P<10-6). Heritability analyses showed that ≈15% of variance in overall LQTS susceptibility was attributable to common genetic variation (h2SNP 0.148; standard error 0.019). LQTS susceptibility showed a strong genome-wide genetic correlation with the QT-interval in the general population (rg=0.40; P=3.2×10-3). The polygenic risk score comprising common variants previously associated with the QT-interval in the general population was greater in LQTS cases compared with controls (P<10-13), and it is notable that, among patients with LQTS, this polygenic risk score was greater in patients who were genotype negative compared with those who were genotype positive (P<0.005). CONCLUSIONS: This work establishes an important role for common genetic variation in susceptibility to LQTS. We demonstrate overlap between genetic control of the QT-interval in the general population and genetic factors contributing to LQTS susceptibility. Using polygenic risk score analyses aggregating common genetic variants that modulate the QT-interval in the general population, we provide evidence for a polygenic architecture in genotype negative LQTS.


Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Síndrome de QT Prolongado/genética , Adolescente , Adulto , Edad de Inicio , Alelos , Estudios de Casos y Controles , Electrocardiografía , Estudios de Asociación Genética , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Humanos , Síndrome de QT Prolongado/diagnóstico , Síndrome de QT Prolongado/mortalidad , Síndrome de QT Prolongado/terapia , Herencia Multifactorial , Fenotipo , Polimorfismo de Nucleótido Simple , Pronóstico , Índice de Severidad de la Enfermedad , Adulto Joven
6.
Am J Med Genet A ; 179(9): 1836-1845, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31301121

RESUMEN

The first human mutations in GATA6 were described in a cohort of patients with persistent truncus arteriosus, and the phenotypic spectrum has expanded since then. This study underscores the broad phenotypic spectrum by presenting two patients with de novo GATA6 mutations, both exhibiting complex cardiac defects, pancreatic, and other abnormalities. Furthermore, we provided a detailed overview of all published human genetic variation in/near GATA6 published to date and the associated phenotypes (n = 78). We conclude that the most common phenotypes associated with a mutation in GATA6 were structural cardiac and pancreatic abnormalities, with a penetrance of 87 and 60%, respectively. Other common malformations were gallbladder agenesis, congenital diaphragmatic hernia, and neurocognitive abnormalities, mostly developmental delay. Fifty-eight percent of the mutations were de novo, and these patients more often had an anomaly of intracardiac connections, an anomaly of the great arteries, and hypothyroidism, compared with those with inherited mutations. Functional studies mostly support loss-of-function as the pathophysiological mechanism. In conclusion, GATA6 mutations give a wide range of phenotypic defects, most frequently malformations of the heart and pancreas. This highlights the importance of detailed clinical evaluation of identified carriers to evaluate their full phenotypic spectrum.


Asunto(s)
Factor de Transcripción GATA6/genética , Cardiopatías Congénitas/genética , Corazón/fisiopatología , Tronco Arterial Persistente/genética , Adulto , Niño , Vesícula Biliar/fisiopatología , Predisposición Genética a la Enfermedad , Genotipo , Corazón/diagnóstico por imagen , Cardiopatías Congénitas/diagnóstico por imagen , Cardiopatías Congénitas/fisiopatología , Hernias Diafragmáticas Congénitas/diagnóstico por imagen , Hernias Diafragmáticas Congénitas/genética , Hernias Diafragmáticas Congénitas/fisiopatología , Heterocigoto , Humanos , Mutación con Pérdida de Función/genética , Masculino , Mutación , Páncreas/diagnóstico por imagen , Páncreas/fisiopatología , Fenotipo , Tronco Arterial Persistente/diagnóstico por imagen , Tronco Arterial Persistente/fisiopatología , Secuenciación del Exoma
7.
Circ Res ; 121(5): 537-548, 2017 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-28637782

RESUMEN

RATIONALE: Genome-wide association studies previously identified an association of rs9388451 at chromosome 6q22.3 (near HEY2) with Brugada syndrome. The causal gene and underlying mechanism remain unresolved. OBJECTIVE: We used an integrative approach entailing transcriptomic studies in human hearts and electrophysiological studies in Hey2+/- (Hey2 heterozygous knockout) mice to dissect the underpinnings of the 6q22.31 association with Brugada syndrome. METHODS AND RESULTS: We queried expression quantitative trait locus data acquired in 190 human left ventricular samples from the genotype-tissue expression consortium for cis-expression quantitative trait locus effects of rs9388451, which revealed an association between Brugada syndrome risk allele dosage and HEY2 expression (ß=+0.159; P=0.0036). In the same transcriptomic data, we conducted genome-wide coexpression analysis for HEY2, which uncovered KCNIP2, encoding the ß-subunit of the channel underlying the transient outward current (Ito), as the transcript most robustly correlating with HEY2 expression (ß=+1.47; P=2×10-34). Transcript abundance of Hey2 and the Ito subunits Kcnip2 and Kcnd2, assessed by quantitative reverse transcription-polymerase chain reaction, was higher in subepicardium versus subendocardium in both left and right ventricles, with lower levels in Hey2+/- mice compared with wild type. Surface ECG measurements showed less prominent J waves in Hey2+/- mice compared with wild-type. In wild-type mice, patch-clamp electrophysiological studies on cardiomyocytes from right ventricle demonstrated a shorter action potential duration and a lower Vmax in subepicardium compared with subendocardium cardiomyocytes, which was paralleled by a higher Ito and a lower sodium current (INa) density in subepicardium versus subendocardium. These transmural differences were diminished in Hey2+/- mice because of changes in subepicardial cardiomyocytes. CONCLUSIONS: This study uncovers a role of HEY2 in the normal transmural electrophysiological gradient in the ventricle and provides compelling evidence that genetic variation at 6q22.31 (rs9388451) is associated with Brugada syndrome through a HEY2-dependent alteration of ion channel expression across the cardiac ventricular wall.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Síndrome de Brugada/genética , Síndrome de Brugada/metabolismo , Predisposición Genética a la Enfermedad/genética , Ventrículos Cardíacos/metabolismo , Proteínas Represoras/biosíntesis , Proteínas Represoras/genética , Animales , Síndrome de Brugada/fisiopatología , Electrocardiografía/métodos , Femenino , Estudio de Asociación del Genoma Completo/métodos , Ventrículos Cardíacos/fisiopatología , Humanos , Canales Iónicos/biosíntesis , Canales Iónicos/genética , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos
8.
Europace ; 20(12): 2014-2020, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29688407

RESUMEN

Aims: QT prolongation during mental stress test (MST) has been associated with familial idiopathic ventricular fibrillation. In long QT syndrome (LQTS), up to 30% of mutation carriers have normal QT duration. Our aim was to assess the QT response during MST, and its accuracy in the diagnosis of concealed LQTS. Methods and results: All patients who are carrier of a KCNQ1 or KCNH2 mutations without QT prolongation were enrolled. A control group was constituted of patients with negative exercise and epinephrine tests. Electrocardiogram were recorded at rest and at the maximum heart rate during MST and reviewed by two physicians. Among the 70 patients enrolled (median age 41±2.1 years, 46% male), 36 were mutation carrier for LQTS (20 KCNQ1 and 16 KCNH2), and 34 were controls. KCNQ1 and KCNH2 mutation carriers presented a longer QT interval at baseline [405(389; 416) and 421 (394; 434) ms, respectively] compared with the controls [361(338; 375)ms; P < 0.0001]. QT duration during MST varied by 9 (4; 18) ms in KCNQ1, 3 (-6; 16) ms in KCNH2, and by -22 (-29; -17) ms in controls (P < 0.0001). These QT variations were independent of heart rate (P < 0.3751). Receiver operating characteristic curve analysis identified a cut-off value of QT variation superior to -11 ms as best predictor of LQTS. It provided 97% sensitivity and 97% specificity of QT prolongation in the diagnosis of LQTS. Conclusion: We identified a paradoxical response of the QT interval during MST in LQTS. Easy to assess, MST may be efficient to unmask concealed LQTS in patients at risk of this pathology.


Asunto(s)
Electrocardiografía , Frecuencia Cardíaca/genética , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ2/genética , Síndrome de QT Prolongado/diagnóstico , Mutación , Estrés Psicológico/fisiopatología , Fibrilación Ventricular/diagnóstico , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Femenino , Predisposición Genética a la Enfermedad , Humanos , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/fisiopatología , Masculino , Conceptos Matemáticos , Persona de Mediana Edad , Fenotipo , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Factores de Riesgo , Estrés Psicológico/diagnóstico , Estrés Psicológico/psicología , Fibrilación Ventricular/genética , Fibrilación Ventricular/fisiopatología , Adulto Joven
9.
Hum Mol Genet ; 24(10): 2757-63, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25650408

RESUMEN

The Brugada syndrome (BrS) is a rare heritable cardiac arrhythmia disorder associated with ventricular fibrillation and sudden cardiac death. Mutations in the SCN5A gene have been causally related to BrS in 20-30% of cases. Twenty other genes have been described as involved in BrS, but their overall contribution to disease prevalence is still unclear. This study aims to estimate the burden of rare coding variation in arrhythmia-susceptibility genes among a large group of patients with BrS. We have developed a custom kit to capture and sequence the coding regions of 45 previously reported arrhythmia-susceptibility genes and applied this kit to 167 index cases presenting with a Brugada pattern on the electrocardiogram as well as 167 individuals aged over 65-year old and showing no history of cardiac arrhythmia. By applying burden tests, a significant enrichment in rare coding variation (with a minor allele frequency below 0.1%) was observed only for SCN5A, with rare coding variants carried by 20.4% of cases with BrS versus 2.4% of control individuals (P = 1.4 × 10(-7)). No significant enrichment was observed for any other arrhythmia-susceptibility gene, including SCN10A and CACNA1C. These results indicate that, except for SCN5A, rare coding variation in previously reported arrhythmia-susceptibility genes do not contribute significantly to the occurrence of BrS in a population with European ancestry. Extreme caution should thus be taken when interpreting genetic variation in molecular diagnostic setting, since rare coding variants were observed in a similar extent among cases versus controls, for most previously reported BrS-susceptibility genes.


Asunto(s)
Síndrome de Brugada/genética , Predisposición Genética a la Enfermedad , Mutación , Canal de Sodio Activado por Voltaje NAV1.5/genética , Adulto , Arritmias Cardíacas/genética , Síndrome de Brugada/diagnóstico , Femenino , Frecuencia de los Genes , Genes , Estudios de Asociación Genética , Humanos , Masculino , Persona de Mediana Edad , Análisis de Secuencia de ADN , Población Blanca
10.
Circulation ; 130(2): 147-60, 2014 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-24895455

RESUMEN

BACKGROUND: Sodium channel NaV1.5 underlies cardiac excitability and conduction. The last 3 residues of NaV1.5 (Ser-Ile-Val) constitute a PDZ domain-binding motif that interacts with PDZ proteins such as syntrophins and SAP97 at different locations within the cardiomyocyte, thus defining distinct pools of NaV1.5 multiprotein complexes. Here, we explored the in vivo and clinical impact of this motif through characterization of mutant mice and genetic screening of patients. METHODS AND RESULTS: To investigate in vivo the regulatory role of this motif, we generated knock-in mice lacking the SIV domain (ΔSIV). ΔSIV mice displayed reduced NaV1.5 expression and sodium current (INa), specifically at the lateral myocyte membrane, whereas NaV1.5 expression and INa at the intercalated disks were unaffected. Optical mapping of ΔSIV hearts revealed that ventricular conduction velocity was preferentially decreased in the transversal direction to myocardial fiber orientation, leading to increased anisotropy of ventricular conduction. Internalization of wild-type and ΔSIV channels was unchanged in HEK293 cells. However, the proteasome inhibitor MG132 rescued ΔSIV INa, suggesting that the SIV motif is important for regulation of NaV1.5 degradation. A missense mutation within the SIV motif (p.V2016M) was identified in a patient with Brugada syndrome. The mutation decreased NaV1.5 cell surface expression and INa when expressed in HEK293 cells. CONCLUSIONS: Our results demonstrate the in vivo significance of the PDZ domain-binding motif in the correct expression of NaV1.5 at the lateral cardiomyocyte membrane and underline the functional role of lateral NaV1.5 in ventricular conduction. Furthermore, we reveal a clinical relevance of the SIV motif in cardiac disease.


Asunto(s)
Regulación de la Expresión Génica , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/biosíntesis , Dominios PDZ/fisiología , Dominios y Motivos de Interacción de Proteínas/fisiología , Animales , Técnicas de Sustitución del Gen , Células HEK293 , Humanos , Ratones , Canal de Sodio Activado por Voltaje NAV1.5/fisiología
11.
Basic Res Cardiol ; 109(6): 446, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25341504

RESUMEN

Brugada syndrome (BrS) is characterized by ST-segment elevation in the right precordial leads and is associated with increased risk of sudden cardiac death. We have recently reported families with BrS and SCN5A mutations where some affected members do not carry the familial mutation. We evaluated the involvement of additional genetic determinants for BrS in an affected family. We identified three distinct gene variants within a family presenting BrS (5 individuals), cardiac conduction defects (CCD, 3 individuals) and shortened QT interval (4 individuals). The first mutation is nonsense, p.Q1695*, lying within the SCN5A gene, which encodes for NaV1.5, the α-subunit of the cardiac Na(+) channel. The second mutation is missense, p.N300D, and alters the CACNA1C gene, which encodes the α-subunit CaV1.2 of the L-type cardiac Ca(2+) channel. The SCN5A mutation strictly segregates with CCD. Four out of the 5 BrS patients carry the CACNA1C variant, and three of them present shortened QT interval. One of the BrS patients carries none of these mutations but a rare variant located in the ABCC9 gene as well as his asymptomatic mother. Patch-clamp studies identified a loss-of-function of the mutated CaV1.2 channel. Western-blot experiments showed a global expression defect while increased mobility of CaV1.2 channels on cell surface was revealed by FRAP experiments. Finally, computer simulations of the two mutations recapitulated patient phenotypes. We report a rare CACNA1C mutation as causing BrS and/or shortened QT interval in a family also carrying a SCN5A stop mutation, but which does not segregate with BrS. This study underlies the complexity of BrS inheritance and its pre-symptomatic genetic screening interpretation.


Asunto(s)
Síndrome de Brugada/genética , Canales de Calcio Tipo L/genética , Mutación , Canal de Sodio Activado por Voltaje NAV1.5/genética , Adulto , Anciano de 80 o más Años , Animales , Células COS , Chlorocebus aethiops , Femenino , Humanos , Masculino , Persona de Mediana Edad , Linaje , Adulto Joven
12.
Stem Cell Res ; 77: 103396, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38522388

RESUMEN

Mutations in the DES gene, which encodes the intermediate filament desmin, lead to desminopathy, a rare disease characterized by skeletal muscle weakness and different forms of cardiomyopathies associated with cardiac conduction defects and arrhythmias. We generated human induced pluripotent stem cells (hiPSC) from a patient carrying the DES p.R406W mutation, and employed CRISPR/Cas9 to rectify the mutation in the patient's hiPSC line and introduced the mutation in an hiPSC line from a control individual unrelated to the patient. These hiPSC lines represent useful models for delving into the mechanisms of desminopathy and developing new therapeutic approaches.


Asunto(s)
Desmina , Células Madre Pluripotentes Inducidas , Mutación , Células Madre Pluripotentes Inducidas/metabolismo , Humanos , Desmina/metabolismo , Desmina/genética , Línea Celular , Sistemas CRISPR-Cas , Técnicas de Sustitución del Gen , Diferenciación Celular
13.
Nat Commun ; 15(1): 3380, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643172

RESUMEN

While 3D chromatin organization in topologically associating domains (TADs) and loops mediating regulatory element-promoter interactions is crucial for tissue-specific gene regulation, the extent of their involvement in human Mendelian disease is largely unknown. Here, we identify 7 families presenting a new cardiac entity associated with a heterozygous deletion of 2 CTCF binding sites on 4q25, inducing TAD fusion and chromatin conformation remodeling. The CTCF binding sites are located in a gene desert at 1 Mb from the Paired-like homeodomain transcription factor 2 gene (PITX2). By introducing the ortholog of the human deletion in the mouse genome, we recapitulate the patient phenotype and characterize an opposite dysregulation of PITX2 expression in the sinoatrial node (ectopic activation) and ventricle (reduction), respectively. Chromatin conformation assay performed in human induced pluripotent stem cell-derived cardiomyocytes harboring the minimal deletion identified in family#1 reveals a conformation remodeling and fusion of TADs. We conclude that TAD remodeling mediated by deletion of CTCF binding sites causes a new autosomal dominant Mendelian cardiac disorder.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Animales , Ratones , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Cromatina/genética , Proteínas de Unión al ADN/metabolismo , Genoma
14.
medRxiv ; 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37292618

RESUMEN

Background: An important contributor to the decreased life expectancy of individuals with schizophrenia is sudden cardiac death. While arrhythmic disorders play an important role in this, the nature of the relation between schizophrenia and arrhythmia is not fully understood. Methods: We leveraged summary-level data of large-scale genome-wide association studies of schizophrenia (53,386 cases 77,258 controls), arrhythmic disorders (atrial fibrillation, 55,114 cases 482,295 controls; Brugada syndrome, 2,820 cases 10,001 controls) and electrocardiogram traits (heart rate (variability), PR interval, QT interval, JT interval, and QRS duration, n=46,952-293,051). First, we examined shared genetic liability by assessing global and local genetic correlations and conducting functional annotation. Next, we explored bidirectional causal relations between schizophrenia and arrhythmic disorders and electrocardiogram traits using Mendelian randomization. Outcomes: There was no evidence for global genetic correlations, except between schizophrenia and Brugada (rg=0·14, p=4·0E-04). In contrast, strong positive and negative local genetic correlations between schizophrenia and all cardiac traits were found across the genome. In the strongest associated regions, genes related to immune system and viral response mechanisms were overrepresented. Mendelian randomization indicated a causal, increasing effect of liability to schizophrenia on Brugada syndrome (OR=1·15, p=0·009) and heart rate during activity (beta=0·25, p=0·015). Interpretation: While there was little evidence for global genetic correlations, specific genomic regions and biological pathways important for both schizophrenia and arrhythmic disorders and electrocardiogram traits emerged. The putative causal effect of liability to schizophrenia on Brugada warrants increased cardiac monitoring and potentially early medical intervention in patients with schizophrenia. Funding: European Research Council Starting Grant.

15.
Cardiovasc Res ; 119(3): 759-771, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36001550

RESUMEN

AIMS: Degenerative mitral valve dystrophy (MVD) leading to mitral valve prolapse is the most frequent form of MV disease, and there is currently no pharmacological treatment available. The limited understanding of the pathophysiological mechanisms leading to MVD limits our ability to identify therapeutic targets. This study aimed to reveal the main pathophysiological pathways involved in MVD via the multimodality imaging and transcriptomic analysis of the new and unique knock-in (KI) rat model for the FilaminA-P637Q (FlnA-P637Q) mutation associated-MVD. METHODS AND RESULTS: Wild-type (WT) and KI rats were evaluated morphologically, functionally, and histologically between 3-week-old and 3-to-6-month-old based on Doppler echocardiography, 3D micro-computed tomography (microCT), and standard histology. RNA-sequencing and Assay for Transposase-Accessible Chromatin (ATAC-seq) were performed on 3-week-old WT and KI mitral valves and valvular cells, respectively, to highlight the main signalling pathways associated with MVD. Echocardiographic exploration confirmed MV elongation (2.0 ± 0.1 mm vs. 1.8 ± 0.1, P = 0.001), as well as MV thickening and prolapse in KI animals compared to WT at 3 weeks. 3D MV volume quantified by microCT was significantly increased in KI animals (+58% vs. WT, P = 0.02). Histological analyses revealed a myxomatous remodelling in KI MV characterized by proteoglycans accumulation. A persistent phenotype was observed in adult KI rats. Signalling pathways related to extracellular matrix homeostasis, response to molecular stress, epithelial cell migration, endothelial to mesenchymal transition, chemotaxis and immune cell migration, were identified based on RNA-seq analysis. ATAC-seq analysis points to the critical role of transforming growth factor-ß and inflammation in the disease. CONCLUSION: The KI FlnA-P637Q rat model mimics human myxomatous MVD, offering a unique opportunity to decipher pathophysiological mechanisms related to this disease. Extracellular matrix organization, epithelial cell migration, response to mechanical stress, and a central contribution of immune cells are highlighted as the main signalling pathways leading to myxomatous MVD. Our findings pave the road to decipher underlying molecular mechanisms and the specific role of distinct cell populations in this context.


Asunto(s)
Prolapso de la Válvula Mitral , Válvula Mitral , Adulto , Humanos , Ratas , Animales , Lactante , Válvula Mitral/metabolismo , Filaminas/genética , Filaminas/metabolismo , Transcriptoma , Microtomografía por Rayos X , Prolapso de la Válvula Mitral/patología , Fenotipo
16.
JACC Clin Electrophysiol ; 9(10): 2041-2051, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37480873

RESUMEN

BACKGROUND: Slow-conductive structural abnormalities located in the epicardium of the right ventricle (RV) underlie Brugada syndrome (BrS). The extent of such substrate in the left ventricle (LV) has not been investigated. OBJECTIVES: This study sought to characterize the extent of epicardial substrate abnormalities in BrS. METHODS: We evaluated 22 consecutive patients (mean age 46 ± 11 years, 21 male) referred for recurrent ventricular arrhythmias (mean 10 ± 13 episodes) in the setting of BrS. The patients underwent clinical investigations and wide genetic screening to identify SCN5A mutations and common risk variants. High-density biventricular epicardial mapping was performed to detect prolonged (>70 ms) fragmented electrograms, indicating abnormal substrate area. RESULTS: All patients presented with abnormal substrate in the epicardial anterior RV (27 ± 11 cm2). Abnormal substrate was also identified on the LV epicardium in 10 patients (45%), 9 at baseline and 1 after ajmaline infusion, covering 15 ± 11 cm2. Of these, 4 had severe LV fascicular blocks. Patients with LV substrate had a longer history of arrhythmia (11.4 ± 6.7 years vs 4.3 ± 4.3 years; P = 0.003), longer PR (217 ± 24 ms vs 171 ± 14 ms; P < 0.001) and HV (60 ± 12 ms vs 46 ± 5 ms; P = 0.005) intervals, and abnormal substrate also extending into the inferior RV (100% vs 33%; P = 0.001). SCN5A mutation was present in 70% of patients with LV substrate (vs 25%; P = 0.035). SCN5A BrS patients with recurrent ventricular arrhythmias present a higher polygenic risk score compared with a nonselected BrS population (median of differences: -0.86; 95% CI: -1.48 to -0.27; P = 0.02). CONCLUSIONS: A subset of patients with BrS present an abnormal substrate extending onto the LV epicardium and inferior RV that is associated with SCN5A mutations and multigenic variants.


Asunto(s)
Síndrome de Brugada , Ventrículos Cardíacos , Humanos , Masculino , Adulto , Persona de Mediana Edad , Ventrículos Cardíacos/diagnóstico por imagen , Síndrome de Brugada/diagnóstico , Electrocardiografía , Mapeo Epicárdico , Arritmias Cardíacas
17.
JACC Clin Electrophysiol ; 9(8 Pt 1): 1248-1261, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37227351

RESUMEN

BACKGROUND: Brugada syndrome is a significant cause of sudden cardiac death (SCD), but the underlying mechanisms remain hypothetical. OBJECTIVES: This study aimed to elucidate this knowledge gap through detailed ex vivo human heart studies. METHODS: A heart was obtained from a 15-year-old adolescent boy with normal electrocardiogram who experienced SCD. Postmortem genotyping was performed, and clinical examinations were done on first-degree relatives. The right ventricle was optically mapped, followed by high-field magnetic resonance imaging and histology. Connexin-43 and NaV1.5 were localized by immunofluorescence, and RNA and protein expression levels were studied. HEK-293 cell surface biotinylation assays were performed to examine NaV1.5 trafficking. RESULTS: A Brugada-related SCD diagnosis was established for the donor because of a SCN5A Brugada-related variant (p.D356N) inherited from his mother, together with a concomitant NKX2.5 variant of unknown significance. Optical mapping demonstrated a localized epicardial region of impaired conduction near the outflow tract, in the absence of repolarization alterations and microstructural defects, leading to conduction blocks and figure-of-8 patterns. NaV1.5 and connexin-43 localizations were normal in this region, consistent with the finding that the p.D356N variant does not affect the trafficking, nor the expression of NaV1.5. Trends of decreased NaV1.5, connexin-43, and desmoglein-2 protein levels were noted; however, the RT-qPCR results suggested that the NKX2-5 variant was unlikely to be involved. CONCLUSIONS: This study demonstrates for the first time that SCD associated with a Brugada-SCN5A variant can be caused by localized functionally, not structurally, impaired conduction.


Asunto(s)
Síndrome de Brugada , Masculino , Adolescente , Humanos , Células HEK293 , Electrocardiografía , Trastorno del Sistema de Conducción Cardíaco , Muerte Súbita Cardíaca , Conexinas
18.
STAR Protoc ; 3(4): 101680, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36115027

RESUMEN

This manuscript proposes an efficient and reproducible protocol for the generation of genetically modified human induced pluripotent stem cells (hiPSCs) by genome editing using CRISPR-Cas9 technology. Here, we describe the experimental strategy for generating knockout (KO) and knockin (KI) clonal populations of hiPSCs using single-cell sorting by flow cytometry. We efficiently achieved up to 15 kb deletions, molecular tag insertions, and single-nucleotide editing in hiPSCs. We emphasize the efficacy of this approach in terms of cell culture time. For complete details on the use and execution of this protocol, please refer to Canac et al. (2022) and Bray et al. (2022).


Asunto(s)
Edición Génica , Células Madre Pluripotentes Inducidas , Humanos , Edición Génica/métodos , Sistemas CRISPR-Cas , Células Clonales , Técnicas de Cultivo de Célula
19.
Stem Cell Res ; 59: 102647, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34999420

RESUMEN

Four human induced pluripotent stem cell (hiPSC) lines have been generated from healthy control European donors, and validated. This resource represents a useful tool for stem cell-based research, as references for developmental studies and disease modeling linked to any type of human tissue and organ, in an ethnical-, sex- and age-matched context. They providea reliable in-vitro model for single cell- and tissue-based investigations, and are also a valuable tool for genome editing-based studies.

20.
Nat Genet ; 54(3): 232-239, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35210625

RESUMEN

Brugada syndrome (BrS) is a cardiac arrhythmia disorder associated with sudden death in young adults. With the exception of SCN5A, encoding the cardiac sodium channel NaV1.5, susceptibility genes remain largely unknown. Here we performed a genome-wide association meta-analysis comprising 2,820 unrelated cases with BrS and 10,001 controls, and identified 21 association signals at 12 loci (10 new). Single nucleotide polymorphism (SNP)-heritability estimates indicate a strong polygenic influence. Polygenic risk score analyses based on the 21 susceptibility variants demonstrate varying cumulative contribution of common risk alleles among different patient subgroups, as well as genetic associations with cardiac electrical traits and disorders in the general population. The predominance of cardiac transcription factor loci indicates that transcriptional regulation is a key feature of BrS pathogenesis. Furthermore, functional studies conducted on MAPRE2, encoding the microtubule plus-end binding protein EB2, point to microtubule-related trafficking effects on NaV1.5 expression as a new underlying molecular mechanism. Taken together, these findings broaden our understanding of the genetic architecture of BrS and provide new insights into its molecular underpinnings.


Asunto(s)
Síndrome de Brugada , Alelos , Síndrome de Brugada/complicaciones , Síndrome de Brugada/genética , Síndrome de Brugada/metabolismo , Susceptibilidad a Enfermedades/complicaciones , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Proteínas Asociadas a Microtúbulos/genética , Mutación , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA