Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39088759

RESUMEN

Chronic kidney disease (CKD) is associated with systemic phosphate elevations, called hyperphosphatemia. Translational studies have shown that hyperphosphatemia contributes to CKD-associated inflammation and injury in various tissues, including the kidney, heart, liver, and parathyroid gland. Mechanisms underlying pathologic actions of elevated phosphate on cells are not well understood but seem to involve uptake of phosphate through sodium-phosphate cotransporters and phosphate-induced signaling via fibroblast growth factor receptor (FGFR) 1. Clinical studies indicate CKD patients are more likely to develop inflammatory and restrictive lung diseases, such as fibrotic interstitial lung diseases, and here we aimed to determine whether hyperphosphatemia can cause lung injury. We found that a mouse model of CKD and hyperphosphatemia, induced by an adenine-rich diet, develops lung fibrosis and inflammation. Elevation of systemic phosphate levels by administration of a high-phosphate diet in a mouse model of primary lung inflammation and fibrosis, induced by bleomycin, exacerbated lung injury in the absence of kidney damage. Our in vitro studies identified increases of proinflammatory cytokines in human lung fibroblasts exposed to phosphate elevations. Phosphate activated extracellular signal related kinase (ERK) 1/2 and protein kinase B (PKB/AKT) signaling, and pharmacological inhibition of ERK, AKT, FGFR1, or sodium-phosphate cotransporters prevented phosphate-induced proinflammatory cytokine upregulation. Additionally, inhibition of FGFR1 or sodium-phosphate cotransporters decreased the phosphate-induced activation of ERK and AKT. Our study suggests that phosphate can directly target lung fibroblasts and induce an inflammatory response and that hyperphosphatemia in CKD and non-CKD models contributes to lung injury. Phosphate-lowering strategies might protect from CKD-associated lung injury.

2.
J Cell Mol Med ; 28(7): e18191, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38494860

RESUMEN

Epigenetic modifications are involved in fibrotic diseases, such as idiopathic pulmonary fibrosis (IPF), and contribute to the silencing of anti-fibrotic genes. H3K27me3, a key repressive histone mark, is catalysed by the methyltransferase enhancer of Zeste homologue 2 (EZH2), which is regulated by the post-translational modification, O-linked N-Acetylglucosamine (O-GlcNAc). In this study, we explored the effects of O-GlcNAc and EZH2 on the expression of antifibrotic genes, cyclooxygenase-2 (Cox2) and Heme Oxygenase (Homx1). The expression of Cox2 and Hmox1 was examined in primary IPF or non-IPF lung fibroblasts with or without EZH2 inhibitor EZP6438, O-GlcNAc transferase (OGT) inhibitor (OSMI-1) or O-GlcNAcase (OGA) inhibitor (thiamet G). Non-IPF cells were also subjected to TGF-ß1 with or without OGT inhibition. The reduced expression of Cox2 and Hmox1 in IPF lung fibroblasts is restored by OGT inhibition. In non-IPF fibroblasts, TGF-ß1 treatment reduces Cox2 and Hmox1 expression, which was restored by OGT inhibition. ChIP assays demonstrated that the association of H3K27me3 is reduced at the Cox2 and Hmox1 promoter regions following OGT or EZH2 inhibition. EZH2 levels and stability were decreased by reducing O-GlcNAc. Our study provided a novel mechanism of O-GlcNAc modification in regulating anti-fibrotic genes in lung fibroblasts and in the pathogenesis of IPF.


Asunto(s)
Histonas , Fibrosis Pulmonar Idiopática , Humanos , Histonas/metabolismo , Acetilglucosamina/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Pulmón/metabolismo , Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo
3.
Int J Mol Sci ; 24(11)2023 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-37298683

RESUMEN

Fibroblast growth factors (FGFs) and their cognate receptors (FGFRs) are important biological molecules with a wide array of pleiotropic functions [...].


Asunto(s)
Factores de Crecimiento de Fibroblastos , Receptores de Factores de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal , Fosforilación
4.
Medicina (Kaunas) ; 59(9)2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37763754

RESUMEN

Background and Objectives: Chronic inflammation due to Pseudomonas aeruginosa (PA) infection in people with cystic fibrosis (CF) remains a concerning issue in the wake of modulator therapy initiation. Given the perpetuating cycle of colonization, infection, chronic inflammation, and recurrent injury to the lung, there are increases in the risk for mortality in the CF population. We have previously shown that fibroblast growth factor (FGF) 23 can exaggerate transforming growth factor (TGF) beta-mediated bronchial inflammation in CF. Our study aims to shed light on whether FGF23 signaling also plays a role in PA infection of the CF bronchial epithelium. Materials and Methods: CF bronchial epithelial cells were pretreated with FGF23 or inhibitors for FGF receptors (FGFR) and then infected with different PA isolates. After infection, immunoblot analyses were performed on these samples to assess the levels of phosphorylated phospholipase C gamma (PLCγ), total PLCγ, phosphorylated extracellular signal-regulated kinase (ERK), and total ERK. Additionally, the expression of FGFRs and interleukins at the transcript level (RT-qPCR), as well as production of interleukin (IL)-6 and IL-8 at the protein level (ELISA) were determined. Results: Although there were decreases in isoform-specific FGFRs with increases in interleukins at the mRNA level as well as phosphorylated PLCγ and the production of IL-8 protein with PA infection, treatment with FGF23 or FGFR blockade did not alter downstream targets such as IL-6 and IL-8. Conclusions: FGF23 signaling does not seem to modulate the PA-mediated inflammatory response of the CF bronchial epithelium.


Asunto(s)
Fibrosis Quística , Infecciones por Pseudomonas , Humanos , Fibrosis Quística/complicaciones , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Interleucina-8/metabolismo , Factor-23 de Crecimiento de Fibroblastos , Infecciones por Pseudomonas/complicaciones , Infecciones por Pseudomonas/metabolismo , Inflamación/metabolismo , Interleucinas/metabolismo , Interleucina-6/metabolismo , Epitelio/metabolismo
5.
Int J Mol Sci ; 21(18)2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32967225

RESUMEN

Chronic obstructive pulmonary disease (COPD) has become a global epidemic and is the third leading cause of death worldwide. COPD is characterized by chronic airway inflammation, loss of alveolar-capillary units, and progressive decline in lung function. Major risk factors for COPD are cigarette smoking and aging. COPD-associated pathomechanisms include multiple aging pathways such as telomere attrition, epigenetic alterations, altered nutrient sensing, mitochondrial dysfunction, cell senescence, stem cell exhaustion and chronic inflammation. In this review, we will highlight the current literature that focuses on the role of age and aging-associated signaling pathways as well as their impact on current treatment strategies in the pathogenesis of COPD. Furthermore, we will discuss established and experimental COPD treatments including senolytic and anti-aging therapies and their potential use as novel treatment strategies in COPD.


Asunto(s)
Envejecimiento , Senescencia Celular , Epigénesis Genética , Enfermedad Pulmonar Obstructiva Crónica , Transducción de Señal , Homeostasis del Telómero , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Fumar Cigarrillos/efectos adversos , Fumar Cigarrillos/metabolismo , Humanos , Enfermedad Pulmonar Obstructiva Crónica/etiología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfermedad Pulmonar Obstructiva Crónica/terapia
6.
Am J Physiol Lung Cell Mol Physiol ; 317(1): L141-L154, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31042083

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive fibrosing interstitial pneumonia that mainly affects the elderly. Several reports have demonstrated that aging is involved in the underlying pathogenic mechanisms of IPF. α-Klotho (KL) has been well characterized as an "age-suppressing" hormone and can provide protection against cellular senescence and oxidative stress. In this study, KL levels were assessed in human plasma and primary lung fibroblasts from patients with idiopathic pulmonary fibrosis (IPF-FB) and in lung tissue from mice exposed to bleomycin, which showed significant downregulation when compared with controls. Conversely, transgenic mice overexpressing KL were protected against bleomycin-induced lung fibrosis. Treatment of human lung fibroblasts with recombinant KL alone was not sufficient to inhibit transforming growth factor-ß (TGF-ß)-induced collagen deposition and inflammatory marker expression. Interestingly, fibroblast growth factor 23 (FGF23), a proinflammatory circulating protein for which KL is a coreceptor, was upregulated in IPF and bleomycin lungs. To our surprise, FGF23 and KL coadministration led to a significant reduction in fibrosis and inflammation in IPF-FB; FGF23 administration alone or in combination with KL stimulated KL upregulation. We conclude that in IPF downregulation of KL may contribute to fibrosis and inflammation and FGF23 may act as a compensatory antifibrotic and anti-inflammatory mediator via inhibition of TGF-ß signaling. Upon restoration of KL levels, the combination of FGF23 and KL leads to resolution of inflammation and fibrosis. Altogether, these data provide novel insight into the FGF23/KL axis and its antifibrotic/anti-inflammatory properties, which opens new avenues for potential therapies in aging-related diseases like IPF.


Asunto(s)
Lesión Pulmonar Aguda/patología , Factores de Crecimiento de Fibroblastos/genética , Regulación de la Expresión Génica , Glucuronidasa/genética , Fibrosis Pulmonar Idiopática/genética , Transducción de Señal/genética , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/inmunología , Anciano , Animales , Bleomicina/administración & dosificación , Estudios de Casos y Controles , Colágeno/antagonistas & inhibidores , Colágeno/genética , Colágeno/metabolismo , Femenino , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/farmacología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Glucuronidasa/metabolismo , Glucuronidasa/farmacología , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Pruebas de Función Renal , Proteínas Klotho , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Cultivo Primario de Células , Pruebas de Función Respiratoria , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/farmacología
7.
Am J Physiol Heart Circ Physiol ; 317(5): H1028-H1038, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31398058

RESUMEN

Human monocytes have been classified into three distinct groups, classical (anti-inflammatory; CD14+/CD16-), nonclassical (patrolling; CD14+/CD16++), and intermediate (proinflammatory; CD14++/CD16+). Adhesion of nonclassical/intermediate monocytes with the endothelium is important for innate immunity, and also vascular inflammatory disease. However, there is an incomplete understanding of the mechanisms that regulate CD16+ versus CD16- monocyte adhesion to the inflamed endothelium. Here, we tested the hypothesis that a high-mannose (HM) N-glycoform of intercellular adhesion molecule-1 (ICAM-1) on the endothelium mediates the selective recruitment of CD16+ monocytes. Using TNF-α treatment of human umbilical vein endothelial cells (HUVECs), and using proximity ligation assay for detecting proximity of specific N-glycans and ICAM-1, we show that TNF-α induces HM-ICAM-1 formation on the endothelial surface in a time-dependent manner. We next measured CD16- or CD16+ monocyte rolling and adhesion to TNF-α-treated HUVECs in which HM- or hybrid ICAM-1 N-glycoforms were generated using the α-mannosidase class I and II inhibitors, kifunensine and swainsonine, respectively. Expression of HM-ICAM-1 selectively enhanced CD16+ monocyte adhesion under flow with no effect on CD16- monocytes noted. CD16+ monocyte adhesion was abrogated by blocking either HM epitopes or ICAM-1. A critical role for HM-ICAM-1 in mediating CD16+ monocyte rolling and adhesion was confirmed using COS-1 cells engineered to express HM or complex ICAM-1 N-glycoforms. These data suggest that HM-ICAM-1 selectively recruits nonclassical/intermediate CD16+ monocytes to the activated endothelium.NEW & NOTEWORTHY Monocyte subsets have been associated with cardiovascular disease, yet it is unknown how different subsets are recruited to the endothelium. This study demonstrates the formation of distinct ICAM-1 N-glycoforms in the activated endothelium and reveals a key role for high mannose ICAM-1 in mediating proinflammatory CD16+ monocyte adhesion. Presented data identify roles for endothelial N-glycans in recruiting specific monocyte subsets during inflammation.


Asunto(s)
Adhesión Celular , Comunicación Celular , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Rodamiento de Leucocito , Manosa/metabolismo , Monocitos/metabolismo , Receptores de IgG/metabolismo , Animales , Células COS , Adhesión Celular/efectos de los fármacos , Comunicación Celular/efectos de los fármacos , Chlorocebus aethiops , Técnicas de Cocultivo , Proteínas Ligadas a GPI/metabolismo , Glicosilación , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Molécula 1 de Adhesión Intercelular/genética , Rodamiento de Leucocito/efectos de los fármacos , Transducción de Señal , Factor de Necrosis Tumoral alfa/farmacología
8.
Int J Mol Sci ; 20(24)2019 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-31847126

RESUMEN

Idiopathic pulmonary arterial hypertension (IPAH) is considered a vasculopathy characterized by elevated pulmonary vascular resistance due to vasoconstriction and/or lung remodeling such as plexiform lesions, the hallmark of the PAH, as well as cell proliferation and vascular and angiogenic dysfunction. The serine/threonine hydroxyl-linked N-Acetylglucosamine (O-GlcNAc) transferase (OGT) has been shown to drive pulmonary arterial smooth muscle cell (PASMC) proliferation in IPAH. OGT is a cellular nutrient sensor that is essential in maintaining proper cell function through the regulation of cell signaling, proliferation, and metabolism. The aim of this study was to determine the role of OGT and O-GlcNAc in vascular and angiogenic dysfunction in IPAH. Primary isolated human control and IPAH patient PASMCs and pulmonary arterial endothelial cells (PAECs) were grown in the presence or absence of OGT inhibitors and subjected to biochemical assessments in monolayer cultures and tube formation assays, in vitro vascular sprouting 3D spheroid co-culture models, and de novo vascularization models in NODSCID mice. We showed that knockdown of OGT resulted in reduced vascular endothelial growth factor (VEGF) expression in IPAH primary isolated vascular cells. In addition, specificity protein 1 (SP1), a known stimulator of VEGF expression, was shown to have higher O-GlcNAc levels in IPAH compared to control at physiological (5 mM) and high (25 mM) glucose concentrations, and knockdown resulted in decreased VEGF protein levels. Furthermore, human IPAH PAECs demonstrated a significantly higher degree of capillary tube-like structures and increased length compared to control PAECs. Addition of an OGT inhibitor, OSMI-1, significantly reduced the number of tube-like structures and tube length similar to control levels. Assessment of vascular sprouting from an in vitro 3D spheroid co-culture model using IPAH and control PAEC/PASMCs and an in vivo vascularization model using control and PAEC-embedded collagen implants demonstrated higher vascularization in IPAH compared to control. Blocking OGT activity in these experiments, however, altered the vascular sprouting and de novo vascularization in IPAH similar to control levels when compared to controls. Our findings in this report are the first to describe a role for the OGT/O-GlcNAc axis in modulating VEGF expression and vascularization in IPAH. These findings provide greater insight into the potential role that altered glucose uptake and metabolism may have on the angiogenic process and the development of plexiform lesions. Therefore, we believe that the OGT/O-GlcNAc axis may be a potential therapeutic target for treating the angiogenic dysregulation that is present in IPAH.


Asunto(s)
Hipertensión Pulmonar Primaria Familiar/enzimología , N-Acetilglucosaminiltransferasas/metabolismo , Neovascularización Patológica/enzimología , Adulto , Animales , Técnicas de Cocultivo , Inhibidores Enzimáticos/farmacología , Hipertensión Pulmonar Primaria Familiar/patología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Persona de Mediana Edad , N-Acetilglucosaminiltransferasas/antagonistas & inhibidores , Neovascularización Patológica/patología , Factor A de Crecimiento Endotelial Vascular/biosíntesis
9.
Int J Mol Sci ; 20(9)2019 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-31075857

RESUMEN

Chronic Obstructive Pulmonary Disease (COPD) is a chronic inflammatory airway disease punctuated by exacerbations (AECOPD). Subjects with frequent AECOPD, defined by having at least two exacerbations per year, experience accelerated loss of lung function, deterioration in quality of life and increase in mortality. Fibroblast growth factor (FGF)23, a hormone associated with systemic inflammation and altered metabolism is elevated in COPD. However, associations between FGF23 and AECOPD are unknown. In this cross-sectional study, individuals with COPD were enrolled between June 2016 and December 2016. Plasma samples were analyzed for intact FGF23 levels. Logistic regression analyses were used to measure associations between clinical variables, FGF23, and the frequent exacerbator phenotype. Our results showed that FGF23 levels were higher in frequent exacerbators as compared to patients without frequent exacerbations. FGF23 was also independently associated with frequent exacerbations (OR 1.02; 95%CI 1.004-1.04; p = 0.017), after adjusting for age, lung function, smoking, and oxygen use. In summary, FGF23 was associated with the frequent exacerbator phenotype and correlated with number of exacerbations recorded retrospectively and prospectively. Further studies are needed to explore the role of FGF 23 as a possible biomarker for AECOPD to better understand the pathobiology of COPD and to help develop therapeutic targets.


Asunto(s)
Progresión de la Enfermedad , Factores de Crecimiento de Fibroblastos/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Anciano , Estudios de Cohortes , Estudios Transversales , Femenino , Factor-23 de Crecimiento de Fibroblastos , Humanos , Masculino , Fenotipo , Proyectos Piloto
10.
Int J Mol Sci ; 19(11)2018 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-30380761

RESUMEN

Cytokines are key players in the initiation and propagation of inflammation in chronic inflammatory airway diseases such as chronic obstructive pulmonary disease (COPD), bronchiectasis and allergic asthma. This makes them attractive targets for specific novel anti-inflammatory treatment strategies. Recently, both interleukin-1 (IL-1) and IL-6 have been associated with negative health outcomes, mortality and a pro-inflammatory phenotype in COPD. IL-6 in COPD was shown to correlate negatively with lung function, and IL-1beta was induced by cigarette smoke in the bronchial epithelium, causing airway inflammation. Furthermore, IL-8 has been shown to be a pro-inflammatory marker in bronchiectasis, COPD and allergic asthma. Clinical trials using specific cytokine blockade therapies are currently emerging and have contributed to reduce exacerbations and steroid use in COPD. Here, we present a review of the current understanding of the roles of cytokines in the pathophysiology of chronic inflammatory airway diseases. Furthermore, outcomes of clinical trials in cytokine blockade as novel treatment strategies for selected patient populations with those diseases will be discussed.


Asunto(s)
Asma , Bronquiectasia , Citocinas/antagonistas & inhibidores , Enfermedad Pulmonar Obstructiva Crónica , Mucosa Respiratoria , Animales , Asma/inmunología , Asma/patología , Asma/terapia , Bronquiectasia/inmunología , Bronquiectasia/patología , Bronquiectasia/terapia , Citocinas/inmunología , Humanos , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfermedad Pulmonar Obstructiva Crónica/terapia , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/patología
11.
Am J Respir Cell Mol Biol ; 55(4): 564-575, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27187737

RESUMEN

Altered bone morphogenic protein (BMP) signaling, independent of BMPR2 mutations, can result in idiopathic pulmonary arterial hypertension (IPAH). Glucose dysregulation can regulate multiple processes in IPAH. However, the role of glucose in BMP antagonist expression in IPAH has not been characterized. We hypothesized that glucose uptake regulates BMP signaling through stimulation of BMP antagonist expression in IPAH. Using human plasma, lung tissue, and primary pulmonary arterial smooth muscle cells (PASMCs), we examined the protein expression of BMP2, BMP-regulated Smads, and Smurf-1 in patients with IPAH and control subjects. Gremlin-1 levels were elevated in patients with IPAH compared with control subjects, whereas expression of BMP2 was not different. We demonstrate increased Smad polyubiquitination in IPAH lung tissue and PASMCs that was further enhanced with proteasomal inhibition. Examination of the Smad ubiquitin-ligase, Smurf-1, showed increased protein expression in IPAH lung tissue and localization in the smooth muscle of the pulmonary artery. Glucose dose dependently increased Smurf-1 protein expression in control PASMCs, whereas Smurf-1 in IPAH PASMCs was increased and sustained. Conversely, phospho-Smad1/5/8 levels were reduced in IPAH compared with control PASMCs at physiological glucose concentrations. Interestingly, high glucose concentrations decreased phosphorylation of Smad1/5/8 in control PASMCs. Blocking glucose uptake had opposing effects in IPAH PASMCs, and inhibition of Smurf-1 activity resulted in partial rescue of Smad1/5/8 activation and cell migration rates. Collectively, these data suggest that BMP signaling can be regulated through BMPR2 mutation-independent mechanisms. Gremlin-1 (synonym: induced-in-high-glucose-2 protein) and Smurf-1 may function to inhibit BMP signaling as a consequence of the glucose dysregulation described in IPAH.

12.
Circulation ; 131(14): 1260-8, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25663381

RESUMEN

BACKGROUND: Idiopathic pulmonary arterial hypertension (IPAH) is a cardiopulmonary disease characterized by cellular proliferation and vascular remodeling. A more recently recognized characteristic of the disease is the dysregulation of glucose metabolism. The primary link between altered glucose metabolism and cell proliferation in IPAH has not been elucidated. We aimed to determine the relationship between glucose metabolism and smooth muscle cell proliferation in IPAH. METHODS AND RESULTS: Human IPAH and control patient lung tissues and pulmonary artery smooth muscle cells (PASMCs) were used to analyze a specific pathway of glucose metabolism, the hexosamine biosynthetic pathway. We measured the levels of O-linked ß-N-acetylglucosamine modification, O-linked ß-N-acetylglucosamine transferase (OGT), and O-linked ß-N-acetylglucosamine hydrolase in control and IPAH cells and tissues. Our data suggest that the activation of the hexosamine biosynthetic pathway directly increased OGT levels and activity, triggering changes in glycosylation and PASMC proliferation. Partial knockdown of OGT in IPAH PASMCs resulted in reduced global O-linked ß-N-acetylglucosamine modification levels and abrogated PASMC proliferation. The increased proliferation observed in IPAH PASMCs was directly impacted by proteolytic activation of the cell cycle regulator, host cell factor-1. CONCLUSIONS: Our data demonstrate that hexosamine biosynthetic pathway flux is increased in IPAH and drives OGT-facilitated PASMC proliferation through specific proteolysis and direct activation of host cell factor-1. These findings establish a novel regulatory role for OGT in IPAH, shed a new light on our understanding of the disease pathobiology, and provide opportunities to design novel therapeutic strategies for IPAH.


Asunto(s)
Hipertensión Pulmonar Primaria Familiar/enzimología , N-Acetilglucosaminiltransferasas/fisiología , Adulto , Aloxano/farmacología , División Celular , Células Cultivadas , Progresión de la Enfermedad , Hipertensión Pulmonar Primaria Familiar/mortalidad , Hipertensión Pulmonar Primaria Familiar/patología , Hipertensión Pulmonar Primaria Familiar/cirugía , Femenino , Glucosa/metabolismo , Glicosilación , Hexosaminas/biosíntesis , Hospitalización/estadística & datos numéricos , Factor C1 de la Célula Huésped/fisiología , Humanos , Trasplante de Pulmón/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/enzimología , Miocitos del Músculo Liso/patología , N-Acetilglucosaminiltransferasas/antagonistas & inhibidores , Procesamiento Proteico-Postraduccional , Arteria Pulmonar/patología , Resultado del Tratamiento , Adulto Joven
14.
Sci Rep ; 14(1): 16568, 2024 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-39019950

RESUMEN

Mucus stasis is a pathologic hallmark of muco-obstructive diseases, including cystic fibrosis (CF). Mucins, the principal component of mucus, are extensively modified with hydroxyl (O)-linked glycans, which are largely terminated by sialic acid. Sialic acid is a negatively charged monosaccharide and contributes to the biochemical/biophysical properties of mucins. Reports suggest that mucin sialylation may be altered in CF; however, the consequences of reduced sialylation on mucus clearance have not been fully determined. Here, we investigated the consequences of reduced sialylation on the charge state and conformation of the most prominent airway mucin, MUC5B, and defined the functional consequences of reduced sialylation on mucociliary transport (MCT). Reduced sialylation contributed to a lower charged MUC5B form and decreased polymer expansion. The inhibition of total mucin sialylation de novo impaired MCT in primary human bronchial epithelial cells and rat airways, and specific α-2,3 sialylation blockade was sufficient to recapitulate these findings. Finally, we show that ST3 beta-galactoside alpha-2,3-sialyltransferase (ST3Gal1) expression is downregulated in CF and partially restored by correcting CFTR via Elexacaftor/Tezacaftor/Ivacaftor treatment. Overall, this study demonstrates the importance of mucin sialylation in mucus clearance and identifies decreased sialylation by ST3Gal1 as a possible therapeutic target in CF and potentially other muco-obstructive diseases.


Asunto(s)
Mucina 5B , Moco , Humanos , Animales , Mucina 5B/metabolismo , Ratas , Moco/metabolismo , Sialiltransferasas/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Depuración Mucociliar , Mucosa Respiratoria/metabolismo , Fibrosis Quística/metabolismo , Mucinas/metabolismo , Células Epiteliales/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Bronquios/metabolismo
15.
Res Sq ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38853971

RESUMEN

Mucus stasis is a pathologic hallmark of muco-obstructive diseases, including cystic fibrosis (CF). Mucins, the principal component of mucus, are extensively modified with hydroxyl (O)-linked glycans, which are largely terminated by sialic acid. Sialic acid is a negatively charged monosaccharide and contributes to the biochemical/biophysical properties of mucins. Reports suggest that mucin sialylation may be altered in CF; however, the consequences of reduced sialylation on mucus clearance have not been fully determined. Here, we investigated the consequences of reduced sialylation on the charge state and conformation of the most prominent airway mucin, MUC5B, and defined the functional consequences of reduced sialylation on mucociliary transport (MCT). Reduced sialylation contributed to a lower charged MUC5B form and decreased polymer expansion. The inhibition of total mucin sialylation de novo impaired MCT in primary human bronchial epithelial cells and rat airways, and specific α-2,3 sialylation blockade was sufficient to recapitulate these findings. Finally, we show that ST3 beta-galactoside alpha-2,3-sialyltransferase (ST3Gal1) expression is downregulated in CF and partially restored by correcting CFTR via Elexacaftor/Tezacaftor/Ivacaftor treatment. Overall, this study demonstrates the importance of mucin sialylation in mucus clearance and identifies decreased sialylation by ST3Gal1 as a possible therapeutic target in CF and potentially other muco-obstructive diseases.

16.
JCI Insight ; 9(15)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916962

RESUMEN

The number of adults living with cystic fibrosis (CF) has already increased significantly because of drastic improvements in life expectancy attributable to advances in treatment, including the development of highly effective modulator therapy. Chronic airway inflammation in CF contributes to morbidity and mortality, and aging processes like inflammaging and cell senescence influence CF pathology. Our results show that single-cell RNA sequencing data, human primary bronchial epithelial cells from non-CF and CF donors, a CF bronchial epithelial cell line, and Cftr-knockout (Cftr-/-) rats all demonstrated increased cell senescence markers in the CF bronchial epithelium. This was associated with upregulation of fibroblast growth factor receptors (FGFRs) and mitogen-activated protein kinase (MAPK) p38. Inhibition of FGFRs, specifically FGFR4 and to some extent FGFR1, attenuated cell senescence and improved mucociliary clearance, which was associated with MAPK p38 signaling. Mucociliary dysfunction could also be improved using a combination of senolytics in a CF ex vivo model. In summary, FGFR/MAPK p38 signaling contributes to cell senescence in CF airways, which is associated with impaired mucociliary clearance. Therefore, attenuation of cell senescence in the CF airways might be a future therapeutic strategy improving mucociliary dysfunction and lung disease in an aging population with CF.


Asunto(s)
Senescencia Celular , Fibrosis Quística , Mucosa Respiratoria , Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Fibrosis Quística/genética , Fibrosis Quística/tratamiento farmacológico , Humanos , Animales , Ratas , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/genética , Células Epiteliales/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Masculino , Modelos Animales de Enfermedad , Línea Celular , Bronquios/patología , Bronquios/metabolismo , Transducción de Señal , Femenino
18.
PLoS One ; 18(7): e0288002, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37432929

RESUMEN

Pseudomonas aeruginosa (PA) is known to chronically infect airways of people with cystic fibrosis (CF) by early adulthood. PA infections can lead to increased airway inflammation and lung tissue damage, ultimately contributing to decreased lung function and quality of life. Existing models of PA infection in vitro commonly utilize 1-6-hour time courses. However, these relatively early time points may not encompass downstream airway cell signaling in response to the chronic PA infections observed in people with cystic fibrosis. To fill this gap in knowledge, the aim of this study was to establish an in vitro model that allows for PA infection of CF bronchial epithelial cells, cultured at the air liquid interface, for 24 hours. Our model shows with an inoculum of 2 x 102 CFUs of PA for 24 hours pro-inflammatory markers such as interleukin 6 and interleukin 8 are upregulated with little decrease in CF bronchial epithelial cell survival or monolayer confluency. Additionally, immunoblotting for phosphorylated phospholipase C gamma, a well-known downstream protein of fibroblast growth factor receptor signaling, showed significantly elevated levels after 24 hours with PA infection that were not seen at earlier timepoints. Finally, inhibition of phospholipase C shows significant downregulation of interleukin 8. Our data suggest that this newly developed in vitro "prolonged PA infection model" recapitulates the elevated inflammatory markers observed in CF, without compromising cell survival. This extended period of PA growth on CF bronchial epithelial cells will have impact on further studies of cell signaling and microbiological studies that were not possible in previous models using shorter PA exposures.


Asunto(s)
Fibrosis Quística , Infecciones por Pseudomonas , Humanos , Adulto , Interleucina-8 , Calidad de Vida , Epitelio
19.
Sci Rep ; 13(1): 4898, 2023 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-36966182

RESUMEN

An elevation in serum phosphate-also called hyperphosphatemia-is associated with reduced kidney function in chronic kidney disease (CKD). Reports show CKD patients are more likely to develop lung disease and have poorer kidney function that positively correlates with pulmonary obstruction. However, the underlying mechanisms are not well understood. Here, we report that two murine models of CKD, which both exhibit increased serum levels of phosphate and fibroblast growth factor (FGF) 23, a regulator of phosphate homeostasis, develop concomitant airway inflammation. Our in vitro studies point towards a similar increase of phosphate-induced inflammatory markers in human bronchial epithelial cells. FGF23 stimulation alone does not induce a proinflammatory response in the non-COPD bronchial epithelium and phosphate does not cause endogenous FGF23 release. Upregulation of the phosphate-induced proinflammatory cytokines is accompanied by activation of the extracellular-signal regulated kinase (ERK) pathway. Moreover, the addition of cigarette smoke extract (CSE) during phosphate treatments exacerbates inflammation as well as ERK activation, whereas co-treatment with FGF23 attenuates both the phosphate as well as the combined phosphate- and CS-induced inflammatory response, independent of ERK activation. Together, these data demonstrate a novel pathway that potentially explains pathological kidney-lung crosstalk with phosphate as a key mediator.


Asunto(s)
Fumar Cigarrillos , Enfermedad Pulmonar Obstructiva Crónica , Insuficiencia Renal Crónica , Humanos , Animales , Ratones , Fosfatos/metabolismo , Fumar Cigarrillos/efectos adversos , Inflamación/patología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Insuficiencia Renal Crónica/complicaciones , Epitelio/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Células Epiteliales/metabolismo
20.
J Am Heart Assoc ; 12(19): e029898, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37750556

RESUMEN

Background Lifestyle and metabolic diseases influence the severity and pathogenesis of cardiovascular disease through numerous mechanisms, including regulation via posttranslational modifications. A specific posttranslational modification, the addition of O-linked ß-N acetylglucosamine (O-GlcNAcylation), has been implicated in molecular mechanisms of both physiological and pathologic adaptations. The current study aimed to test the hypothesis that in cardiomyocytes, sustained protein O-GlcNAcylation contributes to cardiac adaptations, and its progression to pathophysiology. Methods and Results Using a naturally occurring dominant-negative O-GlcNAcase (dnOGA) inducible cardiomyocyte-specific overexpression transgenic mouse model, we induced dnOGA in 8- to 10-week-old mouse hearts. We examined the effects of 2-week and 24-week dnOGA overexpression, which progressed to a 1.8-fold increase in protein O-GlcNAcylation. Two-week increases in protein O-GlcNAc levels did not alter heart weight or function; however, 24-week increases in protein O-GlcNAcylation led to cardiac hypertrophy, mitochondrial dysfunction, fibrosis, and diastolic dysfunction. Interestingly, systolic function was maintained in 24-week dnOGA overexpression, despite several changes in gene expression associated with cardiovascular disease. Specifically, mRNA-sequencing analysis revealed several gene signatures, including reduction of mitochondrial oxidative phosphorylation, fatty acid, and glucose metabolism pathways, and antioxidant response pathways after 24-week dnOGA overexpression. Conclusions This study indicates that moderate increases in cardiomyocyte protein O-GlcNAcylation leads to a differential response with an initial reduction of metabolic pathways (2-week), which leads to cardiac remodeling (24-week). Moreover, the mouse model showed evidence of diastolic dysfunction consistent with a heart failure with preserved ejection fraction. These findings provide insight into the adaptive versus maladaptive responses to increased O-GlcNAcylation in heart.


Asunto(s)
Enfermedades Cardiovasculares , Miocitos Cardíacos , Ratones , Animales , Miocitos Cardíacos/metabolismo , Acetilglucosamina/metabolismo , Enfermedades Cardiovasculares/metabolismo , Glicosilación , Cardiomegalia/genética , Cardiomegalia/metabolismo , Procesamiento Proteico-Postraduccional , Mitocondrias/metabolismo , Modelos Animales de Enfermedad , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA