Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(25): e202302087, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37062698

RESUMEN

CO2 hydrogenation to methane is gaining increasing interest as one of the most promising ways to store intermittent renewable energy in the form of chemical fuels. Ni particles supported on CeO2 represent a highly efficient, stable and inexpensive catalyst for this reaction. Herein, Ni-doped CeO2 nanoparticles were tested for CO2 methanation showing an extremely high Ni mass-specific activity and CH4 selectivity. Operando characterization reveals that this performance is tightly associated with ionic Νi and Ce3+ surface sites, while formation of metallic Ni does not seem to considerably promote the reaction. Theoretical calculations confirmed the stability of interstitial ionic Ni sites on ceria surfaces and highlighted the role of Ce-O frustrated Lewis pair (FLP), Ni-O classical Lewis pair (CLP) and Ni-Ce pair sites to the activation of H2 and CO2 molecules. To a large extent, the theoretical predictions were validated by in situ spectroscopy under H2 and CO2 : H2 gaseous environments.


Asunto(s)
Dióxido de Carbono , Níquel , Gases , Hidrogenación , Iones
2.
Microsc Microanal ; 26(3): 397-402, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32241326

RESUMEN

High-temperature scanning electron microscopy allows the direct study of the temperature behavior of materials. Using a newly developed heating stage, tilted images series were recorded at high temperature and 3D images of the sample surface were reconstructed. By combining 3D images recorded at different temperatures, the variations of material roughness can be accurately described and associated with local changes in the topography of the sample surface.

3.
ACS Appl Mater Interfaces ; 16(29): 37915-37926, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38989828

RESUMEN

Nickel/yttria-stabilized zirconia (YSZ) composites are the most commonly used fuel electrodes for solid oxide cells. While microstructural changes of Ni/YSZ during operational conditions have been thoroughly investigated, there is limited knowledge regarding Ni/YSZ surface chemistry under working conditions. In this study, we examine the interaction between Ni/YSZ electrodes and water vapor under open circuit and polarization conditions, utilizing near ambient pressure soft and hard X-ray photoelectron spectroscopies. Miniature cells with conventional porous Ni/YSZ composite cermet cathodes were modified to facilitate the direct spectroscopic observation of the functional electrode's areas close to the interface with the YSZ electrolyte. The results highlight dynamic changes in the oxidation state and composition of Ni/YSZ under H2 and H2O atmospheres. We also quantify the accumulation of impurities on the electrode surface. Through adjustments in the pretreatment of the cell, the correlation between the nickel surface oxidation state and the cell's electrochemical performance during H2O electroreduction is established. It is unequivocally shown that nickel surface oxidation in H2O electrolysis favors NiO over Ni(OH)x, providing critical insights into the mechanism of Ni-phase redistribution within the electrode during long-term operation. Depth-dependent photoemission measurements, combined with theoretical quantitative simulations, reveal that NiO and Ni phases are uniformly mixed on the surface during H2O electrolysis. This differs from the conventional expectation of a NiO-shell/Ni-core configuration in gas phase oxidation. These findings provide crucial insights into the surface chemistry of Ni/YSZ electrodes under conditions relevant to H2O electrolysis, elucidating their impact on the electrochemical performance of the cell.

4.
ACS Appl Mater Interfaces ; 15(12): 15396-15408, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36917679

RESUMEN

Frustrated Lewis pairs (FLPs), discovered in the last few decades for homogeneous catalysts and in the last few years also for heterogeneous catalysts, are stimulating the scientific community's interest for their potential in small-molecule activation. Nevertheless, how an FLP activates stable molecules such as CO2 is still undefined. Through a careful spectroscopic study, we here report the formation of FLPs over a highly defective CeO2 sample prepared by microwave-assisted synthesis. Carbon dioxide activation over FLP is shown to occur through a bidentate carbonate bridging the FLP and implying a Ce3+-to-CO2 charge transfer, thus enhancing its activation. Carbon dioxide reaction with methanol to form monomethylcarbonate is here employed to demonstrate active roles of FLP and, eventually, to propose a reaction mechanism clarifying the role of Ce3+ and oxygen vacancies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA