Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS Biol ; 15(8): e2001993, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28829781

RESUMEN

In the developing and adult brain, oligodendrocyte precursor cells (OPCs) are influenced by neuronal activity: they are involved in synaptic signaling with neurons, and their proliferation and differentiation into myelinating glia can be altered by transient changes in neuronal firing. An important question that has been unanswered is whether OPCs can discriminate different patterns of neuronal activity and respond to them in a distinct way. Here, we demonstrate in brain slices that the pattern of neuronal activity determines the functional changes triggered at synapses between axons and OPCs. Furthermore, we show that stimulation of the corpus callosum at different frequencies in vivo affects proliferation and differentiation of OPCs in a dissimilar way. Our findings suggest that neurons do not influence OPCs in "all-or-none" fashion but use their firing pattern to tune the response and behavior of these nonneuronal cells.


Asunto(s)
Células Madre Adultas/fisiología , Cuerpo Calloso/fisiología , Neurogénesis , Oligodendroglía/fisiología , Transmisión Sináptica , Células Madre Adultas/citología , Animales , Axones/fisiología , Señalización del Calcio , Proliferación Celular , Cuerpo Calloso/citología , Inmunohistoquímica , Masculino , Ratones Transgénicos , Microglía/citología , Microglía/fisiología , Microscopía Confocal , Oligodendroglía/citología , Técnicas de Placa-Clamp , Distribución Aleatoria , Sinapsis/fisiología , Potenciales Sinápticos
2.
J Neurosci ; 37(49): 11818-11834, 2017 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-29089441

RESUMEN

Schwann cells (SCs) are myelinating cells of the PNS. Although SCs are known to express different channels and receptors on their surface, little is known about the activation and function of these proteins. Ionotropic glutamate receptors are thought to play an essential role during development of SC lineage and during peripheral nerve injury, so we sought to study their functional properties. We established a novel preparation of living peripheral nerve slices with preserved cellular architecture and used a patch-clamp technique to study AMPA-receptor (AMPAR)-mediated currents in SCs for the first time. We found that the majority of SCs in the nerves dissected from embryonic and neonatal mice of both sexes respond to the application of glutamate with inward current mediated by Ca2+-permeable AMPARs. Using stationary fluctuation analysis (SFA), we demonstrate that single-channel conductance of AMPARs in SCs is 8-11 pS, which is comparable to that in neurons. We further show that, when SCs become myelinating, they downregulate functional AMPARs. This study is the first to demonstrate AMPAR-mediated conductance in SCs of vertebrates, to investigate elementary properties of AMPARs in these cells, and to provide detailed electrophysiological and morphological characterization of SCs at different stages of development.SIGNIFICANCE STATEMENT We provide several important conceptual and technical advances in research on the PNS. We pioneer the first description of AMPA receptor (AMPAR)-mediated currents in the PNS glia of vertebrates and provide new insights into the properties of AMPAR channels in peripheral glia; for example, their Ca2+ permeability and single-channel conductance. We describe for the first time the electrophysiological and morphological properties of Schwann cells (SCs) at different stages of development and show that functional AMPARs are expressed only in developing, not mature, SCs. Finally, we introduce a preparation of peripheral nerve slices for patch-clamp recordings. This preparation opens new possibilities for studying the physiology of SCs in animal models and in surgical human samples.


Asunto(s)
Ácido Glutámico/farmacología , Conducción Nerviosa/fisiología , Nervios Periféricos/crecimiento & desarrollo , Receptores AMPA/metabolismo , Células de Schwann/fisiología , Nervio Ciático/crecimiento & desarrollo , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Conducción Nerviosa/efectos de los fármacos , Técnicas de Cultivo de Órganos , Nervios Periféricos/efectos de los fármacos , Nervios Periféricos/embriología , Embarazo , Receptores AMPA/agonistas , Células de Schwann/efectos de los fármacos , Nervio Ciático/efectos de los fármacos , Nervio Ciático/embriología
3.
Elife ; 92020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32252889

RESUMEN

Controlling gain of cortical activity is essential to modulate weights between internal ongoing communication and external sensory drive. Here, we show that serotonergic input has separable suppressive effects on the gain of ongoing and evoked visual activity. We combined optogenetic stimulation of the dorsal raphe nucleus (DRN) with wide-field calcium imaging, extracellular recordings, and iontophoresis of serotonin (5-HT) receptor antagonists in the mouse visual cortex. 5-HT1A receptors promote divisive suppression of spontaneous activity, while 5-HT2A receptors act divisively on visual response gain and largely account for normalization of population responses over a range of visual contrasts in awake and anesthetized states. Thus, 5-HT input provides balanced but distinct suppressive effects on ongoing and evoked activity components across neuronal populations. Imbalanced 5-HT1A/2A activation, either through receptor-specific drug intake, genetically predisposed irregular 5-HT receptor density, or change in sensory bombardment may enhance internal broadcasts and reduce sensory drive and vice versa.


Asunto(s)
Núcleo Dorsal del Rafe/fisiología , Optogenética/métodos , Neuronas Serotoninérgicas/fisiología , Corteza Visual/fisiología , Animales , Línea Celular , Núcleo Dorsal del Rafe/efectos de los fármacos , Luz , Estudios Longitudinales , Ratones , Ratones Transgénicos , Receptores de Serotonina/efectos de los fármacos , Receptores de Serotonina/fisiología , Serotonina/fisiología , Antagonistas de la Serotonina/administración & dosificación , Corteza Visual/efectos de los fármacos
4.
Commun Biol ; 2: 60, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30793039

RESUMEN

The signal specificity of G protein-coupled receptors (GPCRs) including serotonin receptors (5-HT-R) depends on the trafficking and localization of the GPCR within its subcellular signaling domain. Visualizing traffic-dependent GPCR signals in neurons is difficult, but important to understand the contribution of GPCRs to synaptic plasticity. We engineered CaMello (Ca2+-melanopsin-local-sensor) and CaMello-5HT2A for visualization of traffic-dependent Ca2+ signals in 5-HT2A-R domains. These constructs consist of the light-activated Gq/11 coupled melanopsin, mCherry and GCaMP6m for visualization of Ca2+ signals and receptor trafficking, and the 5-HT2A C-terminus for targeting into 5-HT2A-R domains. We show that the specific localization of the GPCR to its receptor domain drastically alters the dynamics and localization of the intracellular Ca2+ signals in different neuronal populations in vitro and in vivo. The CaMello method may be extended to every GPCR coupling to the Gq/11 pathway to help unravel new receptor-specific functions in respect to synaptic plasticity and GPCR localization.


Asunto(s)
Técnicas Biosensibles , Calcio/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Optogenética/métodos , Receptor de Serotonina 5-HT2A/genética , Opsinas de Bastones/genética , Animales , Cerebelo/citología , Cerebelo/metabolismo , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Electrodos Implantados , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/metabolismo , Transporte de Proteínas , Ratas , Ratas Long-Evans , Receptor de Serotonina 5-HT2A/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Opsinas de Bastones/metabolismo , Técnicas Estereotáxicas
5.
Cell Rep ; 25(4): 852-861.e7, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30355492

RESUMEN

The functional role of AMPA receptor (AMPAR)-mediated synaptic signaling between neurons and oligodendrocyte precursor cells (OPCs) remains enigmatic. We modified the properties of AMPARs at axon-OPC synapses in the mouse corpus callosum in vivo during the peak of myelination by targeting the GluA2 subunit. Expression of the unedited (Ca2+ permeable) or the pore-dead GluA2 subunit of AMPARs triggered proliferation of OPCs and reduced their differentiation into oligodendrocytes. Expression of the cytoplasmic C-terminal (GluA2(813-862)) of the GluA2 subunit (C-tail), a modification designed to affect the interaction between GluA2 and AMPAR-binding proteins and to perturb trafficking of GluA2-containing AMPARs, decreased the differentiation of OPCs without affecting their proliferation. These findings suggest that ionotropic and non-ionotropic properties of AMPARs in OPCs, as well as specific aspects of AMPAR-mediated signaling at axon-OPC synapses in the mouse corpus callosum, are important for balancing the response of OPCs to proliferation and differentiation cues.


Asunto(s)
Diferenciación Celular , Células Precursoras de Oligodendrocitos/citología , Células Precursoras de Oligodendrocitos/metabolismo , Receptores AMPA/metabolismo , Animales , Axones/metabolismo , Linaje de la Célula , Proliferación Celular , Potenciales Postsinápticos Excitadores , Vectores Genéticos/metabolismo , Ratones Endogámicos C57BL , Mutación/genética , Neuroglía/metabolismo , Subunidades de Proteína/metabolismo , Retroviridae/fisiología
6.
Front Cell Neurosci ; 10: 135, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27313508

RESUMEN

In the peripheral nervous system (PNS) a vast number of axons are accommodated within fiber bundles that constitute peripheral nerves. A major function of peripheral axons is to propagate action potentials along their length, and hence they are equipped with Na(+) and K(+) channels, which ensure successful generation, conduction and termination of each action potential. However little is known about Ca(2+) ion channels expressed along peripheral axons and their possible functional significance. The goal of the present study was to test whether voltage-gated Ca(2+) channels (VGCCs) are present along peripheral nerve axons in situ and mediate rapid activity-dependent Ca(2+) elevations under physiological circumstances. To address this question we used mouse sciatic nerve slices, Ca(2+) indicator Oregon Green BAPTA-1, and 2-photon Ca(2+) imaging in fast line scan mode (500 Hz). We report that transient increases in intra-axonal Ca(2+) concentration take place along peripheral nerve axons in situ when axons are stimulated electrically with single pulses. Furthermore, we show for the first time that Ca(2+) transients in peripheral nerves are fast, i.e., occur in a millisecond time-domain. Combining Ca(2+) imaging and pharmacology with specific blockers of different VGCCs subtypes we demonstrate that Ca(2+) transients in peripheral nerves are mediated mainly by N-type and L-type VGCCs. Discovery of fast Ca(2+) entry into the axonal shafts through VGCCs in peripheral nerves suggests that Ca(2+) may be involved in regulation of action potential propagation and/or properties in this system, or mediate neurotransmitter release along peripheral axons as it occurs in the optic nerve and white matter of the central nervous system (CNS).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA