Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 331
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Ann Neurol ; 94(4): 745-761, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37341588

RESUMEN

OBJECTIVE: Temporal lobe epilepsy (TLE) is characterized by recurrent seizures generated in the limbic system, particularly in the hippocampus. In TLE, recurrent mossy fiber sprouting from dentate gyrus granule cells (DGCs) crea an aberrant epileptogenic network between DGCs which operates via ectopically expressed GluK2/GluK5-containing kainate receptors (KARs). TLE patients are often resistant to anti-seizure medications and suffer significant comorbidities; hence, there is an urgent need for novel therapies. Previously, we have shown that GluK2 knockout mice are protected from seizures. This study aims at providing evidence that downregulating KARs in the hippocampus using gene therapy reduces chronic epileptic discharges in TLE. METHODS: We combined molecular biology and electrophysiology in rodent models of TLE and in hippocampal slices surgically resected from patients with drug-resistant TLE. RESULTS: Here, we confirmed the translational potential of KAR suppression using a non-selective KAR antagonist that markedly attenuated interictal-like epileptiform discharges (IEDs) in TLE patient-derived hippocampal slices. An adeno-associated virus (AAV) serotype-9 vector expressing anti-grik2 miRNA was engineered to specifically downregulate GluK2 expression. Direct delivery of AAV9-anti grik2 miRNA into the hippocampus of TLE mice led to a marked reduction in seizure activity. Transduction of TLE patient hippocampal slices reduced levels of GluK2 protein and, most importantly, significantly reduced IEDs. INTERPRETATION: Our gene silencing strategy to knock down aberrant GluK2 expression demonstrates inhibition of chronic seizure in a mouse TLE model and IEDs in cultured slices derived from TLE patients. These results provide proof-of-concept for a gene therapy approach targeting GluK2 KARs for drug-resistant TLE patients. ANN NEUROL 2023;94:745-761.


Asunto(s)
Epilepsia Refractaria , Epilepsia del Lóbulo Temporal , MicroARNs , Humanos , Ratones , Animales , Epilepsia del Lóbulo Temporal/terapia , Lóbulo Temporal , Hipocampo , Epilepsia Refractaria/genética , Epilepsia Refractaria/terapia , Convulsiones
2.
Epilepsia ; 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39474858

RESUMEN

OBJECTIVE: For the pre-surgical evaluation of patients with drug-resistant focal epilepsy, stereo-electroencephalographic (SEEG) signals are routinely recorded to identify the epileptogenic zone network (EZN). This network consists of remote brain regions involved in seizure initiation. However, the pathophysiological mechanisms underlying typical SEEG patterns that occur during the transition from interictal to ictal activity in distant brain nodes of the EZN remain poorly understood. The primary aim is to identify and explain these mechanisms using a novel physiologically-plausible model of the EZN. METHODS: We analyzed SEEG signals recorded from the EZN in 10 patients during the transition from interictal to ictal activity. This transition consisted of a sequence of periods during which SEEG signals from distant neocortical regions showed stereotypical patterns of activity: sustained preictal spiking activity preceding a fast activity occurring at seizure onset, followed by the ictal activity. Spectral content and non-linear correlation of SEEG signals were analyzed. In addition, we developed a novel neuro-inspired computational model consisting of bidirectionally coupled neuronal populations. RESULTS: The proposed model captured the essential characteristics of the patient signals, including the quasi-synchronous onset of rapid discharges in distant interconnected epileptogenic zones. Statistical analysis confirmed the dynamic correlation/de-decorrelation pattern observed in the patient signals and accurately reproduced in the simulated signals. SIGNIFICANCE: This study provides insight into the abnormal dynamic changes in glutamatergic and γ-aminobutyric acid (GABA)ergic synaptic transmission that occur during the transition to seizures. The results strongly support the hypothesis that bidirectional connections between distant neuronal populations of the EZN (from pyramidal cells to vaso-intestinal peptide-positive interneurons) play a key role in this transition, while parvalbumin-positive interneurons intervene in the emergence of rapid discharges at seizure onset.

3.
Epilepsia ; 65(4): e47-e54, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38345420

RESUMEN

Nodular heterotopia (NH)-related drug-resistant epilepsy is challenging due to the deep location of the NH and the complexity of the underlying epileptogenic network. Using ictal stereo-electroencephalography (SEEG) and functional connectivity (FC) analyses in 14 patients with NH-related drug-resistant epilepsy, we aimed to determine the leading structure during seizures. For this purpose, we compared node IN and OUT strength between bipolar channels inside the heterotopia and inside gray matter, at the group level and at the individual level. At seizure onset, the channels within NH belonging to the epileptogenic and/or propagation network showed higher node OUT-strength than the channels within the gray matter (p = .03), with higher node OUT-strength than node IN-strength (p = .03). These results are in favor of a "leading" role of NH during seizure onset when involved in the epileptogenic- or propagation-zone network (50% of patients). However, when looking at the individual level, no significant difference between NH and gray matter was found, except for one patient (in two of three seizures). This result confirms the heterogeneity and the complexity of the epileptogenic network organization in NH and the need for SEEG exploration to characterize more precisely patient-specific epileptogenic network organization.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Heterotopia Nodular Periventricular , Humanos , Heterotopia Nodular Periventricular/complicaciones , Heterotopia Nodular Periventricular/diagnóstico por imagen , Epilepsia/diagnóstico por imagen , Convulsiones , Electroencefalografía/métodos , Corteza Cerebral , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/cirugía
4.
Epilepsia ; 65(6): 1744-1755, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38491955

RESUMEN

OBJECTIVE: We have developed a novel method for estimating brain tissue electrical conductivity using low-intensity pulse stereoelectroencephalography (SEEG) stimulation coupled with biophysical modeling. We evaluated the hypothesis that brain conductivity is correlated with the degree of epileptogenicity in patients with drug-resistant focal epilepsy. METHODS: We used bipolar low-intensity biphasic pulse stimulation (.2 mA) followed by a postprocessing pipeline for estimating brain conductivity. This processing is based on biophysical modeling of the electrical potential induced in brain tissue between the stimulated contacts in response to pulse stimulation. We estimated the degree of epileptogenicity using a semi-automatic method quantifying the dynamic of fast discharge at seizure onset: the epileptogenicity index (EI). We also investigated how the location of stimulation within specific anatomical brain regions or within lesional tissue impacts brain conductivity. RESULTS: We performed 1034 stimulations of 511 bipolar channels in 16 patients. We found that brain conductivity was lower in the epileptogenic zone (EZ; unpaired median difference = .064, p < .001) and inversely correlated with the epileptogenic index value (p < .001, Spearman rho = -.32). Conductivity values were also influenced by anatomical site, location within lesion, and delay between SEEG electrode implantation and stimulation, and had significant interpatient variability. Mixed model multivariate analysis showed that conductivity is significantly associated with EI (F = 13.45, p < .001), anatomical regions (F = 5.586, p < .001), delay since implantation (F = 14.71, p = .003), and age at SEEG (F = 6.591, p = .027), but not with the type of lesion (F = .372, p = .773) or the delay since last seizure (F = 1.592, p = .235). SIGNIFICANCE: We provide a novel model-based method for estimating brain conductivity from SEEG low-intensity pulse stimulations. The brain tissue conductivity is lower in EZ as compared to non-EZ. Conductivity also varies significantly across anatomical brain regions. Involved pathophysiological processes may include changes in the extracellular space (especially volume or tortuosity) in epileptic tissue.


Asunto(s)
Encéfalo , Conductividad Eléctrica , Electroencefalografía , Epilepsias Parciales , Humanos , Epilepsias Parciales/fisiopatología , Electroencefalografía/métodos , Masculino , Femenino , Adulto , Encéfalo/fisiopatología , Adulto Joven , Epilepsia Refractaria/fisiopatología , Persona de Mediana Edad , Adolescente , Modelos Neurológicos , Técnicas Estereotáxicas , Estimulación Eléctrica/métodos
5.
Epilepsia ; 65(2): 389-401, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38041564

RESUMEN

OBJECTIVE: Quantification of the epileptogenic zone network (EZN) most frequently implies analysis of seizure onset. However, important information can also be obtained from the postictal period, characterized by prominent changes in the EZN. We used permutation entropy (PE), a measure of signal complexity, to analyze the peri-ictal stereoelectroencephalography (SEEG) signal changes with emphasis on the postictal state. We sought to determine the best PE-derived parameter (PEDP) for identifying the EZN. METHODS: Several PEDPs were computed retrospectively on SEEG-recorded seizures of 86 patients operated on for drug-resistant epilepsy: mean baseline preictal entropy, minimum ictal entropy, maximum postictal entropy, the ratio between the maximum postictal and the minimum ictal entropy, and the ratio between the maximum postictal and the baseline preictal entropy. The performance of each biomarker was assessed by comparing the identified epileptogenic contacts or brain regions against the EZN defined by clinical analysis incorporating the Epileptogenicity Index and the connectivity epileptogenicity index methods (EZNc), using the receiver-operating characteristic and precision-recall. RESULTS: The ratio between the maximum postictal and the minimum ictal entropy (defined as the Permutation Entropy Index [PEI]) proved to be the best-performing PEDP to identify the EZNC . It demonstrated the highest area under the curve (AUC) and F1 score at the contact level (AUC 0.72; F1 0.39) and at the region level (AUC 0.78; F1 0.47). PEI values gradually decreased between the EZN, the propagation network, and the non-involved regions. PEI showed higher performance in patients with slow seizure-onset patterns than in those with fast seizure-onset patterns. The percentage of resected epileptogenic regions defined by PEI was significantly correlated with surgical outcome. SIGNIFICANCE: PEI is a promising tool to improve the delineation of the EZN. PEI combines ease and robustness in a routine clinical setting with high sensitivity for seizures without fast activity at seizure onset.


Asunto(s)
Encéfalo , Electroencefalografía , Humanos , Electroencefalografía/métodos , Estudios Retrospectivos , Entropía , Encéfalo/diagnóstico por imagen , Convulsiones
6.
Epilepsia ; 65(5): 1346-1359, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38420750

RESUMEN

OBJECTIVE: This study was undertaken to develop a standardized grading system based on expert consensus for evaluating the level of confidence in the localization of the epileptogenic zone (EZ) as reported in published studies, to harmonize and facilitate systematic reviews in the field of epilepsy surgery. METHODS: We conducted a Delphi study involving 22 experts from 18 countries, who were asked to rate their level of confidence in the localization of the EZ for various theoretical clinical scenarios, using different scales. Information provided in these scenarios included one or several of the following data: magnetic resonance imaging (MRI) findings, invasive electroencephalography summary, and postoperative seizure outcome. RESULTS: The first explorative phase showed an overall interrater agreement of .347, pointing to large heterogeneity among experts' assessments, with only 17% of the 42 proposed scenarios associated with a substantial level of agreement. A majority showed preferences for the simpler scale and single-item scenarios. The successive Delphi voting phases resulted in a majority consensus across experts, with more than two thirds of respondents agreeing on the rating of each of the tested single-item scenarios. High or very high levels of confidence were ascribed to patients with either an Engel class I or class IA postoperative seizure outcome, a well-delineated EZ according to all available invasive EEG (iEEG) data, or a well-delineated focal epileptogenic lesion on MRI. MRI signs of hippocampal sclerosis or atrophy were associated with a moderate level of confidence, whereas a low level was ascribed to other MRI findings, a poorly delineated EZ according to iEEG data, or an Engel class II-IV postoperative seizure outcome. SIGNIFICANCE: The proposed grading system, based on an expert consensus, provides a simple framework to rate the level of confidence in the EZ reported in published studies in a structured and harmonized way, offering an opportunity to facilitate and increase the quality of systematic reviews and guidelines in the field of epilepsy surgery.


Asunto(s)
Consenso , Técnica Delphi , Electroencefalografía , Epilepsia , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/normas , Epilepsia/cirugía , Epilepsia/diagnóstico por imagen , Epilepsia/diagnóstico
7.
Brain ; 146(8): 3404-3415, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36852571

RESUMEN

Focal cortical dysplasia (FCD) type II is a highly epileptogenic developmental malformation and a common cause of surgically treated drug-resistant epilepsy. While clinical observations suggest frequent occurrence in the frontal lobe, mechanisms for such propensity remain unexplored. Here, we hypothesized that cortex-wide spatial associations of FCD distribution with cortical cytoarchitecture, gene expression and organizational axes may offer complementary insights into processes that predispose given cortical regions to harbour FCD. We mapped the cortex-wide MRI distribution of FCDs in 337 patients collected from 13 sites worldwide. We then determined its associations with (i) cytoarchitectural features using histological atlases by Von Economo and Koskinas and BigBrain; (ii) whole-brain gene expression and spatiotemporal dynamics from prenatal to adulthood stages using the Allen Human Brain Atlas and PsychENCODE BrainSpan; and (iii) macroscale developmental axes of cortical organization. FCD lesions were preferentially located in the prefrontal and fronto-limbic cortices typified by low neuron density, large soma and thick grey matter. Transcriptomic associations with FCD distribution uncovered a prenatal component related to neuroglial proliferation and differentiation, likely accounting for the dysplastic makeup, and a postnatal component related to synaptogenesis and circuit organization, possibly contributing to circuit-level hyperexcitability. FCD distribution showed a strong association with the anterior region of the antero-posterior axis derived from heritability analysis of interregional structural covariance of cortical thickness, but not with structural and functional hierarchical axes. Reliability of all results was confirmed through resampling techniques. Multimodal associations with cytoarchitecture, gene expression and axes of cortical organization indicate that prenatal neurogenesis and postnatal synaptogenesis may be key points of developmental vulnerability of the frontal lobe to FCD. Concordant with a causal role of atypical neuroglial proliferation and growth, our results indicate that FCD-vulnerable cortices display properties indicative of earlier termination of neurogenesis and initiation of cell growth. They also suggest a potential contribution of aberrant postnatal synaptogenesis and circuit development to FCD epileptogenicity.


Asunto(s)
Displasia Cortical Focal , Malformaciones del Desarrollo Cortical , Humanos , Reproducibilidad de los Resultados , Malformaciones del Desarrollo Cortical/diagnóstico por imagen , Malformaciones del Desarrollo Cortical/genética , Malformaciones del Desarrollo Cortical/patología , Encéfalo/patología , Imagen por Resonancia Magnética/métodos
8.
Epilepsy Behav ; 158: 109911, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38924969

RESUMEN

Psychotic manifestations are a classic feature of non-convulsive status epilepticus (NCSE) of temporal origin. For several decades now, the various psychiatric manifestations of NCSE have been described, and in particular, the diagnostic challenges they pose. However, studies using stereotactic-EEG (SEEG) recordings are very rare. Only a few cases have been reported, but they demonstrated the anatomical substrate of certain manifestations, including hallucinations, delusions, and emotional changes. The post-ictal origin of some of the manifestations should be emphasized. More generally, SEEG has shown that seizures affecting the temporal and frontal limbic systems can lead to intense emotional experiences and behavioural disturbances.


Asunto(s)
Electroencefalografía , Trastornos Psicóticos , Estado Epiléptico , Humanos , Trastornos Psicóticos/diagnóstico , Trastornos Psicóticos/etiología , Trastornos Psicóticos/fisiopatología , Estado Epiléptico/diagnóstico , Estado Epiléptico/fisiopatología , Estado Epiléptico/psicología , Estado Epiléptico/etiología , Técnicas Estereotáxicas
9.
Epilepsy Behav ; 156: 109806, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38677102

RESUMEN

SEEG-guided radiofrequency thermocoagulation (RF-TC) in the epileptogenic regions is a therapeutic option for patients with drug-resistant focal epilepsy who may have or not indication for epilepsy surgery. The most common adverse events of RF-TC are seizures, headaches, somatic pain, and sensory-motor deficits. If RF-TC could lead to psychiatric complications is unknown. In the present study, seven out of 164 patients (4.2 %) experienced psychiatric decompensation with or without memory deterioration after RF-TC of bilateral or unilateral amygdala and hippocampus. The appearance of symptoms was either acute, subacute, or chronic and the symptoms were either transient or lasted for several months. Common features among these patients were female sex, mesial temporal epilepsy, and a pre-existing history of psychological distress and memory dysfunction. Our study highlights the possibility of neuropsychiatric deterioration in specific patients following SEEG-guided RF-TC, despite its rarity.


Asunto(s)
Epilepsia Refractaria , Electrocoagulación , Humanos , Femenino , Masculino , Epilepsia Refractaria/cirugía , Epilepsia Refractaria/psicología , Adulto , Persona de Mediana Edad , Adulto Joven , Electrocoagulación/efectos adversos , Electrocoagulación/métodos , Trastornos Mentales/etiología , Trastornos Mentales/psicología , Electroencefalografía , Adolescente , Electrocorticografía , Hipocampo , Epilepsias Parciales/cirugía , Epilepsias Parciales/psicología , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/psicología , Estudios Retrospectivos , Amígdala del Cerebelo/cirugía
10.
Neuroimage ; 265: 119806, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36513288

RESUMEN

Magnetoencephalography (MEG) is a powerful tool for estimating brain connectivity with both good spatial and temporal resolution. It is particularly helpful in epilepsy to characterize non-invasively the epileptic networks. However, using MEG to map brain networks requires solving a difficult inverse problem that introduces uncertainty in the activity localization and connectivity measures. Our goal here was to compare independent component analysis (ICA) followed by dipole source localization and the linearly constrained minimum-variance beamformer (LCMV-BF) for characterizing regions with interictal epileptic activity and their dynamic connectivity. After a simulation study, we compared ICA and LCMV-BF results with intracerebral EEG (stereotaxic EEG, SEEG) recorded simultaneously in 8 epileptic patients, which provide a unique 'ground truth' to which non-invasive results can be confronted. We compared the signal time courses extracted applying ICA and LCMV-BF on MEG data to that of SEEG, both for the actual signals and the dynamic connectivity computed using cross-correlation (evolution of links in time). With our simulations, we illustrated the different effect of the temporal and spatial correlation among sources on the two methods. While ICA was more affected by the temporal correlation but robust against spatial configurations, LCMV-BF showed opposite behavior. Moreover, ICA seems more suited to retrieve the simulated networks. In case of real patient data, good MEG/SEEG correlation and good localization were obtained in 6 out of 8 patients. In 4 of them ICA had the best performance (higher correlation, lower localization distance). In terms of dynamic connectivity, the evolution in time of the cross-correlation links could be retrieved in 5 patients out of 6, however, with more variable results in terms of correlation and distance. In two patients LCMV-BF had better results than ICA. In one patient the two methods showed equally good outcomes, and in the remaining two patients ICA performed best. In conclusion, our results obtained by exploiting simultaneous MEG/SEEG recordings suggest that ICA and LCMV-BF have complementary qualities for retrieving the dynamics of interictal sources and their network interactions.


Asunto(s)
Epilepsia , Magnetoencefalografía , Humanos , Magnetoencefalografía/métodos , Encéfalo , Electroencefalografía/métodos , Mapeo Encefálico/métodos
11.
Hum Brain Mapp ; 44(7): 2936-2959, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36852645

RESUMEN

An increasing amount of recent research has focused on the multisensory and neural bases of the bodily self. This pre-reflective form of self is considered as multifaceted, incorporating phenomenal components, such as self location, body ownership, first-person perspective, agency, and the perceptual body image. Direct electrical brain stimulation (EBS) during presurgical evaluation of epilepsy and brain tumor resection is a unique method to causally relate specific brain areas to the various phenomenal components of the bodily self. We conducted a systematic review of the literature describing altered phenomenal experience of the bodily self evoked by EBS. We included 42 articles and analyzed self reports from 221 patients. Three-dimensional density maps of EBS revealed that stimulation in the middle cingulum, inferior parietal lobule, supplementary motor area, posterior insula, hippocampal complex/amygdala, and precuneus most consistently altered one or several components of the bodily self. In addition, we found that only EBS in the parietal cortex induced disturbances of all five components of the bodily self considered in this review article. These findings inform current neuroscientific models of the bodily self.


Asunto(s)
Imagen Corporal , Encéfalo , Humanos , Encéfalo/fisiología , Lóbulo Parietal/fisiología , Técnicas Estereotáxicas , Estimulación Eléctrica
12.
Hum Brain Mapp ; 44(13): 4754-4771, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37436095

RESUMEN

Focal epilepsy is characterized by repeated spontaneous seizures that originate from cortical epileptogenic zone networks (EZN). Analysis of intracerebral recordings showed that subcortical structures, and in particular the thalamus, play an important role in seizure dynamics as well, supporting their structural alterations reported in the neuroimaging literature. Nonetheless, between-patient differences in EZN localization (e.g., temporal vs. non-temporal lobe epilepsy) as well as extension (i.e., number of epileptogenic regions) might impact the magnitude as well as spatial distribution of subcortical structural changes. Here we used 7 Tesla MRI T1 data to provide an unprecedented description of subcortical morphological (volume, tissue deformation, and shape) and longitudinal relaxation (T1 ) changes in focal epilepsy patients and evaluate the impact of the EZN and other patient-specific clinical features. Our results showed variable levels of atrophy across thalamic nuclei that appeared most prominent in the temporal lobe epilepsy group and the side ipsilateral to the EZN, while shortening of T1 was especially observed for the lateral thalamus. Multivariate analyses across thalamic nuclei and basal ganglia showed that volume acted as the dominant discriminator between patients and controls, while (posterolateral) thalamic T1 measures looked promising to further differentiate patients based on EZN localization. In particular, the observed differences in T1 changes between thalamic nuclei indicated differential involvement based on EZN localization. Finally, EZN extension was found to best explain the observed variability between patients. To conclude, this work revealed multi-scale subcortical alterations in focal epilepsy as well as their dependence on several clinical characteristics.


Asunto(s)
Epilepsias Parciales , Epilepsia del Lóbulo Temporal , Humanos , Epilepsias Parciales/diagnóstico por imagen , Ganglios Basales/diagnóstico por imagen , Convulsiones , Tálamo/diagnóstico por imagen , Imagen por Resonancia Magnética
13.
Hum Brain Mapp ; 44(2): 825-840, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36217746

RESUMEN

Whole brain ionic and metabolic imaging has potential as a powerful tool for the characterization of brain diseases. We combined sodium MRI (23 Na MRI) and 1 H-MR Spectroscopic Imaging (1 H-MRSI), assessing changes within epileptogenic networks in comparison with electrophysiologically normal networks as defined by stereotactic EEG (SEEG) recordings analysis. We applied a multi-echo density adapted 3D projection reconstruction pulse sequence at 7 T (23 Na-MRI) and a 3D echo-planar spectroscopic imaging sequence at 3 T (1 H-MRSI) in 19 patients suffering from drug-resistant focal epilepsy who underwent presurgical SEEG. We investigated 23 Na MRI parameters including total sodium concentration (TSC) and the sodium signal fraction associated with the short component of T2 * decay (f), alongside the level of metabolites N-acetyl aspartate (NAA), choline compounds (Cho), and total creatine (tCr). All measures were extracted from spherical regions of interest (ROIs) centered between two adjacent SEEG electrode contacts and z-scored against the same ROI in controls. Group comparison showed a significant increase in f only in the epileptogenic zone (EZ) compared to controls and compared to patients' propagation zone (PZ) and non-involved zone (NIZ). TSC was significantly increased in all patients' regions compared to controls. Conversely, NAA levels were significantly lower in patients compared to controls, and lower in the EZ compared to PZ and NIZ. Multiple regression analyzing the relationship between sodium and metabolites levels revealed significant relations in PZ and in NIZ but not in EZ. Our results are in agreement with the energetic failure hypothesis in epileptic regions associated with widespread tissue reorganization.


Asunto(s)
Epilepsia , Protones , Humanos , Imagen por Resonancia Magnética/métodos , Electroencefalografía/métodos , Epilepsia/diagnóstico por imagen , Epilepsia/cirugía , Epilepsia/metabolismo , Sodio/metabolismo
14.
Ann Neurol ; 92(6): 1052-1065, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36054730

RESUMEN

OBJECTIVE: This study was undertaken to characterize clinical expression and intracerebral electroencephalographic (EEG) correlates of emotional expression during prefrontal epileptic seizures. METHODS: We performed a descriptive analysis of seizure semiology in patients explored with stereo-EEG (SEEG) for pharmacoresistant prefrontal epilepsy, using a semiquantitative score for seizure-related emotional behavior. Two independent observers scored occurrence and intensity of objective emotional features (face/body movements/vocalization/overall appearance), testing interobserver reliability. Intracerebral electrophysiological changes were documented. Cluster analysis and principal component analysis (PCA) compared behavioral signs with neural SEEG correlates. For each patient, the clinical and anatomoelectrophysiological scores were established, based on a prototypical emotional seizure. RESULTS: Forty-two patients (469 seizures) were included. Interobserver correlation for emotional signs was satisfactory (kappa = 0.6-0.8). Prevalence of any subjective and/or objective ictal emotional phenomena was 79% (33/42); objective emotional signs occurred in 27 of 42 subjects (64%). Negatively valenced emotional semiology (ictal feeling of fear, defensive and/or aggressive behaviors) was much more prevalent than positively valenced, prosocial behaviors. Cluster analysis and PCA identified 4 groups with different occurrence of emotional signs and cerebral correlates. Two main clusters of negatively valenced behavior were identified: "active threat response," associated with seizure organizations involving posterior orbitofrontal cortex, anterior cingulate, and dorsolateral and/or ventrolateral prefrontal cortex; and "passive fear," associated with amygdala, other mesial temporal structures, and posterior orbitofrontal cortex. INTERPRETATION: Emotional behaviors, especially fear/threat response, are common in prefrontal seizures, reflecting the role of the prefrontal cortex in emotional control. Different cortical seizure localizations were associated with "passive fear" and "active threat response" seizure behaviors at the group level. ANN NEUROL 2022;92:1052-1065.


Asunto(s)
Epilepsias Parciales , Epilepsia , Humanos , Reproducibilidad de los Resultados , Convulsiones/diagnóstico , Electroencefalografía
15.
Epilepsia ; 64(6): 1582-1593, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37032394

RESUMEN

OBJECTIVE: Stereoelectroencephalography-guided radiofrequency thermocoagulation (SEEG-guided RF-TC) aims to reduce seizure frequency by modifying epileptogenic networks through local thermocoagulative lesions. Although RF-TC is hypothesized to functionally modify brain networks, reports of changes in functional connectivity (FC) following the procedure are missing. We evaluated, by means of SEEG recordings, whether variation in brain activity after RF-TC is related to clinical outcome. METHODS: Interictal SEEG recordings from 33 patients with drug-resistant epilepsy (DRE) were analyzed. Therapeutic response was defined as a >50% reduction in seizure frequency for at least 1 month following RF-TC. Local (power spectral density [PSD]) and FC changes were evaluated in 3-min segments recorded shortly before (baseline), shortly after, and 15 min after RF-TC. The PSD and FC strength values after thermocoagulation were compared with baseline as well as between the responder and nonresponder groups. RESULTS: In responders, we found a significant reduction in PSD after RF-TC in channels that were thermocoagulated for all frequency bands (p = .007 for broad, delta and theta, p <.001 for alpha and beta bands). However, we did not observe such PSD decrease in nonresponders. At the network level, nonresponders displayed a significant FC increase in all frequency bands except theta (broad, delta, beta band: p <.001; alpha band: p <.01), although responders showed a significant FC decrease in delta (p <.001) and alpha bands (p <.05). Nonresponders showed stronger FC changes with respect to responders exclusively in TC channels (broad, alpha, theta, beta: p >.05; delta: p = .001). SIGNIFICANCE: Thermocoagulation induces both local and network-related (FC) changes in electrical brain activity of patients with DRE lasting for at least 15 min. This study demonstrates that the observed short-term modifications in brain network and local activity significantly differ between responders and nonresponders and opens new perspectives for studying the longer-lasting FC changes after RF-TC.


Asunto(s)
Epilepsia Refractaria , Electroencefalografía , Humanos , Electroencefalografía/métodos , Resultado del Tratamiento , Epilepsia Refractaria/cirugía , Convulsiones , Encéfalo/diagnóstico por imagen , Encéfalo/cirugía , Técnicas Estereotáxicas , Electrocoagulación/métodos
16.
Epilepsia ; 64 Suppl 3: S49-S61, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37194746

RESUMEN

Direct cortical stimulation has been applied in epilepsy for nearly a century and has experienced a renaissance, given unprecedented opportunities to probe, excite, and inhibit the human brain. Evidence suggests stimulation can increase diagnostic and therapeutic utility in patients with drug-resistant epilepsies. However, choosing appropriate stimulation parameters is not a trivial issue, and is further complicated by epilepsy being characterized by complex brain state dynamics. In this article derived from discussions at the ICTALS 2022 Conference (International Conference on Technology and Analysis for Seizures), we succinctly review the literature on cortical stimulation applied acutely and chronically to the epileptic brain for localization, monitoring, and therapeutic purposes. In particular, we discuss how stimulation is used to probe brain excitability, discuss evidence on the usefulness of stimulation to trigger and stop seizures, review therapeutic applications of stimulation, and finally discuss how stimulation parameters are impacted by brain dynamics. Although research has advanced considerably over the past decade, there are still significant hurdles to optimizing use of this technique. For example, it remains unclear to what extent short timescale diagnostic biomarkers can predict long-term outcomes and to what extent these biomarkers add information to already existing biomarkers from passive electroencephalographic recordings. Further questions include the extent to which closed loop stimulation offers advantages over open loop stimulation, what the optimal closed loop timescales may be, and whether biomarker-informed stimulation can lead to seizure freedom. The ultimate goal of bioelectronic medicine remains not just to stop seizures but rather to cure epilepsy and its comorbidities.


Asunto(s)
Estimulación Encefálica Profunda , Epilepsia Refractaria , Epilepsia , Humanos , Epilepsia/diagnóstico , Epilepsia/terapia , Encéfalo , Convulsiones/terapia , Epilepsia Refractaria/diagnóstico , Epilepsia Refractaria/terapia , Estimulación Encefálica Profunda/métodos , Biomarcadores
17.
Epilepsia ; 64(8): 2027-2043, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37199673

RESUMEN

OBJECTIVE: We studied the rate dynamics of interictal events occurring over fast-ultradian time scales, as commonly examined in clinics to guide surgical planning in epilepsy. METHODS: Stereo-electroencephalography (SEEG) traces of 35 patients with good surgical outcome (Engel I) were analyzed. For this we developed a general data mining method aimed at clustering the plethora of transient waveform shapes including interictal epileptiform discharges (IEDs) and assessed the temporal fluctuations in the capability of mapping the epileptogenic zone (EZ) of each type of event. RESULTS: We found that the fast-ultradian dynamics of the IED rate may effectively impair the precision of EZ identification, and appear to occur spontaneously, that is, not triggered by or exclusively associated with a particular cognitive task, wakefulness, sleep, seizure occurrence, post-ictal state, or antiepileptic drug withdrawal. Propagation of IEDs from the EZ to the propagation zone (PZ) could explain the observed fast-ultradian fluctuations in a reduced fraction of the analyzed patients, suggesting that other factors like the excitability of the epileptogenic tissue could play a more relevant role. A novel link was found between the fast-ultradian dynamics of the overall rate of polymorphic events and the rate of specific IEDs subtypes. We exploited this feature to estimate in each patient the 5 min interictal epoch for near-optimal EZ and resected-zone (RZ) localization. This approach produces at the population level a better EZ/RZ classification when compared to both (1) the whole time series available in each patient (p = .084 for EZ, p < .001 for RZ, Wilcoxon signed-rank test) and (2) 5 min epochs sampled randomly from the interictal recordings of each patient (p < .05 for EZ, p < .001 for RZ, 105 random samplings). SIGNIFICANCE: Our results highlight the relevance of the fast-ultradian IED dynamics in mapping the EZ, and show how this dynamics can be estimated prospectively to inform surgical planning in epilepsy.


Asunto(s)
Epilepsia Refractaria , Epilepsias Parciales , Epilepsia , Humanos , Epilepsia Refractaria/cirugía , Convulsiones , Epilepsia/cirugía , Electroencefalografía/métodos , Epilepsias Parciales/cirugía
18.
Eur J Neurol ; 30(1): 22-31, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36094672

RESUMEN

BACKGROUND AND PURPOSE: A clinical risk score for sudden unexpected death in epilepsy (SUDEP) in patients with drug-resistant focal epilepsy could help improve prevention. METHODS: A case-control study was conducted including (i) definite or probable SUDEP cases collected by the French National Sentinel Mortality Epilepsy Network and (ii) control patients from the French national research database of epilepsy monitoring units. Patients with drug-resistant focal epilepsy were eligible. Multiple logistic regressions were performed. After sensitivity analysis and internal validation, a simplified risk score was developed from the selected variables. RESULTS: Sixty-two SUDEP cases and 620 controls were included. Of 21 potential predictors explored, seven were ultimately selected, including generalized seizure frequency (>1/month vs. <1/year: adjusted odds ratio [AOR] 2.6, 95% confidence interval [CI] 1.25-5.41), nocturnal or sleep-related seizures (AOR 4.49, 95% CI 2.68-7.53), current or past depression (AOR 2.0, 95% CI 1.19-3.34) or the ability to alert someone of an oncoming seizure (AOR 0.57, 95% CI 0.33-0.98). After internal validation, a clinically usable score ranging from -1 to 8 was developed, with high discrimination capabilities (area under the receiver operating curve 0.85, 95% CI 0.80-0.90). The threshold of 3 has good sensitivity (82.3%, 95% CI 72.7-91.8), whilst keeping a good specificity (82.7%, 95% CI 79.8-85.7). CONCLUSIONS: These results outline the importance of generalized and nocturnal seizures on the occurrence of SUDEP, and show a protective role in the ability to alert someone of an oncoming seizure. The SUDEP-CARE score is promising and will need external validation. Further work, including paraclinical explorations, could improve this risk score.


Asunto(s)
Epilepsia Refractaria , Epilepsias Parciales , Epilepsia , Muerte Súbita e Inesperada en la Epilepsia , Adulto , Humanos , Muerte Súbita e Inesperada en la Epilepsia/epidemiología , Estudios de Casos y Controles , Muerte Súbita/epidemiología , Muerte Súbita/etiología , Muerte Súbita/prevención & control , Epilepsia/epidemiología , Epilepsia Refractaria/complicaciones , Convulsiones , Factores de Riesgo , Epilepsias Parciales/complicaciones
19.
Brain ; 145(5): 1653-1667, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35416942

RESUMEN

Epilepsy presurgical investigation may include focal intracortical single-pulse electrical stimulations with depth electrodes, which induce cortico-cortical evoked potentials at distant sites because of white matter connectivity. Cortico-cortical evoked potentials provide a unique window on functional brain networks because they contain sufficient information to infer dynamical properties of large-scale brain connectivity, such as preferred directionality and propagation latencies. Here, we developed a biologically informed modelling approach to estimate the neural physiological parameters of brain functional networks from the cortico-cortical evoked potentials recorded in a large multicentric database. Specifically, we considered each cortico-cortical evoked potential as the output of a transient stimulus entering the stimulated region, which directly propagated to the recording region. Both regions were modelled as coupled neural mass models, the parameters of which were estimated from the first cortico-cortical evoked potential component, occurring before 80 ms, using dynamic causal modelling and Bayesian model inversion. This methodology was applied to the data of 780 patients with epilepsy from the F-TRACT database, providing a total of 34 354 bipolar stimulations and 774 445 cortico-cortical evoked potentials. The cortical mapping of the local excitatory and inhibitory synaptic time constants and of the axonal conduction delays between cortical regions was obtained at the population level using anatomy-based averaging procedures, based on the Lausanne2008 and the HCP-MMP1 parcellation schemes, containing 130 and 360 parcels, respectively. To rule out brain maturation effects, a separate analysis was performed for older (>15 years) and younger patients (<15 years). In the group of older subjects, we found that the cortico-cortical axonal conduction delays between parcels were globally short (median = 10.2 ms) and only 16% were larger than 20 ms. This was associated to a median velocity of 3.9 m/s. Although a general lengthening of these delays with the distance between the stimulating and recording contacts was observed across the cortex, some regions were less affected by this rule, such as the insula for which almost all efferent and afferent connections were faster than 10 ms. Synaptic time constants were found to be shorter in the sensorimotor, medial occipital and latero-temporal regions, than in other cortical areas. Finally, we found that axonal conduction delays were significantly larger in the group of subjects younger than 15 years, which corroborates that brain maturation increases the speed of brain dynamics. To our knowledge, this study is the first to provide a local estimation of axonal conduction delays and synaptic time constants across the whole human cortex in vivo, based on intracerebral electrophysiological recordings.


Asunto(s)
Epilepsia , Potenciales Evocados , Teorema de Bayes , Encéfalo , Mapeo Encefálico/métodos , Estimulación Eléctrica/métodos , Potenciales Evocados/fisiología , Humanos
20.
Brain Topogr ; 36(2): 129-134, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36624220

RESUMEN

Pure amnestic seizures are defined as self-limited episodes with isolated, anterograde memory loss and have been attributed to bilateral dysfunction of mesial temporal structures. This type of seizure can occur in patients with different forms of temporal lobe epilepsy and has been more recently associated with a late-onset epileptic syndrome, called transient epileptic amnesia (TEA). The mechanisms of such prolonged manifestations are not well known and notably its ictal or post-ictal origin remains poorly understood. We report a case of prolonged anterograde amnesia (lasting several hours) following a brief seizure induced by stimulation of the left entorhinal cortex, recorded during stereo-EEG (SEEG). This episode was associated with prolonged changes in the intracerebral EEG signal complexity (entropy) within bilateral mesial temporal structures, particularly the entorhinal cortices, with a progressive normalization paralleling the clinical recovery. Our case shows that long-lasting (hours) memory impairment may follow brief seizure that led to prolonged electrophysiological signals alterations in bilateral mesial temporal structures.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Humanos , Convulsiones , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Amnesia/diagnóstico por imagen , Amnesia/complicaciones , Electroencefalografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA