Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Enzyme Inhib Med Chem ; 37(1): 781-791, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35193444

RESUMEN

Herein, we report the preparation of a panel of Schiff bases analogues as antiprotozoal agents by modification of the stereoelectronic effects of the substituents on N-1 and N-4 and the nature of the chalcogen atom (S, Se). These compounds were evaluated towards Trypanosoma cruzi and Trichomonas vaginalis. Thiosemicarbazide 31 showed the best trypanocidal profile (epimastigotes), similar to benznidazole (BZ): IC50 (31)=28.72 µM (CL-B5 strain) and 33.65 µM (Y strain), IC50 (BZ)=25.31 µM (CL-B5) and 22.73 µM (Y); it lacked toxicity over mammalian cells (CC50 > 256 µM). Thiosemicarbazones 49, 51 and 63 showed remarkable trichomonacidal effects (IC50 =16.39, 14.84 and 14.89 µM) and no unspecific cytotoxicity towards Vero cells (CC50 ≥ 275 µM). Selenoisosters 74 and 75 presented a slightly enhanced activity (IC50=11.10 and 11.02 µM, respectively). Hydrogenosome membrane potential and structural changes were analysed to get more insight into the trichomonacidal mechanism.


Asunto(s)
Antiprotozoarios/farmacología , Semicarbazonas/farmacología , Trichomonas vaginalis/efectos de los fármacos , Trypanosoma cruzi/efectos de los fármacos , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Relación Dosis-Respuesta a Droga , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Semicarbazonas/síntesis química , Semicarbazonas/química , Relación Estructura-Actividad
2.
Bioorg Med Chem Lett ; 37: 127843, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33556576

RESUMEN

A series of 11 3-(ω-aminoalkoxy)-1-benzyl-5-nitroindazoles (2-12) has been prepared starting from 1-benzyl-5-nitroindazol-3-ol 13, and evaluated against sensitive and resistant isolates of the sexually transmitted protozoan Trichomonas vaginalis. Compounds 2, 3, 6, 9, 10 and 11 showed trichomonacidal profiles with IC50 < 20 µM against the metronidazole-sensitive isolate. Moreover, all these compounds submitted to cytotoxicity assays against mammalian cells exhibited low non-specific cytotoxic effects, except compounds 3 and 9 which displayed moderate cytotoxicity (CC50 = 74.7 and 59.1 µM, respectively). Those compounds with trichomonacidal effect were also evaluated against a metronidazole-resistant culture. Special mention deserve compounds 6 and 10, which displayed better IC50 values (1.3 and 0.5 µM respectively) than that of the reference drug (IC50 MTZ = 3.0 µM). The high activity of these compounds against the resistant isolate reinforces the absence of cross-resistance with the reference drug. The remarkable trichomonacidal results against resistant T. vaginalis isolates suggest the interest of 3-(ω-aminoalkoxy)-1-benzyl-5-nitroindazoles to be considered as good prototypes to continue in the development of new drugs with enhanced trichomonacidal activity, aiming to increase the non-existent drugs to face clinical resistance efficiently for those patients in whom therapy with 5-nitroimidazoles is contraindicated.


Asunto(s)
Antiparasitarios/farmacología , Indazoles/farmacología , Tricomoniasis/tratamiento farmacológico , Trichomonas vaginalis/efectos de los fármacos , Antiparasitarios/síntesis química , Antiparasitarios/química , Relación Dosis-Respuesta a Droga , Resistencia a Medicamentos/efectos de los fármacos , Indazoles/síntesis química , Indazoles/química , Estructura Molecular , Relación Estructura-Actividad , Tricomoniasis/parasitología
3.
Parasitology ; 147(11): 1216-1228, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32530391

RESUMEN

In previous studies, we have identified several families of 5-nitroindazole derivatives as promising antichagasic prototypes. Among them, 1-(2-aminoethyl)-2-benzyl-5-nitro-1,2-dihydro-3H-indazol-3-one, (hydrochloride) and 1-(2-acetoxyethyl)-2-benzyl-5-nitro-1,2-dihydro-3H-indazol-3-one (compounds 16 and 24, respectively) have recently shown outstanding activity in vitro over the drug-sensitive Trypanosoma cruzi CL strain (DTU TcVI). Here, we explored the activity of these derivatives against the moderately drug-resistant Y strain (DTU TcII), in vitro and in vivo. The outcomes confirmed their activity over replicative forms, showing IC50 values of 0.49 (16) and 5.75 µm (24) towards epimastigotes, 0.41 (16) and 1.17 µm (24) against intracellular amastigotes. These results, supported by the lack of toxicity on cardiac cells, led to better selectivities than benznidazole (BZ). Otherwise, they were not as active as BZ in vitro against the non-replicative form of the parasite, i.e. bloodstream trypomastigotes. In vivo, acute toxicity assays revealed the absence of toxic events when administered to mice. Moreover, different therapeutic schemes pointed to their capability for decreasing the parasitaemia of T. cruzi Y acute infected mice, reaching up to 60% of reduction at the peak day as monotherapy (16), 79.24 and 91.11% when 16 and 24 were co-administered with BZ. These combined therapies had also a positive impact over the mortality, yielding survivals of 83.33 and 66.67%, respectively, while untreated animals reached a cumulative mortality of 100%. These findings confirm the 5-nitroindazole scaffold as a putative prototype for developing novel drugs potentially applicable to the treatment of Chagas disease and introduce their suitability to act in combination with the reference drug.


Asunto(s)
Indazoles , Trypanosoma cruzi/efectos de los fármacos , Animales , Línea Celular , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Resistencia a Medicamentos , Quimioterapia Combinada , Humanos , Indazoles/farmacología , Indazoles/toxicidad , Ratones , Nitroimidazoles/farmacología , Parasitemia/tratamiento farmacológico , Tripanocidas/farmacología , Tripanocidas/toxicidad
4.
J Physiol ; 597(15): 3853-3865, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31187875

RESUMEN

KEY POINTS: The right ventricle of the mammal heart is highly sensitive to the afterload imposed by a combination of the pulmonary circulation and the retrograde contribution of the left heart. Right ventricular afterload can be analysed in terms of pulmonary artery input impedance, which we were able to decompose as the result of the harmonic frequency responses of the pulmonary vessels and the left heart attached in series. Using spectral methods, we found a natural matching between the pulmonary vasculature and the left chambers of the heart. This coupling implies that the upstream transmission of the left heart frequency-response has favourable effects on the pulmonary tree. This physiological mechanism protects the right ventricle against acute changes in preload, and its impairment may be a relevant contribution to right ventricle dysfunction in pulmonary hypertension. ABSTRACT: The right ventricle (RV) of the mammal heart is highly sensitive to the afterload imposed by the pulmonary circulation, and the left heart (LH) retrogradely contributes significantly to this vascular load. Transmission-line theory anticipates that the degree of matching between the frequency responses of the pulmonary vasculature and the LH should modulate the global right haemodynamic burden. We measured simultaneous high-fidelity flow (pulmonary artery) and pressure (pulmonary artery and left atrium) in 18 healthy minipigs under acute haemodynamic interventions. From these data, we decomposed the impedance spectra of the total right-circulation system into the impedance of the pulmonary vessels and the harmonic response of the LH. For frequencies above the first harmonic, total impedance was below the pulmonary impedance during all phases (P < 0.001; pooled phases), demonstrating a favourable effect of the LH harmonic response on RV pulsatile load: the LH harmonic response was responsible for a 20% reduction of pulse pulmonary artery pressure (P < 0.001 vs. a theoretical purely-resistive response) and a 15% increase of pulmonary compliance (P = 0.009). This effect on compliance was highest during acute volume overload. In the normal right circulation, the longitudinal impedance of the pulmonary vasculature is matched to the harmonic response of the LH in a way that efficiently reduces the pulmonary pulsatile vascular load. This source of interaction between the right and left circulations of mammals protects the RV against excessive afterload during acute volume transients and its disruption may be an important contributor to pulmonary hypertension.


Asunto(s)
Hemodinámica , Modelos Cardiovasculares , Circulación Pulmonar , Animales , Función Atrial , Femenino , Masculino , Arteria Pulmonar/fisiología , Porcinos , Porcinos Enanos , Función Ventricular
5.
Parasitol Res ; 117(11): 3367-3380, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30232605

RESUMEN

One of the main problems of Chagas disease (CD), the parasitic infection caused by Trypanosoma cruzi, is the lack of a completely satisfactory treatment, which is currently based on two old nitroheterocyclic drugs (i.e., nifurtimox and benznidazole) that show important limitations for treating patients. In this context, many laboratories look for alternative therapies potentially applicable to the treatment, and therefore, research in CD chemotherapy works in the design of experimental protocols for detecting molecules with activity against T. cruzi. Phenotypic assays are considered the most valuable strategy for screening these antiparasitic compounds. Among them, in vitro experiments are the first step to test potential anti-T. cruzi drugs directly on the different parasite forms (i.e., epimastigotes, trypomastigotes, and amastigotes) and to detect cytotoxicity. Once the putative trypanocidal drug has been identified in vitro, it must be moved to in vivo models of T. cruzi infection, to explore (i) acute toxicity, (ii) efficacy during the acute infection, and (iii) efficacy in the chronic disease. Moreover, in silico approaches for predicting activity have emerged as a supporting tool for drug screening procedures. Accordingly, this work reviews those in vitro, in vivo, and in silico methods that have been routinely applied during the last decades, aiming to discover trypanocidal compounds that contribute to developing more effective CD treatments.


Asunto(s)
Enfermedad de Chagas/tratamiento farmacológico , Evaluación Preclínica de Medicamentos/métodos , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Animales , Enfermedad de Chagas/parasitología , Humanos , Estadios del Ciclo de Vida/efectos de los fármacos , Ratones , Modelos Teóricos , Nitroimidazoles/farmacología , Pruebas de Sensibilidad Parasitaria/métodos
6.
Parasitology ; 143(1): 34-40, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26525913

RESUMEN

A selection of 1,2-disubstituted 5-nitroindazolin-3-ones (1-19) and 3-alkoxy-5-nitroindazoles substituted at positions 1 (20-24) or 2 (25-39) from our in-house compound library were screened in vitro against the most common curable sexually transmitted pathogen, Trichomonas vaginalis. A total of 41% of the studied molecules (16/39) achieved a significant activity of more than 85% growth inhibition at the highest concentration assayed (100 µg mL(-1)). Among these compounds, 3-alkoxy-5-nitroindazole derivatives 23, 24, 25 and 27 inhibited parasite growth by more than 50% at 10 µg mL(-1). In addition, the first two compounds (23, 24) still showed remarkable activity at the lowest dose tested (1 µg mL(-1)), inhibiting parasite growth by nearly 40%. Their specific activity towards the parasite was corroborated by the determination of their non-specific cytotoxicity against mammalian cells. The four mentioned compounds exhibited non-cytotoxic profiles at all of the concentrations assayed, showing a fair antiparasitic selectivity index (SI > 7·5). In silico studies were performed to predict pharmacokinetic properties, toxicity and drug-score using Molinspiration and OSIRIS computational tools. The current in vitro results supported by the virtual screening suggest 2-substituted and, especially, 1-substituted 3-alkoxy-5-nitroindazoles as promising starting scaffolds for further development of novel chemical compounds with the main aim of promoting highly selective trichomonacidal lead-like drugs with adequate pharmacokinetic and toxicological profiles.


Asunto(s)
Antitricomonas/farmacología , Indazoles/farmacología , Tricomoniasis/tratamiento farmacológico , Trichomonas vaginalis/efectos de los fármacos , Alcoholes/química , Animales , Antitricomonas/efectos adversos , Antitricomonas/química , Supervivencia Celular , Chlorocebus aethiops , Simulación por Computador , Indazoles/efectos adversos , Indazoles/química , Pruebas de Sensibilidad Parasitaria , Relación Estructura-Actividad , Células Vero
7.
Parasitology ; 143(11): 1469-78, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27312370

RESUMEN

The phenotypic activity of two 5-nitroindazolinones, i.e. 2-benzyl-1-propyl (22) and 2-benzyl-1-butyl (24) derivatives, previously proposed as anti-Trypanosoma cruzi prototypes, was presently assayed on bloodstream trypomastigotes (BT) of the moderately drug-resistant Y strain. Further exploration of putative targets and cellular mechanisms involved in their activity was also carried out. Therefore, transmission electron microscopy, high-resolution respirometry and flow cytometry procedures were performed on BT treated for up to 24 h with the respective EC50 value of each derivative. Results demonstrated that although 22 and 24 were not as active as benznidazole in this in vitro assay on BT, both compounds triggered important damages in T. cruzi that lead to the parasite death. Ultrastructural alterations included shedding events, detachment of plasma membrane and nuclear envelope, loss of mitochondrial integrity, besides the occurrence of a large number of intracellular vesicles and profiles of endoplasmic reticulum surrounding cytoplasmic organelles such as mitochondrion. Moreover, both derivatives affected mitochondrion leading to this organelle dysfunction, as reflected by the inhibition in oxygen consumption and the loss of mitochondrial membrane potential. Altogether, the findings exposed in the present study propose autophagic processes and mitochondrial machinery as part of the mode of action of both 5-nitroindazolinones 22 and 24 on T. cruzi trypomastigotes.


Asunto(s)
Indazoles/farmacología , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Animales , Autofagia/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Enfermedad de Chagas/parasitología , Retículo Endoplásmico/efectos de los fármacos , Citometría de Flujo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Microscopía Electrónica de Transmisión , Mitocondrias/efectos de los fármacos , Nitroimidazoles/farmacología , Membrana Nuclear/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Trypanosoma cruzi/fisiología , Trypanosoma cruzi/ultraestructura
8.
Exp Parasitol ; 149: 84-91, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25583295

RESUMEN

Solid dispersions (SD) of benznidazole (BNZ) in sodium deoxycholate (NaDC) or low-substituted hydroxypropylcellulose (L-HPC) were developed by freeze-drying process to improve the solubility of this low water-soluble drug and consequently, its trypanocidal activity. Although the dissolution studies showed a progressive decrease in the release rate of BNZ when formulated in the presence of NaDC, the increase in the surfactant concentration resulted in a better trypanocidal profile on epimastigotes, as well as in an enhancement of the unspecific cytotoxicity. However, such an effect was not so evident on amastigotes and in vivo (blood-trypomastigotes), where high concentrations of surfactant (BNZ:NaDC ≥ 1:6) experimented a loss of activity, correlating this fact with the minor cession of BNZ these formulations accomplished in acidic locations (i.e., dissolution test medium). According to the in vitro results, we reformulated the promising SD-1:3 (IC50 epimastigotes = 33.92 ± 6.41 µM, IC50 amastigotes = 0.40 ± 0.05 µM and LC50 = 183.87 ± 12.30 µM) replacing NaDC by L-HPC, which achieved the fastest dissolution profile. This fact, together with the safety this carrier ensures (LC50 > 256 µM), prompted us to evaluate the cellulose SD in vivo, improving the effectiveness of its NaDC equivalent (%AUPC = 96.65% and 91.93%, respectively). The results compiled in the present work suggest these solid dispersions as alternative drug delivery systems to improve the limited chemotherapy of Chagas disease.


Asunto(s)
Enfermedad de Chagas/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Nitroimidazoles/administración & dosificación , Tripanocidas/administración & dosificación , Trypanosoma cruzi/efectos de los fármacos , Animales , Células Cultivadas , Celulosa/análogos & derivados , Celulosa/química , Colagogos y Coleréticos/química , Ácido Desoxicólico/química , Composición de Medicamentos , Liberación de Fármacos , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/parasitología , Liofilización , Humanos , Concentración 50 Inhibidora , Dosificación Letal Mediana , Ratones , Nitroimidazoles/química , Nitroimidazoles/uso terapéutico , Nitroimidazoles/toxicidad , Tripanocidas/química , Tripanocidas/uso terapéutico , Tripanocidas/toxicidad
9.
Molecules ; 20(6): 11554-68, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-26111182

RESUMEN

Thirteen aminoalcohols and eight diamines were obtained and tested against Trypanosoma cruzi epimastigotes strains MG, JEM and CL-B5 clone. Some of them were equal or more potent (1.0-6.6 times) than the reference compound nifurtimox. From them, three aminoalcohols and two diamines were selected for amastigotes assays. Compound 5 was as potent as the reference drug nifurtimox against amastigotes of the CL-B5 strain (IC50 = 0.6 µM), with a selectivity index of 54.


Asunto(s)
Enfermedad de Chagas/tratamiento farmacológico , Diaminas/administración & dosificación , Tripanocidas/administración & dosificación , Trypanosoma cruzi/efectos de los fármacos , Alcoholes/administración & dosificación , Alcoholes/química , Animales , Enfermedad de Chagas/parasitología , Chlorocebus aethiops , Diaminas/química , Humanos , Tripanocidas/química , Trypanosoma cruzi/patogenicidad , Células Vero
10.
Am J Physiol Heart Circ Physiol ; 306(5): H718-29, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24414062

RESUMEN

Vortices may have a role in optimizing the mechanical efficiency and blood mixing of the left ventricle (LV). We aimed to characterize the size, position, circulation, and kinetic energy (KE) of LV main vortex cores in patients with nonischemic dilated cardiomyopathy (NIDCM) and analyze their physiological correlates. We used digital processing of color-Doppler images to study flow evolution in 61 patients with NIDCM and 61 age-matched control subjects. Vortex features showed a characteristic biphasic temporal course during diastole. Because late filling contributed significantly to flow entrainment, vortex KE reached its maximum at the time of the peak A wave, storing 26 ± 20% of total KE delivered by inflow (range: 1-74%). Patients with NIDCM showed larger and stronger vortices than control subjects (circulation: 0.008 ± 0.007 vs. 0.006 ± 0.005 m(2)/s, respectively, P = 0.02; KE: 7 ± 8 vs. 5 ± 5 mJ/m, P = 0.04), even when corrected for LV size. This helped confining the filling jet in the dilated ventricle. The vortex Reynolds number was also higher in the NIDCM group. By multivariate analysis, vortex KE was related to the KE generated by inflow and to chamber short-axis diameter. In 21 patients studied head to head, Doppler measurements of circulation and KE closely correlated with phase-contract magnetic resonance values (intraclass correlation coefficient = 0.82 and 0.76, respectively). Thus, the biphasic nature of filling determines normal vortex physiology. Vortex formation is exaggerated in patients with NIDCM due to chamber remodeling, and enlarged vortices are helpful for ameliorating convective pressure losses and facilitating transport. These findings can be accurately studied using ultrasound.


Asunto(s)
Cardiomiopatía Dilatada/fisiopatología , Ventrículos Cardíacos/fisiopatología , Función Ventricular Izquierda , Adulto , Anciano , Fenómenos Biomecánicos , Cardiomiopatía Dilatada/diagnóstico por imagen , Estudios de Casos y Controles , Ecocardiografía Doppler en Color , Ecocardiografía Doppler de Pulso , Femenino , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Modelos Cardiovasculares , Valor Predictivo de las Pruebas , Volumen Sistólico , Factores de Tiempo , Presión Ventricular , Remodelación Ventricular
11.
Bioorg Med Chem Lett ; 24(4): 1209-13, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24461296

RESUMEN

In this study, a series of 22 pre-synthesized 7-chloro-4-amino(oxy)quinoline derivatives was assayed in vitro as potential antichagasic agents. A primary screening against Trypanosoma cruzi epimastigotes and a non-specific cytotoxicity assay on murine fibroblasts were simultaneously performed, resulting quinolines 3, 7 and 12 with great selectivity (SI) on the extracellular parasite (SI7, SI3, SI12 and SIBZ >9.44). Therefore, the activity of these derivatives was evaluated on intracellular amastigotes, achieving derivative 7 the best SI (SI=12.73). These results, supported by the in silico prediction of a good oral bioavailability and a suitable risk profile, propose the 4-amino-7-chloroquinoline scaffold as a potential template for designing trypanocidal prototypes.


Asunto(s)
Aminoquinolinas/farmacología , Evaluación Preclínica de Medicamentos , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Aminoquinolinas/síntesis química , Aminoquinolinas/química , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Fibroblastos/efectos de los fármacos , Ratones , Estructura Molecular , Fenotipo , Relación Estructura-Actividad , Tripanocidas/síntesis química , Tripanocidas/química
12.
Bioorg Med Chem ; 22(5): 1568-85, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24513185

RESUMEN

Protozoan parasites have been one of the most significant public health problems for centuries and several human infections caused by them have massive global impact. Most of the current drugs used to treat these illnesses have been used for decades and have many limitations such as the emergence of drug resistance, severe side-effects, low-to-medium drug efficacy, administration routes, cost, etc. These drugs have been largely neglected as models for drug development because they are majorly used in countries with limited resources and as a consequence with scarce marketing possibilities. Nowadays, there is a pressing need to identify and develop new drug-based antiprotozoan therapies. In an effort to overcome this problem, the main purpose of this study is to develop a QSARs-based ensemble classifier for antiprotozoan drug-like entities from a heterogeneous compounds collection. Here, we use some of the TOMOCOMD-CARDD molecular descriptors and linear discriminant analysis (LDA) to derive individual linear classification functions in order to discriminate between antiprotozoan and non-antiprotozoan compounds as a way to enable the computational screening of virtual combinatorial datasets and/or drugs already approved. Firstly, we construct a wide-spectrum benchmark database comprising of 680 organic chemicals with great structural variability (254 of them antiprotozoan agents and 426 to drugs having other clinical uses). This series of compounds was processed by a k-means cluster analysis in order to design training and predicting sets. In total, seven discriminant functions were obtained, by using the whole set of atom-based linear indices. All the LDA-based QSAR models show accuracies above 85% in the training set and values of Matthews correlation coefficients (C) vary from 0.70 to 0.86. The external validation set shows rather-good global classifications of around 80% (92.05% for best equation). Later, we developed a multi-agent QSAR classification system, in which the individual QSAR outputs are the inputs of the aforementioned fusion approach. Finally, the fusion model was used for the identification of a novel generation of lead-like antiprotozoan compounds by using ligand-based virtual screening of 'available' small molecules (with synthetic feasibility) in our 'in-house' library. A new molecular subsystem (quinoxalinones) was then theoretically selected as a promising lead series, and its derivatives subsequently synthesized, structurally characterized, and experimentally assayed by using in vitro screening that took into consideration a battery of five parasite-based assays. The chemicals 11(12) and 16 are the most active (hits) against apicomplexa (sporozoa) and mastigophora (flagellata) subphylum parasites, respectively. Both compounds depicted good activity in every protozoan in vitro panel and they did not show unspecific cytotoxicity on the host cells. The described technical framework seems to be a promising QSAR-classifier tool for the molecular discovery and development of novel classes of broad-antiprotozoan-spectrum drugs, which may meet the dual challenges posed by drug-resistant parasites and the rapid progression of protozoan illnesses.


Asunto(s)
Antiprotozoarios/farmacología , Quinoxalinas/síntesis química , Ciclización , Estructura Molecular , Relación Estructura-Actividad Cuantitativa , Quinoxalinas/química
13.
Parasitol Res ; 113(3): 1049-56, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24435615

RESUMEN

Twelve molecules from a series of 35 new 5-nitroindazole derivatives, selected from a successful primary screening on Trypanosoma cruzi epimastigotes, have been evaluated against intracellular amastigotes according to the previous results of their trypanocidal activity and unspecific cytotoxicity. 2-Benzyl-1-propyl (22), 2-benzyl-1-isopropyl (23), and 2-benzyl-1-butyl (24) 5-nitroindazolin-3-ones have inhibited the growth of amastigotes similarly to the reference drugs benznidazole and nifurtimox, inducing complete growth inhibition at concentrations lower than 8 µM (IC50 < 5 µM) and accomplishing great selectivity indexes on the intracellular form of the parasite (SI > 30). Further in vivo assays were developed only for two of the most active molecules (22 and 24), reaching significant reductions in parasitemia levels (52 % and 77%, respectively) after their oral administration to infected mice. In addition, none of the mice in experimental and benznidazole groups died, unlike in the control group which is only treated with the vehicle. The trypanocidal properties found in some of the 5-nitroindazole derivatives assayed in the present work represent an interesting contribution to the urgent need for searching new antichagasic drugs.


Asunto(s)
Indazoles/farmacología , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Animales , Línea Celular , Indazoles/química , Ratones
14.
Pharmaceutics ; 16(5)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38794287

RESUMEN

Pleopeltis crassinervata is a fern documented in ethnobotanical records for its use in Mexican traditional medicine to treat gastric disorders and mouth ulcers. Consequently, conducting biological and pharmacological assays is crucial to validate the therapeutic efficacy of this plant within the context of traditional medicine. In the present study, we investigated the biological activity of extracts and fractions obtained from P. crassinervata organs against bacteria (Salmonella typhimurium, Salmonella typhi, Staphylococcus aureus, Proteus mirabilis, Shigella flexneri, Bacillus subtilis, Escherichia coli) and Trichomonas vaginalis using in vitro models. The precipitate fraction obtained from the frond methanolic extract showed significant antibacterial activity (minimal inhibitory concentration [MIC] 120 µg/mL) against the Staphylococcus aureus strain and was effective against both Gram-positive and Gram-negative bacteria. The hexane fraction also obtained from frond methanolic extract, showed a trichomonacidal effect with an IC50 of 82.8 µg/mL and a low cytotoxic effect. Hsf6 exhibited the highest activity against T. vaginalis, and the GC-MS analysis revealed that the predominant compound was 16-pregnenolone. The remaining identified compounds were primarily terpene-type compounds.

15.
Bioorg Med Chem Lett ; 23(17): 4851-6, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23899616

RESUMEN

The growth inhibitory effect on Trypanosoma cruzi epimastigotes and the unspecific cytotoxicity over NCTC-929 fibroblasts of two series of previously synthesized 2,4-diaryl-1,2,3,4-tetrahydroquinolines (THQ), have been studied in vitro and compared with those of benznidazole (BZ). Derivatives AR39, AR40, AR41, AR91 and DM15 achieved outstanding selectivity indexes (SI) on the extracellular form (SITHQ>SIBZ>9.44) and thus, were tested in a more specific in vitro assay against amastigotes, showing less effectiveness than the reference drug (SIBZ>320) but also accomplishing great selectivity on the intracellular stage (SITHQ>25). These promising results, supported by the in silico prediction of high bioavailability and less potential risk than benznidazole, reveal several tetrahydroquinolines as prototypes of potential antichagasic drugs.


Asunto(s)
Quinolinas/química , Quinolinas/farmacología , Tripanocidas/química , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/enzimología , Animales , Línea Celular , Enfermedad de Chagas/tratamiento farmacológico , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Expresión Génica , Humanos , Ratones , Nitroimidazoles/química , Nitroimidazoles/farmacología , Nitroimidazoles/toxicidad , Quinolinas/toxicidad , Tripanocidas/toxicidad , Trypanosoma cruzi/genética , Trypanosoma cruzi/crecimiento & desarrollo , beta-Galactosidasa/genética
16.
J Med Chem ; 66(19): 13452-13480, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37729094

RESUMEN

The AT-rich mitochondrial DNA (kDNA) of trypanosomatid parasites is a target of DNA minor groove binders. We report the synthesis, antiprotozoal screening, and SAR studies of three series of analogues of the known antiprotozoal kDNA binder 2-((4-(4-((4,5-dihydro-1H-imidazol-3-ium-2-yl)amino)benzamido)phenyl)amino)-4,5-dihydro-1H-imidazol-3-ium (1a). Bis(2-aminoimidazolines) (1) and bis(2-aminobenzimidazoles) (2) showed micromolar range activity against Trypanosoma brucei, whereas bisarylimidamides (3) were submicromolar inhibitors of T. brucei, Trypanosoma cruzi, and Leishmania donovani. None of the compounds showed relevant activity against the urogenital, nonkinetoplastid parasite Trichomonas vaginalis. We show that series 1 and 3 bind strongly and selectively to the minor groove of AT DNA, whereas series 2 also binds by intercalation. The measured pKa indicated different ionization states at pH 7.4, which correlated with the DNA binding affinities (ΔTm) for series 2 and 3. Compound 3a, which was active and selective against the three parasites and displayed adequate metabolic stability, is a fine candidate for in vivo studies.


Asunto(s)
Antiprotozoarios , Benzamidas , Leishmania donovani , Parásitos , Trypanosoma brucei brucei , Trypanosoma cruzi , Animales , Antiprotozoarios/química , ADN/metabolismo , ADN de Cinetoplasto/metabolismo , Imidazoles/química , Imidazoles/farmacología , Leishmania donovani/metabolismo , Parásitos/efectos de los fármacos , Parásitos/metabolismo , Benzamidas/química , Benzamidas/farmacología
17.
Mem Inst Oswaldo Cruz ; 107(5): 637-43, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22850954

RESUMEN

A fluorimetric microassay that uses a redox dye to determine the viability of the flagellate Trichomonas vaginalis has been optimised to provide a more sensitive method to evaluate potential trichomonacidal compounds. Resazurin has been used in recent years to test drugs against different parasites, including trichomonadid protozoa; however, the reproducibility of these resazurin-based methods in our laboratory has been limited because the flagellate culture medium spontaneously reduces the resazurin. The objective of this work was to refine the fluorimetric microassay method previously developed by other research groups to reduce the fluorescence background generated by the media and increase the sensitivity of the screening assay. The experimental conditions, time of incubation, resazurin concentration and media used in the microtitre plates were adjusted. Different drug sensitivity studies against T. vaginalis were developed using the 5-nitroimidazole reference drugs, new 5-nitroindazolinones and 5-nitroindazole synthetic derivatives. Haemocytometer count results were compared with the resazurin assay using a 10% solution of 3 mM resazurin dissolved in phosphate buffered saline with glucose (1 mg/mL). The fluorimetric assay and the haemocytometer counts resulted in similar percentages of trichomonacidal activity in all the experiments, demonstrating that the fluorimetric microtitre assay has the necessary accuracy for high-throughput screening of new drugs against T. vaginalis.


Asunto(s)
Antitricomonas/farmacología , Clotrimazol/farmacología , Metronidazol/análogos & derivados , Metronidazol/farmacología , Trichomonas vaginalis/efectos de los fármacos , Fluorometría , Ensayos Analíticos de Alto Rendimiento , Oxazinas , Pruebas de Sensibilidad Parasitaria , Sensibilidad y Especificidad , Xantenos
18.
Acta Trop ; 234: 106607, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35907502

RESUMEN

In this study, a new series of eleven 5-nitroindazole derivatives (10-20) and a related 6-nitroquinazoline (21) was synthesized and tested in vitro against different forms of the kinetoplastid parasite Trypanosoma cruzi, etiological agent of Chagas disease. Among these compounds, derivatives 11-14 and 17 showed trypanocidal profiles on epimastigotes (IC50 = 1.00-8.75 µM) considerably better than that of the reference drug benznidazole, BZ (IC50 = 25.22 µM). Furthermore, the lack of cytotoxicity observed for compounds 11, 12, 14, 17 and 18 over L929 fibroblasts, led to a notable selectivity (SI) on the extracellular replicative form of the parasite: SIEPI > 12.41 to > 256 µM. Since these five derivatives overpassed the cut-off value established by BZ (SIEPI ≥ 10), they were moved to a more specific assay against the intracellular and replicative form of T. cruzi, i.e, amastigotes. These molecules were not as active as BZ (IC50 = 0.57 µM) against this parasite form; however, all of them showed remarkable IC50 values lower than 7 µM. Special mention deserve compounds 12 and 17, whose SIAMA were > 246.15 and > 188.23, respectively. The results compiled in the present work, point to a positive impact over the trypanocidal activity of the electron withdrawing substituents introduced at position 2 of the N-2 benzyl moiety of these compounds, especially fluorine, i.e., derivatives 12 and 17. These outcomes, supported by the in silico prediction of good oral bioavailability and suitable risk profile, reinforce the 5-nitroindazole scaffold as an adequate template for preparing potential antichagasic agents.


Asunto(s)
Enfermedad de Chagas , Tripanocidas , Trypanosoma cruzi , Enfermedad de Chagas/tratamiento farmacológico , Humanos , Indazoles , Relación Estructura-Actividad , Tripanocidas/farmacología , Tripanocidas/uso terapéutico
19.
Bioorg Med Chem ; 19(15): 4562-73, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21723734

RESUMEN

A series of new 21 chloroquine heterocyclic hybrids containing either benzylamino fragment or N-(aminoalkyl)thiazolidin-4-one moiety were synthesized and screened for their antimalarial activity against chloroquine (CQ)-sensitive 3D7 and multidrug-resistance Dd2 strains of Plasmodium falciparum. Although no compounds more active than CQ against 3D7 was found; against Dd2 strain, six compounds, four of them with benzylamino fragment, showed an excellent activity, up to 3-fold more active than CQ. Non specific cytotoxicity on J774 macrophages was observed in some compounds whereas only two of them showed liver toxicity on HepG2 cells. In addition, all active compounds inhibited the ferriprotoporphyrin IX biocrystalization process in concentrations around to CQ. In vivo preliminary results have shown that at least two compounds are as active as CQ against Plasmodium berghei ANKA.


Asunto(s)
Antimaláricos/química , Antimaláricos/farmacología , Cloroquina/química , Cloroquina/farmacología , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Tiazolidinas/química , Tiazolidinas/farmacología , Animales , Antimaláricos/síntesis química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cloroquina/síntesis química , Resistencia a Múltiples Medicamentos , Células Hep G2 , Humanos , Ratones , Tiazolidinas/síntesis química
20.
J Biomol Screen ; 13(8): 785-94, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18753687

RESUMEN

Bond-based quadratic indices, new TOMOCOMD-CARDD molecular descriptors, and linear discriminant analysis (LDA) were used to discover novel lead trichomonacidals. The obtained LDA-based quantitative structure-activity relationships (QSAR) models, using nonstochastic and stochastic indices, were able to classify correctly 87.91% (87.50%) and 89.01% (84.38%) of the chemicals in training (test) sets, respectively. They showed large Matthews correlation coefficients of 0.75 (0.71) and 0.78 (0.65) for the training (test) sets, correspondingly. Later, both models were applied to the virtual screening of 21 chemicals to find new lead antitrichomonal agents. Predictions agreed with experimental results to a great extent because a correct classification for both models of 95.24% (20 of 21) of the chemicals was obtained. Of the 21 compounds that were screened and synthesized, 2 molecules (chemicals G-1, UC-245) showed high to moderate cytocidal activity at the concentration of 10 microg/ml, another 2 compounds (G-0 and CRIS-148) showed high cytocidal activity only at the concentration of 100 microg/ml, and the remaining chemicals (from CRIS-105 to CRIS-153, except CRIS-148) were inactive at these assayed concentrations. Finally, the best candidate, G-1 (cytocidal activity of 100% at 10 microg/ml) was in vivo assayed in ovariectomized Wistar rats achieving promising results as a trichomonacidal drug-like compound.


Asunto(s)
Antitricomonas/química , Antitricomonas/farmacología , Diseño Asistido por Computadora , Evaluación Preclínica de Medicamentos/métodos , Programas Informáticos , Trichomonas vaginalis/efectos de los fármacos , Adulto , Animales , Antitricomonas/uso terapéutico , Análisis Discriminante , Farmacorresistencia Bacteriana , Femenino , Humanos , Estructura Molecular , Ovariectomía , Ratas , Ratas Wistar , Tricomoniasis/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA