Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 346: 118987, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37741193

RESUMEN

Mitigating anthropogenic climate change involves deployments of renewable energy worldwide, including wind energy, which can cause significant impacts on flying animals. Bats have highly contrasted responses to wind turbines (WT), either through attraction increasing collision risks, or avoidance leading to habitat losses. However, the underlying mechanisms remain largely unknown despite the expected rapid evolution of WT size and densities. Here, using an extensive acoustic sampling (i.e. 361 sites-nights) up to 1483 m from WT at regional scale, we disentangle the effects of WT size (ground clearance and rotor diameter), configuration (density and distance), and operation (blade rotation speed and wake effect) on hedgerow use by 8 bat species/groups and one vertical community distribution index. Our results reveal that all WT parameters affected bat activity and their vertical distribution. Especially, we show that the relative activity of high-flying species in the community was lower for higher WT density and lower ground clearance. Medium-flying species were sensitive to wind turbine distance, with either attraction or avoidance depending on proximity to the wake area and wind conditions. Specifically, wind turbine distance, wake effect and their interaction each affected the activity of one, three, and three species out of eight, respectively. Blade rotation and rotor diameter affected the activity of four and three species/groups, respectively, and ground clearance affected the activity of five ones. Taken together, WT configuration, operation, and size parameters affected the activity of three, five, and seven out of eight species/groups, respectively. These results call for the consideration of all these factors when assessing the ecological sustainability of future wind farms. The study especially advocates to avoid high WT densities, large rotors, and to site WT as far as possible from optimal habitats such as woody edges and not between them and the source of prevailing winds, in order to limit bats-WT interactions.

2.
PLoS One ; 19(5): e0303368, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38820349

RESUMEN

The mechanisms underlying bat and bird activity peaks (attraction) or losses (avoidance) near wind turbines remain unknown. Yet, understanding them would be a major lever to limit the resulting habitat loss and fatalities. Given that bat activity is strongly related to airflows, we hypothesized that airflow disturbances generated leeward (downwind) of operating wind turbines-via the so-called wake effect-make this area less favorable for bats, due to increased flight costs, decreased maneuverability and possibly lower prey abundance. To test this hypothesis, we quantified Pipistrellus pipistrellus activity acoustically at 361 site-nights in western France in June on a longitudinal distance gradient from the wind turbine and on a circular azimuth gradient of wind incidence angle, calculated from the prevailing wind direction of the night. We show that P. pipistrellus avoid the wake area, as less activity was detected leeward of turbines than windward (upwind) at relatively moderate and high wind speeds. Furthermore, we found that P. pipistrellus response to wind turbine (attraction and avoidance) depended on the angle from the wake area. These findings are consistent with the hypothesis that changes in airflows around operating wind turbines can strongly impact the way bats use habitats up to at least 1500 m from the turbines, and thus should prompt the consideration of prevailing winds in wind energy planning. Based on the evidence we present here, we strongly recommend avoiding configurations involving the installation of a turbine between the origin of prevailing winds and important habitats for bats, such as hedgerows, water or woodlands.


Asunto(s)
Quirópteros , Viento , Animales , Quirópteros/fisiología , Vuelo Animal/fisiología , Ecosistema , Francia
3.
Sci Total Environ ; 866: 161404, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36621471

RESUMEN

Wind turbine development is growing exponentially and faster than other sources of renewable energy worldwide. While multi-turbine facilities have small physical footprint, they are not free from negative impacts on wildlife. This is particularly true for bats, whose population viability can be threatened by wind turbines through mortality events due to collisions. Wind turbine curtailment (hereafter referred to as "blanket curtailment") in non-winter periods at low wind speeds and mild temperatures (i.e. when bats are active and wind energy production is low) can reduce fatalities, but show variable and incomplete effectiveness because other factors affect fatality risks including landscape features, rain, turbine functioning, and seasonality. The combined effects of these drivers, and their potential as criteria in algorithm-based curtailment, have so far received little attention. We compiled bat acoustic data recorded over four years at 34 wind turbine nacelles in France from post-construction regulatory studies, including 8619 entire nights (251 ± 58 nights per wind turbine on average). We modelled nightly bat activity in relation to its multiple drivers for three bat guilds, and assessed whether curtailment based on algorithm would be more efficient to limit bat exposure than blanket curtailment based on various combinations of unique wind speed and temperature thresholds. We found that landscape features, weather conditions, seasonality, and turbine functioning determine bat activity at nacelles. Algorithm-based curtailment is more efficient than blanket curtailment, and has the potential to drastically reduce bat exposure while sustaining the same energy production. Compared to blanket curtailment, the algorithm curtailment reduces average exposure by 20 to 29 % and 7 to 12 % for the high-risk guilds of long- and mid-range echolocators, and by 24 to 31 % for the low-risk guild of short-range echolocators. These findings call for the use of algorithm curtailment as both power production and biodiversity benefits will be higher in most situations.


Asunto(s)
Migración Animal , Quirópteros , Animales , Animales Salvajes , Algoritmos , Francia
4.
Sci Data ; 10(1): 253, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37137926

RESUMEN

Knowledge of species' functional traits is essential for understanding biodiversity patterns, predicting the impacts of global environmental changes, and assessing the efficiency of conservation measures. Bats are major components of mammalian diversity and occupy a variety of ecological niches and geographic distributions. However, an extensive compilation of their functional traits and ecological attributes is still missing. Here we present EuroBaTrait 1.0, the most comprehensive and up-to-date trait dataset covering 47 European bat species. The dataset includes data on 118 traits including genetic composition, physiology, morphology, acoustic signature, climatic associations, foraging habitat, roost type, diet, spatial behaviour, life history, pathogens, phenology, and distribution. We compiled the bat trait data obtained from three main sources: (i) a systematic literature and dataset search, (ii) unpublished data from European bat experts, and (iii) observations from large-scale monitoring programs. EuroBaTrait is designed to provide an important data source for comparative and trait-based analyses at the species or community level. The dataset also exposes knowledge gaps in species, geographic and trait coverage, highlighting priorities for future data collection.


Asunto(s)
Quirópteros , Animales , Biodiversidad , Quirópteros/fisiología , Ecosistema , Europa (Continente) , Mamíferos
5.
Environ Pollut ; 292(Pt B): 118394, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34687777

RESUMEN

Among the most prevalent sources of biodiversity declines, Artificial Light At Night (ALAN) is an emerging threat to global biodiversity. Much knowledge has already been gained to reduce impacts. However, the spatial variation of ALAN effects on biodiversity in interaction with landscape composition remains little studied, though it is of the utmost importance to identify lightscapes most in need of action. Several studies have shown that, at local scale, tree cover can intensify positive or negative effects of ALAN on biodiversity, but none have - at landscape scale - studied a wider range of landscape compositions around lit sites. We hypothesized that the magnitude of ALAN effects will depend on landscape composition and species' tolerance to light. Taking the case of insectivorous bats because of their varying sensitivity to ALAN, we investigated the species-specific activity response to ALAN. Bat activity was recorded along a gradient of light radiance. We ensured a large variability in landscape composition around 253 sampling sites. Among the 13 bat taxa studied, radiance decreased the activity of two groups of the slow-flying gleaner guild (Myotis and Plecotus spp.) and one species of the aerial-hawking guild (Pipistrellus pipistrellus), and increased the activity of two species of the aerial-hawking guild (Pipistrellus kuhlii and Pipistrellus pygmaeus). Among these five effects, the magnitude of four of them was driven by landscape composition. For five other species, ALAN effects were only detectable in particular landscape compositions, making the main effect of radiance undetectable without account for interactions with landscape. Specifically, effects were strongest in non-urban habitats, for both guilds. Results highlight the importance to prioritize ALAN reduction efforts in non-urban habitats, and how important is to account for landscape composition when studying ALAN effects on bats to avoid missing effects.


Asunto(s)
Quirópteros , Animales , Biodiversidad , Ecosistema , Especificidad de la Especie , Árboles
6.
Mov Ecol ; 9(1): 3, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33482918

RESUMEN

BACKGROUND: Artificial light at night is recognized as an increasing threat to biodiversity. However, information on the way highly mobile taxa such as bats spatially respond to light is limited. Following the hypothesis of a behavioural adaptation to the perceived risks of predation, we hypothesised that bats should avoid lit areas by shifting their flight route to less exposed conditions. METHODS: Using 3D acoustic localization at four experimentally illuminated sites, we studied how the distance to streetlights emitting white and red light affected the Probability of bats Flying Inside the Forest (PFIF) versus along the forest edge. RESULTS: We show that open-, edge-, and narrow-space foraging bats strongly change flight patterns by increasing PFIF when getting closer to white and red streetlights placed in the forest edge. These behavioural changes occurred mainly on the streetlight side where light was directed. CONCLUSIONS: The results show that bats cope with light exposure by actively seeking refuge in cluttered environment, potentially due to involved predation risks. This is a clear indication that bats make use of landscape structures when reacting to light, and shows the potential of vegetation and streetlight orientation in mitigating effects of light. The study nevertheless calls for preserving darkness as the most efficient way.

7.
Ecol Evol ; 9(15): 8414-8428, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31410250

RESUMEN

In cities, trees planted along streets could play an important ecological role for spontaneous plants growing at their bases. For example, these trees could represent corridors by potentially connecting large green spaces (e.g., parks, gardens), which allow species to move within the urban matrix. We considered sets of urban trees in 15 streets in Paris, France, as metapopulations for 15 plant species. Our objective was to determine the factors influencing the dynamics of colonization and extinction of populations based on the distance of the streets to green spaces and biological traits of each species.Plant species in 1,324 tree bases of the Bercy District of Paris were surveyed annually from 2009 to 2015. For each species and each street, we used SPOMSIM software to identify the best-fit metapopulation model between four models with different colonization and extinction functions: propagule rain model (PRM) and Levins' model with or without rescue effect.Results demonstrated that species more often conformed to the PRM in streets near green spaces, which suggested that green spaces could act as sources for the populations in those streets. Species with seeds with long-term persistence more often conformed to the PRM, indicating that a soil seed bank helps species invade entire streets. Finally, a higher percentage of species with a short height conformed to models with a rescue effect, which indicated that those small species resisted the effects of weeding by the city technical services better than taller species.Synthesis and applications. This study showed how biological traits of species and geography of the district determine the dynamics of plants in the streets, and these results may provide important information for biodiversity management in cities.

8.
Ecol Evol ; 8(3): 1496-1506, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29435227

RESUMEN

The increased use of pesticides and tillage intensification is known to negatively affect biodiversity. Changes in these agricultural practices such as herbicide and tillage reduction have variable effects among taxa, especially at the top of the trophic network including insectivorous bats. Very few studies compared the effects of agricultural practices on such taxa, and overall, only as a comparison of conventional versus organic farming without accurately accounting for underlying practices, especially in conventional where many alternatives exist. Divergent results founded in these previous studies could be driven by this lack of clarification about some unconsidered practices inside both conventional and organic systems. We simultaneously compared, over whole nights, bat activity on contiguous wheat fields of one organic and three conventional farming systems located in an intensive agricultural landscape. The studied organic fields (OT) used tillage (i.e., inversion of soil) without chemical inputs. In studied conventional fields, differences consisted of the following: tillage using few herbicides (T), conservation tillage (i.e., no inversion of soil) using few herbicides (CT), and conservation tillage using more herbicide (CTH), to control weeds. Using 64 recording sites (OT = 12; T = 21; CT = 13; CTH = 18), we sampled several sites per system placed inside the fields each night. We showed that bat activity was always higher in OT than in T systems for two (Pipistrellus kuhlii and Pipistrellus pipistrellus) of three species and for one (Pipistrellus spp.) of two genera, as well as greater species richness. The same results were found for the CT versus T system comparison. CTH system showed higher activity than T for only one genus (Pipistrellus spp.). We did not detect any differences between OT and CT systems, and CT showed higher activity than CTH system for only one species (Pipistrellus kuhlii). Activity in OT of Pipistrellus spp. was overall 3.6 and 9.3 times higher than CTH and T systems, respectively, and 6.9 times higher in CT than T systems. Our results highlight an important benefit of organic farming and contrasted effects in conventional farming. That there were no differences detected between the organic and one conventional system is a major result. This demonstrates that even if organic farming is presently difficult to implement and requires a change of economic context for farmers, considerable and easy improvements in conventional farming are attainable, while maintaining yields and approaching the ecological benefits of organic methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA