Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Clin Sci (Lond) ; 138(17): 1071-1087, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39136472

RESUMEN

Perivascular adipose tissue (PVAT) negatively regulates vascular muscle contraction. However, in the context of obesity, the PVAT releases vasoconstrictor substances that detrimentally affect vascular function. A pivotal player in this scenario is the peptide endothelin-1 (ET-1), which induces oxidative stress and disrupts vascular function. The present study postulates that obesity augments ET-1 production in the PVAT, decreases the function of the nuclear factor erythroid 2-related factor-2 (Nrf2) transcription factor, further increasing reactive oxygen species (ROS) generation, culminating in PVAT dysfunction. Male C57BL/6 mice were fed either a standard or a high-fat diet for 16 weeks. Mice were also treated with saline or a daily dose of 100 mg·kg-1 of the ETA and ETB receptor antagonist Bosentan, for 7 days. Vascular function was evaluated in thoracic aortic rings, with and without PVAT. Mechanistic studies utilized PVAT from all groups and cultured WT-1 mouse brown adipocytes. PVAT from obese mice exhibited increased ET-1 production, increased ECE1 and ETA gene expression, loss of the anticontractile effect, as well as increased ROS production, decreased Nrf2 activity, and downregulated expression of Nrf2-targeted antioxidant genes. PVAT of obese mice also exhibited increased expression of Tyr216-phosphorylated-GSK3ß and KEAP1, but not BACH1 - negative Nrf2 regulators. Bosentan treatment reversed all these effects. Similarly, ET-1 increased ROS generation and decreased Nrf2 activity in brown adipocytes, events mitigated by BQ123 (ETA receptor antagonist). These findings place ET-1 as a major contributor to PVAT dysfunction in obesity and highlight that pharmacological control of ET-1 effects restores PVAT's cardiovascular protective role.


Asunto(s)
Tejido Adiposo , Regulación hacia Abajo , Endotelina-1 , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2 , Obesidad , Especies Reactivas de Oxígeno , Animales , Endotelina-1/metabolismo , Obesidad/metabolismo , Obesidad/fisiopatología , Masculino , Tejido Adiposo/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Bosentán/farmacología , Dieta Alta en Grasa , Ratones , Estrés Oxidativo , Receptor de Endotelina A/metabolismo , Receptor de Endotelina A/genética , Enzimas Convertidoras de Endotelina/metabolismo , Aorta Torácica/metabolismo , Aorta Torácica/efectos de los fármacos , Aorta Torácica/fisiopatología
2.
Am J Physiol Heart Circ Physiol ; 324(4): H417-H429, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36705993

RESUMEN

α-Adrenergic receptors are crucial regulators of vascular hemodynamics and essential pharmacological targets for cardiovascular diseases. With aging, there is an increase in sympathetic activation, which could contribute to the progression of aging-associated cardiovascular dysfunction, including stroke. Nevertheless, there is little information directly associating adrenergic receptor dysfunction in the blood vessels of aged females. This study determined the role of a-adrenergic receptors in carotid dysfunction of senescent female mice (accelerated-senescence prone, SAMP8), compared with a nonsenescent (accelerated-senescence prone, SAMR1). Vasoconstriction to phenylephrine (Phe) was markedly increased in common carotid artery of SAMP8 [area under the curve (AUC), 527 ± 53] compared with SAMR1 (AUC, 334 ± 30, P = 0.006). There were no changes in vascular responses to the vasoconstrictor agent U46619 or the vasodilators acetylcholine (ACh) and sodium nitroprusside (NPS). Hyperactivity to Phe in female SAMP8 was reduced by cyclooxygenase-1 and cyclooxygenase-2 inhibition and associated with augmented ratio of TXA2/PGI2 release (SAMR1, 1.1 ± 0.1 vs. SAMP8, 2.1 ± 0.3, P = 0.007). However, no changes in cyclooxygenase expression were seen in SAMP8 carotids. Selective α1A-receptor antagonism markedly reduced maximal contraction, whereas α1D antagonism induced a minor shift in Phe contraction in SAMP8 carotids. Ligand binding analysis revealed a threefold increase of α-adrenergic receptor density in smooth muscle cells (VSMCs) of SAMP8 vs. SAMR1. Phe rapidly increased intracellular calcium (Cai2+) in VSMCs via the α1A-receptor, with a higher peak in VSMCs from SAMP8. In conclusion, senescence intensifies vasoconstriction mediated by α1A-adrenergic signaling in the carotid of female mice by mechanisms involving increased Cai2+ and release of cyclooxygenase-derived prostanoids.NEW & NOTEWORTHY The present study provides evidence that senescence induces hyperreactivity of α1-adrenoceptor-mediated contraction of the common carotid. Impairment of α1-adrenoceptor responses is linked to increased Ca2+ influx and release of COX-derived vasoconstrictor prostanoids, contributing to carotid dysfunction in the murine model of female senescence (SAMP8). Increased reactivity of the common carotid artery during senescence may lead to morphological and functional changes in arteries of the cerebral microcirculation and contribute to cognitive decline in females. Because the elderly population is growing, elucidating the mechanisms of aging- and sex-associated vascular dysfunction is critical to better direct pharmacological and lifestyle interventions to prevent cardiovascular risk in both sexes.


Asunto(s)
Prostaglandinas , Vasoconstrictores , Anciano , Humanos , Masculino , Ratones , Femenino , Animales , Vasoconstrictores/farmacología , Ciclooxigenasa 1 , Prostaglandinas/metabolismo , Envejecimiento/metabolismo , Fenilefrina/farmacología , Ciclooxigenasa 2
3.
Am J Physiol Heart Circ Physiol ; 323(2): H322-H335, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35714175

RESUMEN

Clinical data point to adverse cardiovascular events elicited by testosterone replacement therapy. Testosterone is the main hormone used in gender-affirming hormone therapy (GAHT) by transmasculine people. However, the cardiovascular impact of testosterone in experimental models of GAHT remains unknown. Sex hormones modulate T-cell activation, and immune mechanisms contribute to cardiovascular risk. The present study evaluated whether testosterone negatively impacts female cardiovascular function by enhancing Th17 cell-linked effector mechanisms. Female (8 wk old) C57BL/6J mice received testosterone (48 mg/kg/wk) for 8 wk. Male mice were used for phenotypical comparisons. The hormone treatment in female mice increased circulating testosterone to levels observed in male mice. Testosterone increased lean body mass and body mass index, and decreased perigonadal fat mass, mimicking clinical findings. After 8 wk, testosterone decreased endothelium-dependent vasodilation and increased peripheral Th17 cells. After 24 wk, testosterone increased blood pressure in female mice. Ovariectomy did not intensify phenotypical or cardiovascular effects by testosterone. Female mice lacking T and B cells [Rag1 knockout (-/-)], as well as female mice lacking IL-17 receptor (IL-17Ra-/-), did not exhibit vascular dysfunction induced by testosterone. Testosterone impaired endothelium-dependent vasodilation in female mice lacking γδ T cells, similarly to the observed in wild-type female mice. Adoptive transfer of CD4+ T cells restored testosterone-induced vascular dysfunction in Rag1-/- female mice. Together, these data suggest that CD4+ T cells, most likely Th17 cells, are central to vascular dysfunction induced by testosterone in female mice, indicating that changes in immune-cell balance are important in the GAHT in transmasculine people.NEW & NOTEWORTHY Sex hormone-induced cardiovascular events are important undesirable effects in transgender people under GAHT. Studies addressing the cardiovascular impact of GAHT will certainly contribute to improve healthcare services offered to this population. Our study showing that vascular dysfunction, via Th17 cell-related mechanisms, precedes increased blood pressure induced by testosterone in a GAHT mouse model, reveals potential mechanisms involved in GAHT-related cardiovascular events and may provide new markers/targets for clinical practices in transmasculine people.


Asunto(s)
Enfermedades Cardiovasculares , Testosterona , Animales , Enfermedades Cardiovasculares/tratamiento farmacológico , Modelos Animales de Enfermedad , Femenino , Hormonas Esteroides Gonadales , Proteínas de Homeodominio , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Células Th17
4.
Planta Med ; 87(1-02): 160-168, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32937664

RESUMEN

The need for new immunomodulatory drugs is due to the side effects associated with the prolonged use of the currently used immunomodulatory drugs. In this context, the present work aimed to investigate the immunomodulatory effect of an ethanolic concentrated extract from Physalis angulata. The cytotoxicity of samples was determined using peritoneal macrophages though the Alamar Blue assay. The immunomodulatory activity of the ethanolic extract from P. angulata on activated macrophages was determined by measurement of nitrite and cytokine production. The immunosuppressive effects of the ethanolic extract from P. angulata was evaluated on lymphocyte proliferation and cytokine production. The effects of the extract on cell cycle progression and cell death on lymphocytes were evaluated by flow cytometry. Lastly, the ethanolic extract from P. angulata was tested in vivo in toxicological tests and in models of peritonitis and delayed-type hypersensitivity response. The ethanolic extract from P. angulata decreased nitrite, interleukin-6, interleukin-12, and TNF-α production by activated macrophages without affecting the cell viability. In addition, the ethanolic extract from P. angulata inhibited lymphoproliferation and the secretion of interleukin-2, interleukin-6, and IFN-γ, and increased interleukin-4 secretion by activated splenocytes. Flow cytometry analysis in lymphocyte cultures showed that treatment with the ethanolic extract from P. angulata induces cell cycle arrest in the G1 phase followed by cell death by apoptosis. Moreover, mice treated with the extract from P. angulata at 100 or 200 mg/kg did not show signs of toxicity or alterations in serum components. Finally, the ethanolic extract from P. angulata significantly reduced neutrophil migration and reduced paw edema in bovine serum albumin-induced the delayed-type hypersensitivity response model. Our results demonstrate the potential of the ethanolic extract of P. angulata as an alternative for the treatment of immune-inflammatory diseases.


Asunto(s)
Physalis , Animales , Etanol , Macrófagos , Macrófagos Peritoneales , Ratones , Extractos Vegetales/farmacología
5.
Am J Hum Genet ; 92(1): 28-40, 2013 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-23261299

RESUMEN

Reduced FCGR3B copy number is associated with increased risk of systemic lupus erythematosus (SLE). The five FCGR2/FCGR3 genes are arranged across two highly paralogous genomic segments on chromosome 1q23. Previous studies have suggested mechanisms for structural rearrangements at the FCGR2/FCGR3 locus and have proposed mechanisms whereby altered FCGR3B copy number predisposes to autoimmunity, but the high degree of sequence similarity between paralogous segments has prevented precise definition of the molecular events and their functional consequences. To pursue the genomic pathology associated with FCGR3B copy-number variation, we integrated sequencing data from fosmid and bacterial artificial chromosome clones and sequence-captured DNA from FCGR3B-deleted genomes to establish a detailed map of allelic and paralogous sequence variation across the FCGR2/FCGR3 locus. This analysis identified two highly paralogous 24.5 kb blocks within the FCGR2C/FCGR3B/FCGR2B locus that are devoid of nonpolymorphic paralogous sequence variations and that define the limits of the genomic regions in which nonallelic homologous recombination leads to FCGR2C/FCGR3B copy-number variation. Further, the data showed evidence of swapping of haplotype blocks between these highly paralogous blocks that most likely arose from sequential ancestral recombination events across the region. Functionally, we found by flow cytometry, immunoblotting and cDNA sequencing that individuals with FCGR3B-deleted alleles show ectopic presence of FcγRIIb on natural killer (NK) cells. We conclude that FCGR3B deletion juxtaposes the 5'-regulatory sequences of FCGR2C with the coding sequence of FCGR2B, creating a chimeric gene that results in an ectopic accumulation of FcγRIIb on NK cells and provides an explanation for SLE risk associated with reduced FCGR3B gene copy number.


Asunto(s)
Variaciones en el Número de Copia de ADN , Lupus Eritematoso Sistémico/genética , Receptores de IgG/genética , Mapeo Cromosómico , Proteínas Ligadas a GPI/genética , Eliminación de Gen , Predisposición Genética a la Enfermedad , Humanos , Células Asesinas Naturales/metabolismo , Polimorfismo de Nucleótido Simple
7.
Injury ; 55(8): 111691, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38936226

RESUMEN

BACKGROUND: Women in surgery face distinctive challenges, barriers, and obstacles in the workplace. The objective of this work was to evaluate perceptions toward female surgeons from a personal, cultural, and professional perspective in a tertiary hospital in Cuenca (Ecuador). METHODS: Qualitative ethnographic study based on the SRQR guidelines. Fourteen participants took part and were split into two groups: health personnel who work closely with surgeons and patients and family members. All underwent semi-structured interviews which explored themes of personal, cultural, and professional perceptions of female surgeons in their work environment. Additionally, ideas of gender biases were assessed. After transcribing the interviews, patterns, and trends in the data were encoded, followed by the categorization and identification of significant relationships. Data analysis was conducted using ATLAS.ti software version 23. RESULTS: Three main dimensions emerged and were identified: 'Barriers', 'Equity', and 'Recognition'. A high frequency of barriers (discrimination and stereotypes) has been identified, and the recognition of female surgeons as capable and competent remains insufficient. CONCLUSION: Gender biases that negatively impact female surgeons persist. In the fight against eradicating discrimination, we must promote equal opportunities and enhance recognition of women's surgical practice in Latin America and worldwide.


Asunto(s)
Actitud del Personal de Salud , Médicos Mujeres , Investigación Cualitativa , Sexismo , Cirujanos , Lugar de Trabajo , Humanos , Femenino , Médicos Mujeres/psicología , Lugar de Trabajo/psicología , Cirujanos/psicología , Adulto , Entrevistas como Asunto , Persona de Mediana Edad , Percepción , Antropología Cultural
8.
Function (Oxf) ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289003

RESUMEN

The regulation of vascular tone by perivascular tissues is a complex interplay of various paracrine factors. Here, we investigate the anti-contractile effect of skeletal muscle surrounding the femoral and carotid arteries and its underlying mechanisms. Using male and female Wistar rats, we demonstrated that serotonin, phenylephrine, and U-46619 induced a concentration-dependent vasoconstrictor response in femoral artery rings. Interestingly, this response was diminished in the presence of surrounding femoral skeletal muscle, irrespective of sex. No anti-contractile effect was observed when the carotid artery was exposed to its surrounding skeletal muscle. The observed effect in the femoral artery persisted even in the absence of endothelium and when the muscle was detached from the artery. Furthermore, the skeletal muscle surrounding the femoral artery was able to promote an anti-contractile effect in three other vascular beds (basilar, mesenteric, and carotid arteries). Using inhibitors of lactate dehydrogenase and the 1/4 monocarboxylate transporter, we confirmed the involvement of lactate, as both inhibitors were able to abolish the anti-contractile effect. However, lactate did not directly promote vasodilation; rather, it exerted its effect by activating 5' AMP-activated protein kinase (AMPK) and neuronal nitric oxide synthase (NOS1) in the skeletal muscle. Accordingly, Nω-propyl L-arginine, a specific inhibitor of NOS1, prevented the anti-contractile effect, as well as lactate-induced phosphorylation of NOS1 at the stimulatory serine site (1417) in primary skeletal muscle cells. Phosphorylation of NOS1 was reduced in the presence of Bay-3827, a selective AMPK inhibitor. In conclusion, femoral artery-associated skeletal muscle is a potent paracrine and endocrine organ that influences vascular tone in both sexes. Mechanistically, the anti-contractile effect involves muscle fiber type and/or its anatomical location but not the type of artery or its related vascular endothelium. Finally, the femoral artery anti-contractile effect is mediated by the lactate-AMPK-phospho-NOS1Ser1417-NO signaling axis.

9.
Eur J Pharm Sci ; 197: 106766, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38615970

RESUMEN

One of the most frequent causes of respiratory infections are viruses. Viruses reaching the airways can be absorbed by the human body through the respiratory mucosa and mainly infect lung cells. Several viral infections are not yet curable, such as coronavirus-2 (SARS-CoV-2). Furthermore, the side effect of synthetic antiviral drugs and reduced efficacy against resistant variants have reinforced the search for alternative and effective treatment options, such as plant-derived antiviral molecules. Curcumin (CUR) and quercetin (QUE) are two natural compounds that have been widely studied for their health benefits, such as antiviral and anti-inflammatory activity. However, poor oral bioavailability limits the clinical applications of these natural compounds. In this work, nanoemulsions (NE) co-encapsulating CUR and QUE designed for nasal administration were developed as promising prophylactic and therapeutic treatments for viral respiratory infections. The NEs were prepared by high-pressure homogenization combined with the phase inversion temperature technique and evaluated for their physical and chemical characteristics. In vitro assays were performed to evaluate the nanoemulsion retention into the porcine nasal mucosa. In addition, the CUR and QUE-loaded NE antiviral activity was tested against a murine ß-COV, namely MHV-3. The results evidenced that CUR and QUE loaded NE had a particle size of 400 nm and retention in the porcine nasal mucosa. The antiviral activity of the NEs showed a percentage of inhibition of around 99 %, indicating that the developed NEs has interesting properties as a therapeutic and prophylactic treatment against viral respiratory infections.


Asunto(s)
Administración Intranasal , Antivirales , Curcumina , Emulsiones , Quercetina , Curcumina/administración & dosificación , Curcumina/farmacología , Curcumina/química , Quercetina/administración & dosificación , Quercetina/farmacología , Quercetina/química , Animales , Antivirales/administración & dosificación , Antivirales/farmacología , Antivirales/química , Ratones , Nanopartículas/administración & dosificación , Nanopartículas/química , Porcinos , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Infecciones del Sistema Respiratorio/virología , Infecciones del Sistema Respiratorio/prevención & control , Mucosa Nasal/metabolismo , Mucosa Nasal/efectos de los fármacos , Mucosa Nasal/virología , SARS-CoV-2/efectos de los fármacos , Tratamiento Farmacológico de COVID-19 , Humanos
10.
Cureus ; 15(6): e40192, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37431333

RESUMEN

Over the years, chondroitin sulfate (CS) has been used as a slow-acting drug for the treatment of osteoarthritis, for the reduction of pain and improvement of function, and for its disease-modifying properties by limiting cartilage volume loss and joint space narrowing progression. However, there have been inconsistencies in published trials regarding clinical efficacy, with reports of a lack of significant effects compared to placebo. The therapeutic effects of chondroitin sulfate may depend on many variables, such as the source of origin, purity, and contamination with by-products. Another source of confusion may be related to the fact that CS is commonly combined with glucosamine, which makes it challenging to isolate the specific contribution of chondroitin to the therapeutic outcome. This is aggravated by the fact that CS supplements, used in many countries, are not regulated, and labels wrongly claim high levels of purity. Many of these inferior CS products may have been used in clinical trials, which may have had limited but significant results. This has led to recent recommendations to opt for higher-purity pharmacologic-grade CS for the treatment of OA. This article aims to provide an up-to-date view of the current literature regarding the biological effects and efficacy of CS and discusses the quality of available chondroitin sulfate supplements and the current direction in CS investigation. This review concludes that pharmacologic-grade CS supplements may have clinically significant benefits when properly standardized; however, high-quality evidence from properly designed clinical trials is still needed to draw definitive conclusions about clinical efficacy in osteoarthritis.

11.
Cureus ; 15(6): e40149, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37425562

RESUMEN

Groin pain is a common problem in athletes, leading to significant distress and long periods of absence from sports. Nonsurgical interventions are usually the first line of treatment. However, the most effective intervention for groin pain is unknown and recommendations are scarce. The primary objective of this systematic review was to assess the effectiveness of nonsurgical interventions in the treatment of long-standing groin pain in athletes and to provide some guidance for clinical practice and further research. A search strategy was performed in March 2020 in Pubmed, Google Scholar, PEDro, and Cochrane Central Register of Controlled Trials databases, without any time restrictions. Only randomized controlled trials (RCT) were included for full-text analysis. Data on the patient's characteristics, duration of pain, study groups, outcome measures results, follow-up time, and return to play time were extracted. The risk of bias in each study was assessed using the Cochrane risk-of-bias assessment tool. Data for analysis could not be pooled for meta-analysis and, as such, a narrative summary of the outcomes was instead performed. The certainty of the evidence was assessed using a variation of the GRADE approach for when a meta-analysis is not possible to perform. Seven RCTs were included for analysis. Most studies were classified as uncertain risk of bias. All studies provided evidence that nonsurgical interventions have significant positive effects and may lead to good outcomes concerning pain, function, and return to sports at previous levels. The certainty of the evidence was assessed to be low using the modified GRADE approach. Despite the low quality of the available evidence, nonsurgical treatments demonstrated efficacy in the management of groin pain and should probably be the initial approach to treatment. More RCTs of high quality are necessary to provide clear recommendations on the most efficient nonsurgical treatment strategy for groin pain.

12.
Life Sci ; 319: 121526, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36828130

RESUMEN

Perivascular adipose tissue (PVAT) exerts anticontractile effect, but under non-physiological conditions it may contribute to vascular dysfunction by releasing pro-inflammatory cytokines. Since PVAT is an important source of interleukin (IL)-6, we evaluated whether this cytokine would contribute to ethanol-induced vascular dysfunction. With this purpose, male C57BL/6 wild-type (WT) or IL-6-deficient mice (IL-6-/-) were treated with ethanol for 12 weeks. Increased blood pressure was evidenced after 4 and 6 weeks of treatment with ethanol in WT and IL-6-/- mice, respectively. In WT mice, ethanol increased plasma and PVAT levels of IL-6. Ethanol favoured pro-contractile phenotype of PVAT in mesenteric arteries from WT, but not IL-6-deficient mice. Functional studies showed that tiron [(a scavenger of superoxide (O2-)] reversed the pro-contractile effect of PVAT in mesenteric arteries from ethanol-treated mice. Ethanol increased the levels of O2- in PVAT from WT mice. Ethanol-induced increase in O2- generation was higher in arteries with PVAT from WT mice when compared to IL-6-deficient mice. Treatment with ethanol augmented myeloperoxidase activity in the mesenteric arterial bed (MAB; with or without PVAT) from WT, but not IL-6-deficient mice. In conclusion, IL-6 contributes to the pro-contractile effect of PVAT by a mechanism that involves increase in ROS generation. Additionally, IL-6 mediates intravascular recruitment of neutrophils in response to ethanol and plays a role in the early stages of ethanol-induced hypertension. Collectively, our findings provide novel evidence for a role of IL-6 in the vascular dysfunction induced by ethanol.


Asunto(s)
Interleucina-6 , Obesidad , Masculino , Ratones , Animales , Interleucina-6/farmacología , Ratones Endogámicos C57BL , Arterias Mesentéricas , Fenotipo , Etanol/toxicidad , Tejido Adiposo
13.
Biomedicines ; 11(12)2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38137569

RESUMEN

Curcumin is a highly promising substance for treating burns, owing to its anti-inflammatory, antioxidant, antimicrobial, and wound-healing properties. However, its therapeutic use is restricted due to its hydrophobic nature and low bioavailability. This study was conducted to address these limitations; it developed and tested two types of lipid nanocarriers, namely nanoemulsions (NE-CUR) and nanostructured lipid carriers (NLC-CUR) loaded with curcumin, and aimed to identify the most suitable nanocarrier for skin burn treatment. The study evaluated various parameters, including physicochemical characteristics, stability, encapsulation efficiency, release, skin permeation, retention, cell viability, and antimicrobial activity. The results showed that both nanocarriers showed adequate size (~200 nm), polydispersity index (~0.25), and zeta potential (~>-20 mV). They also showed good encapsulation efficiency (>90%) and remained stable for 120 days at different temperatures. In the release test, NE-CUR and NCL-CUR released 57.14% and 51.64% of curcumin, respectively, in 72 h. NE-CUR demonstrated better cutaneous permeation/retention in intact or scalded skin epidermis and dermis than NLC-CUR. The cell viability test showed no toxicity after treatment with NE-CUR and NLC-CUR up to 125 µg/mL. Regarding microbial activity assays, free curcumin has activity against P. aeruginosa, reducing bacterial growth by 75% in 3 h. NE-CUR inhibited bacterial growth by 65% after 24 h, and the association with gentamicin had favorable results, while NLC-CUR showed a lower inhibition. The results demonstrated that NE-CUR is probably the most promising nanocarrier for treating burns.

14.
J Med Chem ; 65(24): 16695-16715, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36507890

RESUMEN

Iterative medicinal chemistry optimization of an ester-containing astemizole (AST) analogue 1 with an associated metabolic instability liability led to the identification of a highly potent 3-trifluoromethyl-1,2,4-oxadiazole analogue 23 (PfNF54 IC50 = 0.012 µM; PfK1 IC50 = 0.040 µM) displaying high microsomal metabolic stability (HLM CLint < 11.6 µL·min-1·mg-1) and > 1000-fold higher selectivity over hERG compared to AST. In addition to asexual blood stage activity, the compound also shows activity against liver and gametocyte life cycle stages and demonstrates in vivo efficacy in Plasmodium berghei-infected mice at 4 × 50 mg·kg-1 oral dose. Preliminary interrogation of the mode of action using live-cell microscopy and cellular heme speciation revealed that 23 could be affecting multiple processes in the parasitic digestive vacuole, with the possibility of a novel target at play in the organelles associated with it.


Asunto(s)
Antimaláricos , Malaria , Ratones , Animales , Plasmodium berghei , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Astemizol/farmacología , Astemizol/uso terapéutico , Plasmodium falciparum/metabolismo , Malaria/tratamiento farmacológico , Malaria/parasitología , Modelos Animales de Enfermedad
15.
Front Pediatr ; 10: 881470, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35652053

RESUMEN

Cystic fibrosis is the most common life-limiting recessive genetic disorder in Caucasian populations, characterized by the involvement of exocrine glands, causing multisystemic comorbidities. Since the first descriptions of pancreatic and pulmonary involvement in children, technological development and basic science research have allowed great advances in the diagnosis and treatment of cystic fibrosis. The great search for treatments that acted at the genetic level, despite not having found a cure for this disease, culminated in the creation of CFTR modulators, highly effective medications for certain groups of patients. However, there are still many obstacles behind the treatment of the disease to be discussed, given the wide variety of mutations and phenotypes involved and the difficulty of access that permeate these new therapies around the world.

16.
Nanomaterials (Basel) ; 12(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35407191

RESUMEN

Curcumin (CUR) and quercetin (QU) are potential compounds for treatment of brain diseases such as neurodegenerative diseases (ND) because of their anti-inflammatory and antioxidant properties. However, low water solubility and poor bioavailability hinder their clinical use. In this context, nanotechnology arises as a strategy to overcome biopharmaceutical issues. In this work, we develop, characterize, compare, and optimize three different omega-3 (ω-3) fatty acids nanoemulsions (NEs) loaded with CUR and QU (negative, cationic, gelling) prepared by two different methods for administration by intranasal route (IN). The results showed that formulations prepared with the two proposed methods exhibited good stability and were able to incorporate a similar amount of CUR and QU. On the other side, differences in size, zeta potential, in vitro release kinetics, and permeation/retention test were observed. Considering the two preparation methods tested, high-pressure homogenization (HPH) shows advantages, and the CQ NE- obtained demonstrated potential for sustained release. Toxicity studies demonstrated that the formulations were not toxic for Caenorhabditis elegans. The developed ω-3 fatty acid NEs have shown a range of interesting properties for the treatment of brain diseases, since they have the potential to increase the nose-to-brain permeation of CUR and QU, enabling enhanced treatments efficiency.

17.
Vascul Pharmacol ; 142: 106946, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34838735

RESUMEN

BACKGROUND AND PURPOSE: Mitochondria play a central role in the host response to viral infection and immunity, being key to antiviral signaling and exacerbating inflammatory processes. Mitochondria and Toll-like receptor (TLR) have been suggested as potential targets in SARS-CoV-2 infection. However, the involvement of TLR9 in SARS-Cov-2-induced endothelial dysfunction and potential contribution to cardiovascular complications in COVID-19 have not been demonstrated. This study determined whether infection of endothelial cells by SARS-CoV-2 affects mitochondrial function and induces mitochondrial DNA (mtDNA) release. We also questioned whether TLR9 signaling mediates the inflammatory responses induced by SARS-CoV-2 in endothelial cells. EXPERIMENTAL APPROACH: Human umbilical vein endothelial cells (HUVECs) were infected by SARS-CoV-2 and immunofluorescence was used to confirm the infection. Mitochondrial function was analyzed by specific probes and mtDNA levels by real-time polymerase chain reaction (RT-PCR). Inflammatory markers were measured by ELISA, protein expression by western blot, intracellular calcium (Ca2+) by FLUOR-4, and vascular reactivity with a myography. KEY RESULTS: SARS-CoV-2 infected HUVECs, which express ACE2 and TMPRSS2 proteins, and promoted mitochondrial dysfunction, i.e. it increased mitochondria-derived superoxide anion, mitochondrial membrane potential, and mtDNA release, leading to activation of TLR9 and NF-kB, and release of cytokines. SARS-CoV-2 also decreased nitric oxide synthase (eNOS) expression and inhibited Ca2+ responses in endothelial cells. TLR9 blockade reduced SARS-CoV-2-induced IL-6 release and prevented decreased eNOS expression. mtDNA increased vascular reactivity to endothelin-1 (ET-1) in arteries from wild type, but not TLR9 knockout mice. These events were recapitulated in serum samples from COVID-19 patients, that exhibited increased levels of mtDNA compared to sex- and age-matched healthy subjects and patients with comorbidities. CONCLUSION AND APPLICATIONS: SARS-CoV-2 infection impairs mitochondrial function and activates TLR9 signaling in endothelial cells. TLR9 triggers inflammatory responses that lead to endothelial cell dysfunction, potentially contributing to the severity of symptoms in COVID-19. Targeting mitochondrial metabolic pathways may help to define novel therapeutic strategies for COVID-19.


Asunto(s)
COVID-19 , ADN Mitocondrial , Animales , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Células Endoteliales/metabolismo , Humanos , Ratones , Mitocondrias/metabolismo , SARS-CoV-2 , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo
18.
Front Aging ; 2: 727604, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35821995

RESUMEN

Increasing scientific interest has been directed to sex as a biological and decisive factor on several diseases. Several different mechanisms orchestrate vascular function, as well as vascular dysfunction in cardiovascular and metabolic diseases in males and females. Certain vascular sex differences are present throughout life, while others are more evident before the menopause, suggesting two important and correlated drivers: genetic and hormonal factors. With the increasing life expectancy and aging population, studies on aging-related diseases and aging-related physiological changes have steeply grown and, with them, the use of aging animal models. Mouse and rat models of aging, the most studied laboratory animals in aging research, exhibit sex differences in many systems and physiological functions, as well as sex differences in the aging process and aging-associated cardiovascular changes. In the present review, we introduce the most common aging and senescence-accelerated animal models and emphasize that sex is a biological variable that should be considered in aging studies. Sex differences in the cardiovascular system, with a focus on sex differences in aging-associated vascular alterations (endothelial dysfunction, remodeling and oxidative and inflammatory processes) in these animal models are reviewed and discussed.

19.
Free Radic Biol Med ; 162: 615-635, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33248264

RESUMEN

Reactive oxygen and nitrogen species are produced in a wide range of physiological reactions that, at low concentrations, play essential roles in living organisms. There is a delicate equilibrium between formation and degradation of these mediators in a healthy vascular system, which contributes to maintaining these species under non-pathological levels to preserve normal vascular functions. Antioxidants scavenge reactive oxygen and nitrogen species to prevent or reduce damage caused by excessive oxidation. However, an excessive reductive environment induced by exogenous antioxidants may disrupt redox balance and lead to vascular pathology. This review summarizes the main aspects of free radical biochemistry (formation, sources and elimination) and the crucial actions of some of the most biologically relevant and well-characterized reactive oxygen and nitrogen species (hydrogen peroxide, superoxide anion and nitric oxide) in the physiological regulation of vascular function, structure and angiogenesis. Furthermore, current preclinical and clinical evidence is discussed on how excessive removal of these crucial responses by exogenous antioxidants (vitamins and related compounds, polyphenols) may perturb vascular homeostasis. The aim of this review is to provide information of the crucial physiological roles of oxidation in the endothelium, vascular smooth muscle cells and perivascular adipose tissue for developing safer and more effective vascular interventions with antioxidants.


Asunto(s)
Óxido Nítrico , Superóxidos , Antioxidantes/farmacología , Homeostasis , Peróxido de Hidrógeno , Oxidación-Reducción , Especies Reactivas de Oxígeno
20.
Neurotox Res ; 39(3): 787-799, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33860897

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor dysfunction. Recent studies have shown that curcumin (CUR) has neuroprotective effects in PD experimental models. However, its efficacy is limited due to low water solubility, bioavailability, and access to the central nervous system. In this study, we compared the effects of new curcumin-loaded nanoemulsions (NC) and free CUR in an experimental model of PD. Adult Swiss mice received NC or CUR (25 and 50 mg/kg) or vehicle orally for 30 days. Starting on the eighth day, they were administered rotenone (1 mg/kg) intraperitoneally until the 30th day. At the end of the treatment, motor assessment was evaluated by open field, pole test, and beam walking tests. Oxidative stress markers and mitochondrial complex I activity were measured in the brain tissue. Both NC and CUR treatment significantly improved motor impairment, reduced lipoperoxidation, modified antioxidant defenses, and prevented inhibition of complex I. However, NC was more effective in preventing motor impairment and inhibition of complex I when compared to CUR in the free form. In conclusion, our results suggest that NC effectively enhances the neuroprotective potential of CUR and is a promising nanomedical application for PD.


Asunto(s)
Curcumina/administración & dosificación , Emulsiones/administración & dosificación , Nanopartículas/administración & dosificación , Fármacos Neuroprotectores/administración & dosificación , Trastornos Parkinsonianos/prevención & control , Rotenona/toxicidad , Animales , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/química , Curcumina/química , Emulsiones/química , Masculino , Ratones , Nanopartículas/química , Fármacos Neuroprotectores/química , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA