Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Eur Radiol ; 34(1): 193-203, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37572187

RESUMEN

OBJECTIVES: A virtual clinical trial (VCT) method is proposed to determine the limit of calcification detection in tomosynthesis. METHODS: Breast anatomy, focal findings, image acquisition, and interpretation (n = 14 readers) were simulated using screening data (n = 660 patients). Calcifications (0.2-0.4 mm3) were inserted into virtual breast phantoms. Digital breast tomosynthesis (DBT) acquisitions were simulated assuming various acquisition geometries: source motion (continuous and step-and-shoot), detector element size (140 and 70 µm), and reconstructed voxel size (35-140 µm). VCT results were estimated using multiple-reader multiple-case analyses and d' statistics. Signal-to-noise (SNR) analyses were also performed using BR3D phantoms. RESULTS: Source motion and reconstructed voxel size demonstrated significant changes in the performance of imaging systems. Acquisition geometries that use 70 µm reconstruction voxel size and step-and-shoot motion significantly improved calcification detection. Comparing 70 with 100 µm reconstructed voxel size for step-and-shoot, the ΔAUC was 0.0558 (0.0647) and d' ratio was 1.27 (1.29) for 140 µm (70 µm) detector element size. Comparing step-and-shoot with a continuous motion for a 70 µm reconstructed voxel size, the ΔAUC was 0.0863 (0.0434) and the d' ratio was 1.40 (1.19) for 140 µm (70 µm) detector element. Small detector element sizes (e.g., 70 µm) did not significantly improve detection. The SNR results with the BR3D phantom show that calcification detection is dependent upon reconstructed voxel size and detector element size, supporting VCT results with comparable agreement (ratios: d' = 1.16 ± 0.11, SNR = 1.34 ± 0.13). CONCLUSION: DBT acquisition geometries that use super-resolution (smaller reconstructed voxels than the detector element size) combined with step-and-shoot motion have the potential to improve the detection of calcifications. CLINICAL RELEVANCE: Calcifications may not always be discernable in tomosynthesis because of differences in acquisition and reconstruction methods. VCTs can identify strategies to optimize acquisition and reconstruction parameters for calcification detection in tomosynthesis, most notably through super-resolution in the reconstruction. KEY POINTS: • Super-resolution improves calcification detection and SNR in tomosynthesis; specifically, with the use of smaller reconstruction voxels. • Calcification detection using step-and-shoot motion is superior to that using continuous tube motion. • A detector element size of 70 µm does not provide better detection than 140 µm for small calcifications at the threshold of detectability.


Asunto(s)
Neoplasias de la Mama , Calcinosis , Humanos , Femenino , Mamografía/métodos , Mama , Fantasmas de Imagen , Calcinosis/diagnóstico por imagen , Neoplasias de la Mama/diagnóstico por imagen , Algoritmos
2.
Radiology ; 281(3): 730-736, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27467468

RESUMEN

Purpose To evaluate the early implementation of synthesized two-dimensional (s2D) mammography in a population screened entirely with s2D and digital breast tomosynthesis (DBT) (referred to as s2D/DBT) and compare recall rates and cancer detection rates to historic outcomes of digital mammography combined with DBT (referred to as digital mammography/DBT) screening. Materials and Methods This was an institutional review board-approved and HIPAA-compliant retrospective interpretation of prospectively acquired data with waiver of informed consent. Compared were recall rates, biopsy rates, cancer detection rates, and radiation dose for 15 571 women screened with digital mammography/DBT from October 1, 2011, to February 28, 2013, and 5366 women screened with s2D/DBT from January 7, 2015, to June 30, 2015. Two-sample z tests of equal proportions were used to determine statistical significance. Results Recall rate for s2D/DBT versus digital mammography/DBT was 7.1% versus 8.8%, respectively (P < .001). Biopsy rate for s2D/DBT versus digital mammography/DBT decreased (1.3% vs 2.0%, respectively; P = .001). There was no significant difference in cancer detection rate for s2D/DBT versus digital mammography/DBT (5.03 of 1000 vs 5.45 of 1000, respectively; P = .72). The average glandular dose was 39% lower in s2D/DBT versus digital mammography/DBT (4.88 mGy vs 7.97 mGy, respectively; P < .001). Conclusion Screening with s2D/DBT in a large urban practice resulted in similar outcomes compared with digital mammography/DBT imaging. Screening with s2D/DBT allowed for the benefits of DBT with a decrease in radiation dose compared with digital mammography/DBT. © RSNA, 2016 An earlier incorrect version of this article appeared online. This article was corrected on August 11, 2016.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Carcinoma Intraductal no Infiltrante/diagnóstico por imagen , Mamografía/métodos , Detección Precoz del Cáncer/métodos , Femenino , Humanos , Persona de Mediana Edad , Dosis de Radiación , Estudios Retrospectivos
3.
Artículo en Inglés | MEDLINE | ID: mdl-38993651

RESUMEN

In this study, we investigate the performance of advanced 2D acquisition geometries - Pentagon and T-shaped - in digital breast tomosynthesis (DBT) and compare them against the conventional 1D geometry. Unlike the conventional approach, our proposed 2D geometries also incorporate anterior projections away from the chest wall. Implemented on the Next-Generation Tomosynthesis (NGT) prototype developed by X-ray Physics Lab (XPL), UPenn, we utilized various phantoms to compare three geometries: a Defrise slab phantom with alternating plastic slabs to study low-frequency modulation; a Checkerboard breast phantom (a 2D adaptation of the Defrise phantom design) to study the ability to reconstruct the fine features of the checkerboard squares; and the 360° Star-pattern phantom to assess aliasing and compute the Fourier-spectral distortion (FSD) metric that assesses spectral leakage and the contrast transfer function. We find that both Pentagon and T-shaped scans provide greater modulation amplitude of the Defrise phantom slabs and better resolve the squares of the Checkerboard phantom against the conventional scan. Notably, the Pentagon geometry exhibited a significant reduction in aliasing of spatial frequencies oriented in the right-left (RL) medio-lateral direction, which was corroborated by a near complete elimination of spectral leakage in the FSD plot. Conversely T-shaped scan redistributes the aliasing between both posteroanterior (PA) and RL directions thus maintaining non-inferiority against the conventional scan which is predominantly affected by PA aliasing. The results of this study underscore the potential of incorporating advanced 2D geometries in DBT systems, offering marked improvements in imaging performance over the conventional 1D approach.

4.
IEEE Trans Med Imaging ; 43(1): 377-391, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37603482

RESUMEN

Our lab at the University of Pennsylvania (UPenn) is investigating novel designs for digital breast tomosynthesis. We built a next-generation tomosynthesis system with a non-isocentric geometry (superior-to-inferior detector motion). This paper examines four metrics of image quality affected by this design. First, aliasing was analyzed in reconstructions prepared with smaller pixelation than the detector. Aliasing was assessed with a theoretical model of r -factor, a metric calculating amplitudes of alias signal relative to input signal in the Fourier transform of the reconstruction of a sinusoidal object. Aliasing was also assessed experimentally with a bar pattern (illustrating spatial variations in aliasing) and 360°-star pattern (illustrating directional anisotropies in aliasing). Second, the point spread function (PSF) was modeled in the direction perpendicular to the detector to assess out-of-plane blurring. Third, power spectra were analyzed in an anthropomorphic phantom developed by UPenn and manufactured by Computerized Imaging Reference Systems (CIRS), Inc. (Norfolk, VA). Finally, calcifications were analyzed in the CIRS Model 020 BR3D Breast Imaging Phantom in terms of signal-to-noise ratio (SNR); i.e., mean calcification signal relative to background-tissue noise. Image quality was generally superior in the non-isocentric geometry: Aliasing artifacts were suppressed in both theoretical and experimental reconstructions prepared with smaller pixelation than the detector. PSF width was also reduced at most positions. Anatomic noise was reduced. Finally, SNR in calcification detection was improved. (A potential trade-off of smaller-pixel reconstructions was reduced SNR; however, SNR was still improved by the detector-motion acquisition.) In conclusion, the non-isocentric geometry improved image quality in several ways.


Asunto(s)
Calcinosis , Procesamiento de Imagen Asistido por Computador , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Mama/diagnóstico por imagen , Mamografía/métodos , Simulación por Computador , Modelos Teóricos , Fantasmas de Imagen , Algoritmos
5.
J Med Imaging (Bellingham) ; 10(Suppl 1): S11917, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37485309

RESUMEN

Purpose: Satisfaction of search (SOS) is a phenomenon where searchers are more likely to miss a lesion/target after detecting a first lesion/target. Here, we investigated SOS for masses and calcifications in virtual mammograms with experienced and novice searchers to determine the extent to which: (1) SOS affects breast lesion detection, (2) similarity between lesions impacts detection, and (3) experience impacts SOS rates. Approach: The open virtual clinical trials framework was used to simulate the breast anatomy of patients, and up to two simulated masses and/or single-calcifications were inserted into the breast models. Experienced searchers (residents, fellows, and radiologists with breast imaging experience) and novice searchers (undergraduates who had no breast imaging experience) were instructed to search for up to two lesions (masses and calcifications) per image. Results: 2×2 mixed factors analysis of variances (ANOVAs) were run with: (1) single versus second lesion hit rates, (2) similar versus dissimilar second-lesion hit rates, and (3) similar versus dissimilar second-lesion response times as within-subject factors and experience as the between subject's factor. The ANOVAs demonstrated that: (1) experienced and novice searchers made a significant amount of SOS errors, (2) similarity had little impact on experienced searchers, but novice searchers were more likely to miss a dissimilar second lesion compared to when it was similar to a detected first lesion, (3) experienced and novice searchers were faster at finding similar compared to dissimilar second lesions. Conclusions: We demonstrated that SOS is a significant cause of lesion misses in virtual mammograms and that reader experience impacts detection rates for similar compared to dissimilar abnormalities. These results suggest that experience may impact strategy and/or recognition with theoretical implications for determining why SOS occurs.

6.
Tomography ; 9(4): 1303-1314, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37489471

RESUMEN

Digital breast tomosynthesis (DBT) reconstructions introduce out-of-plane artifacts and false-tissue boundaries impacting the dense/adipose and breast outline (convex hull) segmentations. A virtual clinical trial method was proposed to segment both the breast tissues and the breast outline in DBT reconstructions. The DBT images of a representative population were simulated using three acquisition geometries: a left-right scan (conventional, I), a two-directional scan in the shape of a "T" (II), and an extra-wide range (XWR, III) left-right scan at a six-times higher dose than I. The nnU-Net was modified including two losses for segmentation: (1) tissues and (2) breast outline. The impact of loss (1) and the combination of loss (1) and (2) was evaluated using models trained with data simulating geometry I. The impact of the geometry was evaluated using the combined loss (1&2). The loss (1&2) improved the convex hull estimates, resolving 22.2% of the false classification of air voxels. Geometry II was superior to I and III, resolving 99.1% and 96.8% of the false classification of air voxels. Geometry III (Dice = (0.98, 0.94)) was superior to I (0.92, 0.78) and II (0.93, 0.74) for the tissue segmentation (adipose, dense, respectively). Thus, the loss (1&2) provided better segmentation, and geometries T and XWR improved the dense/adipose and breast outline segmentations relative to the conventional scan.


Asunto(s)
Artefactos , Mama , Humanos , Femenino , Mama/diagnóstico por imagen , Tejido Adiposo
7.
Tomography ; 9(3): 1120-1132, 2023 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-37368544

RESUMEN

In breast tomosynthesis, multiple low-dose projections are acquired in a single scanning direction over a limited angular range to produce cross-sectional planes through the breast for three-dimensional imaging interpretation. We built a next-generation tomosynthesis system capable of multidirectional source motion with the intent to customize scanning motions around "suspicious findings". Customized acquisitions can improve the image quality in areas that require increased scrutiny, such as breast cancers, architectural distortions, and dense clusters. In this paper, virtual clinical trial techniques were used to analyze whether a finding or area at high risk of masking cancers can be detected in a single low-dose projection and thus be used for motion planning. This represents a step towards customizing the subsequent low-dose projection acquisitions autonomously, guided by the first low-dose projection; we call this technique "self-steering tomosynthesis." A U-Net was used to classify the low-dose projections into "risk classes" in simulated breasts with soft-tissue lesions; class probabilities were modified using post hoc Dirichlet calibration (DC). DC improved the multiclass segmentation (Dice = 0.43 vs. 0.28 before DC) and significantly reduced false positives (FPs) from the class of the highest risk of masking (sensitivity = 81.3% at 2 FPs per image vs. 76.0%). This simulation-based study demonstrated the feasibility of identifying suspicious areas using a single low-dose projection for self-steering tomosynthesis.


Asunto(s)
Neoplasias de la Mama , Mamografía , Humanos , Femenino , Mamografía/métodos , Estudios Transversales , Mama/diagnóstico por imagen , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Imagenología Tridimensional/métodos
8.
Med Phys ; 49(4): 2220-2232, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35212403

RESUMEN

PURPOSE: Virtual clinical trials (VCTs) require computer simulations of representative patients and images to evaluate and compare changes in performance of imaging technologies. The simulated images are usually interpreted by model observers whose performance depends upon the selection of imaging cases used in training evaluation models. This work proposes an efficient method to simulate and calibrate soft tissue lesions, which matches the detectability threshold of virtual and human readings. METHODS: Anthropomorphic breast phantoms were used to evaluate the simulation of four mass models (I-IV) that vary in shape and composition of soft tissue. Ellipsoidal (I) and spiculated (II-IV) masses were simulated using composite voxels with partial volumes. Digital breast tomosynthesis projections and reconstructions of a clinical system were simulated. Channelized Hotelling observers (CHOs) were evaluated using reconstructed slices of masses that varied in shape, composition, and density of surrounded tissue. The detectability threshold of each mass model was evaluated using receiver operating characteristic (ROC) curves calculated with the CHO's scores. RESULTS: The area under the curve (AUC) of each calibrated mass model were within the 95% confidence interval (mean AUC [95% CI]) reported in a previous reader study (0.93 [0.89, 0.97]). The mean AUC [95% CI] obtained were 0.94 [0.93, 0.96], 0.92 [0.90, 0.93], 0.92 [0.90, 0.94], 0.93 [0.92, 0.95] for models I to IV, respectively. The mean AUC results varied substantially as a function of shape, composition, and density of surrounded tissue. CONCLUSIONS: For successful VCTs, lesions composed of soft tissue should be calibrated to simulate imaging cases that match the case difficulty predicted by human readers. Lesion composition, shape, and size are parameters that should be carefully selected to calibrate VCTs.


Asunto(s)
Neoplasias de la Mama , Mamografía , Mama/diagnóstico por imagen , Neoplasias de la Mama/diagnóstico por imagen , Ensayos Clínicos como Asunto , Simulación por Computador , Femenino , Humanos , Mamografía/métodos , Fantasmas de Imagen , Curva ROC
9.
Artículo en Inglés | MEDLINE | ID: mdl-37692411

RESUMEN

We have constructed a prototype next-generation tomosynthesis (NGT) system that supports a non-isocentric acquisition geometry for digital breast tomosynthesis (DBT). In this geometry, the detector gradually descends in the superior-to-inferior direction. The aim of this work is to demonstrate that this geometry offers isotropic super-resolution (SR), unlike clinical DBT systems which are characterized by anisotropies in SR. To this end, a theoretical model of a sinusoidal test object was developed with frequency exceeding the alias frequency of the detector. We simulated two geometries: (1) a conventional geometry with a stationary detector, and (2) a non-isocentric geometry. The input frequency was varied over the full 360° range of angles in the plane of the object. To investigate whether SR was achieved, we calculated the Fourier transform of the reconstruction. The amplitude of the tallest peak below the alias frequency was measured relative to the peak at the input frequency. This ratio (termed the r-factor) should approach zero to achieve high-quality SR. In the conventional geometry, the r-factor was minimized (approaching zero) if the orientation of the frequency was parallel with the source motion, yet exceeded unity (prohibiting SR) in the orientation perpendicular to the source motion. However, in the non-isocentric geometry, the r-factor was minimized (approaching zero) for all orientations of the frequency, meaning SR was achieved isotropically. In summary, isotropic SR in DBT can be achieved using the non-isocentric acquisition geometry supported by the NGT system.

10.
Cancers (Basel) ; 14(7)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35406372

RESUMEN

The reproducibility of handcrafted radiomic features (HRFs) has been reported to be affected by variations in imaging parameters, which significantly affect the generalizability of developed signatures and translation to clinical practice. However, the collective effect of the variations in imaging parameters on the reproducibility of HRFs remains unclear, with no objective measure to assess it in the absence of reproducibility analysis. We assessed these effects of variations in a large number of scenarios and developed the first quantitative score to assess the reproducibility of CT-based HRFs without the need for phantom or reproducibility studies. We further assessed the potential of image resampling and ComBat harmonization for removing these effects. Our findings suggest a need for radiomics-specific harmonization methods. Our developed score should be considered as a first attempt to introduce comprehensive metrics to quantify the reproducibility of CT-based handcrafted radiomic features. More research is warranted to demonstrate its validity in clinical contexts and to further improve it, possibly by the incorporation of more realistic situations, which better reflect real patients' situations.

11.
Radiat Prot Dosimetry ; 195(3-4): 363-371, 2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34144597

RESUMEN

Virtual clinical trials (VCTs) can be used to evaluate and optimise medical imaging systems. VCTs are based on computer simulations of human anatomy, imaging modalities and image interpretation. OpenVCT is an open-source framework for conducting VCTs of medical imaging, with a particular focus on breast imaging. The aim of this paper was to evaluate the OpenVCT framework in two tasks involving digital breast tomosynthesis (DBT). First, VCTs were used to perform a detailed comparison of virtual and clinical reading studies for the detection of lesions in digital mammography and DBT. Then, the framework was expanded to include mechanical imaging (MI) and was used to optimise the novel combination of simultaneous DBT and MI. The first experiments showed close agreement between the clinical and the virtual study, confirming that VCTs can predict changes in performance of DBT accurately. Work in simultaneous DBT and MI system has demonstrated that the system can be optimised in terms of the DBT image quality. We are currently working to expand the OpenVCT software to simulate MI acquisition more accurately and to include models of tumour growth. Based on our experience to date, we envision a future in which VCTs have an important role in medical imaging, including support for more imaging modalities, use with rare diseases and a role in training and testing artificial intelligence (AI) systems.


Asunto(s)
Inteligencia Artificial , Neoplasias de la Mama , Mama/diagnóstico por imagen , Neoplasias de la Mama/diagnóstico por imagen , Simulación por Computador , Femenino , Humanos , Mamografía , Intensificación de Imagen Radiográfica
12.
IEEE Trans Med Imaging ; 40(12): 3436-3445, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34106850

RESUMEN

Virtual clinical trials (VCTs) of medical imaging require realistic models of human anatomy. For VCTs in breast imaging, a multi-scale Perlin noise method is proposed to simulate anatomical structures of breast tissue in the context of an ongoing breast phantom development effort. Four Perlin noise distributions were used to replace voxels representing the tissue compartments and Cooper's ligaments in the breast phantoms. Digital mammography and tomosynthesis projections were simulated using a clinical DBT system configuration. Power-spectrum analyses and higher-order statistics properties using Laplacian fractional entropy (LFE) of the parenchymal texture are presented. These objective measures were calculated in phantom and patient images using a sample of 140 clinical mammograms and 500 phantom images. Power-law exponents were calculated using the slope of the curve fitted in the low frequency [0.1, 1.0] mm-1 region of the power spectrum. The results show that the images simulated with our prior and proposed Perlin method have similar power-law spectra when compared with clinical mammograms. The power-law exponents calculated are -3.10, -3.55, and -3.46, for the log-power spectra of patient, prior phantom and proposed phantom images, respectively. The results also indicate an improved agreement between the mean LFE estimates of Perlin-noise based phantoms and patients than our prior phantoms and patients. Thus, the proposed method improved the simulation of anatomic noise substantially compared to our prior method, showing close agreement with breast parenchyma measures.


Asunto(s)
Mama , Mamografía , Mama/diagnóstico por imagen , Ensayos Clínicos como Asunto , Simulación por Computador , Humanos , Fantasmas de Imagen , Interfaz Usuario-Computador
13.
Curr Biol ; 31(5): 1099-1106.e5, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33472051

RESUMEN

Advances in 3D imaging technology are transforming how radiologists search for cancer1,2 and how security officers scrutinize baggage for dangerous objects.3 These new 3D technologies often improve search over 2D images4,5 but vastly increase the image data. Here, we investigate 3D search for targets of various sizes in filtered noise and digital breast phantoms. For a Bayesian ideal observer optimally processing the filtered noise and a convolutional neural network processing the digital breast phantoms, search with 3D image stacks increases target information and improves accuracy over search with 2D images. In contrast, 3D search by humans leads to high miss rates for small targets easily detected in 2D search, but not for larger targets more visible in the visual periphery. Analyses of human eye movements, perceptual judgments, and a computational model with a foveated visual system suggest that human errors can be explained by interaction among a target's peripheral visibility, eye movement under-exploration of the 3D images, and a perceived overestimation of the explored area. Instructing observers to extend the search reduces 75% of the small target misses without increasing false positives. Results with twelve radiologists confirm that even medical professionals reading realistic breast phantoms have high miss rates for small targets in 3D search. Thus, under-exploration represents a fundamental limitation to the efficacy with which humans search in 3D image stacks and miss targets with these prevalent image technologies.


Asunto(s)
Imagenología Tridimensional , Redes Neurales de la Computación , Teorema de Bayes , Movimientos Oculares , Humanos , Fantasmas de Imagen
15.
Cancers (Basel) ; 13(8)2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33924382

RESUMEN

While handcrafted radiomic features (HRFs) have shown promise in the field of personalized medicine, many hurdles hinder its incorporation into clinical practice, including but not limited to their sensitivity to differences in acquisition and reconstruction parameters. In this study, we evaluated the effects of differences in in-plane spatial resolution (IPR) on HRFs, using a phantom dataset (n = 14) acquired on two scanner models. Furthermore, we assessed the effects of interpolation methods (IMs), the choice of a new unified in-plane resolution (NUIR), and ComBat harmonization on the reproducibility of HRFs. The reproducibility of HRFs was significantly affected by variations in IPR, with pairwise concordant HRFs, as measured by the concordance correlation coefficient (CCC), ranging from 42% to 95%. The number of concordant HRFs (CCC > 0.9) after resampling varied depending on (i) the scanner model, (ii) the IM, and (iii) the NUIR. The number of concordant HRFs after ComBat harmonization depended on the variations between the batches harmonized. The majority of IMs resulted in a higher number of concordant HRFs compared to ComBat harmonization, and the combination of IMs and ComBat harmonization did not yield a significant benefit. Our developed framework can be used to assess the reproducibility and harmonizability of RFs.

16.
Phys Med ; 71: 137-149, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32143121

RESUMEN

A tracking and reporting system was developed to monitor radiation dose in X-ray breast imaging. We used our tracking system to characterize and compare the mammographic practices of five breast imaging centers located in the United States and Brazil. Clinical data were acquired using eight mammography systems comprising three modalities: computed radiography (CR), full-field digital mammography (FFDM), and digital breast tomosynthesis (DBT). Our database consists of metadata extracted from 334,234 images. We analyzed distributions and correlations of compressed breast thickness (CBT), compression force, target-filter combinations, X-ray tube voltage, and average glandular dose (AGD). AGD reference curves were calculated based on AGD distributions as a function of CBT. These curves represent an AGD reference for a particular population and system. Differences in AGD and imaging settings were attributed to a combination of factors, such as improvements in technology, imaging protocol, and patient demographics. The tracking system allows the comparison of various imaging settings used in screening mammography, as well as the tracking of patient- and population-specific breast data collected from different populations.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Mamografía/instrumentación , Mamografía/métodos , Algoritmos , Brasil , Mama/diagnóstico por imagen , Fuerza Compresiva , Detección Precoz del Cáncer , Femenino , Humanos , Fantasmas de Imagen , Garantía de la Calidad de Atención de Salud , Dosis de Radiación , Intensificación de Imagen Radiográfica/métodos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X , Estados Unidos
17.
Artículo en Inglés | MEDLINE | ID: mdl-37842133

RESUMEN

Our previous work explored the use of super-resolution as a way to improve the visibility of calcifications in digital breast tomosynthesis. This paper demonstrates that there are anisotropies in super-resolution throughout the reconstruction, and investigates new motion paths for the x-ray tube to suppress these anisotropies. We used a theoretical model of a sinusoidal test object to demonstrate the existence of the anisotropies. In addition, high-frequency test objects were simulated with virtual clinical trial (VCT) software developed for breast imaging. The simulated objects include a lead bar pattern phantom as well as punctate calcifications in a breast-like background. In a conventional acquisition geometry in which the source motion is directed laterally, we found that super-resolution is not achievable if the frequency is oriented in the perpendicular direction (posteroanteriorly). Also, there are positions, corresponding to various slices above the breast support, at which super-resolution is inherently not achievable. The existence of these anisotropies was validated with VCT simulations. At locations predicted by theoretical modeling, the bar pattern phantom showed aliasing, and the spacing between individual calcifications was not properly resolved. To show that super-resolution can be optimized by re-designing the acquisition geometry, we applied our theoretical model to the analysis of new motion paths for the x-ray tube; specifically, motions with more degrees of freedom and with more rapid pulsing (submillimeter spacing) between source positions. These two strategies can be used in combination to suppress the anisotropies in super-resolution.

18.
Artículo en Inglés | MEDLINE | ID: mdl-37927528

RESUMEN

Our previous work showed that digital breast tomosynthesis (DBT) systems are capable of super-resolution, or subpixel resolution relative to the detector. Using a bar pattern phantom, it is possible to demonstrate that there are anisotropies in super-resolution throughout the reconstruction. These anisotropies are lessened in acquisition geometries with narrow spacing between source positions. This paper demonstrates that by re-arranging the source positions in the scan, the anisotropies can be minimized even further. To this end, a theoretical model of the reconstruction of a high-frequency sinusoidal test object was developed from first principles. We modeled the effect of clustering additional source positions around each conventional source position in fine increments (submillimeter). This design can be implemented by rapidly pulsing the source during a continuous sweep of the x-ray tube. It is shown that it is not possible to eliminate the anisotropies in a conventional DBT system with uniformly-spaced source positions, even if the increments of spacing are narrower than those used clinically. However, super-resolution can be achieved everywhere if the source positions are re-arranged in clusters with submillimeter spacing. Our previous work investigated a different approach for optimizing super-resolution through the use of detector motion perpendicular to the breast support. The advantage of introducing rapid source pulsing is that detector motion is no longer required; this mitigates the need for a thick detector housing, which may be cumbersome for patient positioning.

19.
Phys Med Biol ; 65(23): 235028, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33113520

RESUMEN

We are developing a dedicated, combined breast positron emission tomography (PET)-tomosynthesis scanner. Both the PET and digital breast tomosynthesis (DBT) scanners are integrated in a single gantry to provide spatially co-registered 3D PET-tomosynthesis images. The DBT image will be used to identify the breast boundary and breast density to improve the quantitative accuracy of the PET image. This paper explores PET attenuation correction (AC) strategies that can be performed with the combined breast PET-DBT scanner to obtain more accurate, quantitative high-resolution 3D PET images. The PET detector is comprised of a 32 × 32 array of 1.5 × 1.5 × 15 mm3 LYSO crystals. The PET scanner utilizes two detector heads separated by either 9 or 11 cm, with each detector head having a 4 × 2 arrangement of PET detectors. GEANT4 Application for Tomographic Emission simulations were performed using an anthropomorphic breast phantom with heterogeneous attenuation under clinical DBT-compression. FDG-avid lesions, each 5 mm in diameter with 8:1 uptake, were simulated at four locations within the breast. Simulations were performed with a scan time of 2 min. PET AC was performed using the actual breast simulation model as well as DBT reconstructed volumetric images to derive the breast outline. In addition to using the known breast density as defined by the breast model, we also modeled it as uniform patient-independent soft-tissue, and as a uniform patient-specific material derived from breast tissue composition. Measured absolute lesion uptake was used to evaluate the quantitative accuracy of performing AC using the various strategies. This study demonstrates that AC is necessary to obtain a closer estimate of the true lesion uptake and background activity in the breast. The DBT image dataset assists in measuring lesion uptake with low bias by facilitating accurate breast delineation as well as providing accurate information related to the breast tissue composition. While both the uniform soft-tissue and patient-specific material approaches provides a close estimate to the ground truth, <5% bias can be achieved by using a uniform patient-specific material to define the attenuation map.


Asunto(s)
Neoplasias de la Mama/patología , Mama/patología , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Mamografía/métodos , Fantasmas de Imagen , Mama/diagnóstico por imagen , Neoplasias de la Mama/diagnóstico por imagen , Femenino , Humanos , Tomografía de Emisión de Positrones/métodos
20.
Artículo en Inglés | MEDLINE | ID: mdl-32435081

RESUMEN

With the advent of powerful convolutional neural networks (CNNs), recent studies have extended early applications of neural networks to imaging tasks thus making CNNs a potential new tool for assessing medical image quality. Here, we compare a CNN to model observers in a search task for two possible signals (a simulated mass and a smaller simulated micro-calcification) embedded in filtered noise and single slices of Digital Breast Tomosynthesis (DBT) virtual phantoms. For the case of the filtered noise, we show how a CNN can approximate the ideal observer for a search task, achieving a statistical efficiency of 0.77 for the microcalcification and 0.78 for the mass. For search in single slices of DBT phantoms, we show that a Channelized Hotelling Observer (CHO) performance is affected detrimentally by false positives related to anatomic variations and results in detection accuracy below human observer performance. In contrast, the CNN learns to identify and discount the backgrounds, and achieves performance comparable to that of human observer and superior to model observers (Proportion Correct for the microcalcification: CNN = 0.96; Humans = 0.98; CHO = 0.84; Proportion Correct for the mass: CNN = 0.98; Humans = 0.83; CHO = 0.51). Together, our results provide an important evaluation of CNN methods by benchmarking their performance against human and model observers in complex search tasks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA