Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
New Phytol ; 223(3): 1505-1515, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31059123

RESUMEN

A complex network of pathways coordinates nodulation and epidermal root hair infection in the symbiotic interaction between rhizobia and legume plants. Whereas nodule formation was known to be autoregulated, it was so far unclear whether a similar control is exerted on the infection process. We assessed the capacity of Medicago plants nodulated by Sinorhizobium meliloti to modulate root susceptibility to secondary bacterial infection or to purified Nod factors in split-root and volatile assays using bacterial and plant mutant combinations. Ethylene implication in this process emerged from gas production measurements, use of a chemical inhibitor of ethylene biosynthesis and of a Medicago mutant affected in ethylene signal transduction. We identified a feedback mechanism that we named AOI (for Autoregulation Of Infection) by which endosymbiotic bacteria control secondary infection thread formation by their rhizospheric peers. AOI involves activation of a cyclic adenosine 3',5'-monophosphate (cAMP) cascade in endosymbiotic bacteria, which decreases both root infectiveness and root susceptibility to bacterial Nod factors. These latter two effects are mediated by ethylene. AOI is a novel component of the complex regulatory network controlling the interaction between Sinorhizobium meliloti and its host plants that emphasizes the implication of endosymbiotic bacteria in fine-tuning the interaction.


Asunto(s)
Etilenos/metabolismo , Medicago truncatula/microbiología , Enfermedades de las Plantas/microbiología , Raíces de Plantas/microbiología , Sinorhizobium meliloti/fisiología , Simbiosis , Proteínas Bacterianas/metabolismo , Modelos Biológicos , Epidermis de la Planta/microbiología , Nodulación de la Raíz de la Planta , Compuestos Orgánicos Volátiles/metabolismo
2.
J Bacteriol ; 200(11)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29531182

RESUMEN

An ongoing signal exchange fine-tunes the symbiotic interactions between rhizobia and legumes, ensuring the establishment and maintenance of mutualism. In a recently identified regulatory loop, endosymbiotic Sinorhizobium meliloti exerts negative feedback on root infection in response to unknown plant cues. Upon signal perception, three bacterial adenylate cyclases (ACs) of the inner membrane, namely, CyaD1, CyaD2, and CyaK, synthesize the second messenger cAMP, which, together with the cAMP-dependent Clr transcriptional activator, activates the expression of genes involved in root infection control. The pathway that links signal perception at the surface of the cell to cytoplasmic cAMP production by ACs was thus far unknown. Here we first show that CyaK is the cognate AC for the plant signal, called signal 1, that was observed previously in mature nodule and shoot extracts. We also show that inactivation of the gene immediately upstream of cyaK, nsrA (smb20775), which encodes a ß-barrel protein of the outer membrane, abolished signal 1 perception ex planta, whereas nsrA overexpression increased signal 1 responsiveness. Inactivation of the nsrA gene abolished all Clr-dependent gene expression in nodules and led to a marked hyperinfection phenotype on plants, similar to that of a cyaD1 cyaD2 cyaK triple mutant. We suggest that the NsrA protein acts as the (co)receptor for two signal molecules, signal 1 and a hypothetical signal 1', in mature and young nodules that cooperate in controlling secondary infection in S. meliloti-Medicago symbiosis. The predicted topology and domain composition of the NsrA protein hint at a mechanism of transmembrane signaling.IMPORTANCE Symbiotic interactions, especially mutualistic ones, rely on a continuous signal exchange between the symbionts. Here we report advances regarding a recently discovered signal transduction pathway that fine-tunes the symbiotic interaction between S. meliloti and its Medicago host plant. We have identified an outer membrane protein of S. meliloti, called NsrA, that transduces Medicago plant signals to adenylate cyclases in the inner membrane, thereby triggering a cAMP signaling cascade that controls infection. Besides their relevance for the rhizobium-legume symbiosis, these findings shed light on the mechanisms of signal perception and transduction by adenylate cyclases and transmembrane signaling in bacteria.


Asunto(s)
Proteínas Bacterianas/metabolismo , Medicago truncatula/microbiología , Transducción de Señal , Sinorhizobium meliloti/fisiología , Simbiosis , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Proteínas Bacterianas/genética , AMP Cíclico/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Mutación , Fenotipo , Sinorhizobium meliloti/genética
3.
PLoS Biol ; 12(9): e1001942, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25181317

RESUMEN

Horizontal gene transfer (HGT) is an important mode of adaptation and diversification of prokaryotes and eukaryotes and a major event underlying the emergence of bacterial pathogens and mutualists. Yet it remains unclear how complex phenotypic traits such as the ability to fix nitrogen with legumes have successfully spread over large phylogenetic distances. Here we show, using experimental evolution coupled with whole genome sequencing, that co-transfer of imuABC error-prone DNA polymerase genes with key symbiotic genes accelerates the evolution of a soil bacterium into a legume symbiont. Following introduction of the symbiotic plasmid of Cupriavidus taiwanensis, the Mimosa symbiont, into pathogenic Ralstonia solanacearum we challenged transconjugants to become Mimosa symbionts through serial plant-bacteria co-cultures. We demonstrate that a mutagenesis imuABC cassette encoded on the C. taiwanensis symbiotic plasmid triggered a transient hypermutability stage in R. solanacearum transconjugants that occurred before the cells entered the plant. The generated burst in genetic diversity accelerated symbiotic adaptation of the recipient genome under plant selection pressure, presumably by improving the exploration of the fitness landscape. Finally, we show that plasmid imuABC cassettes are over-represented in rhizobial lineages harboring symbiotic plasmids. Our findings shed light on a mechanism that may have facilitated the dissemination of symbiotic competency among α- and ß-proteobacteria in natura and provide evidence for the positive role of environment-induced mutagenesis in the acquisition of a complex lifestyle trait. We speculate that co-transfer of complex phenotypic traits with mutagenesis determinants might frequently enhance the ecological success of HGT.


Asunto(s)
Cupriavidus/genética , Transferencia de Gen Horizontal , Genes Bacterianos , Genoma Bacteriano , Plásmidos/metabolismo , Ralstonia solanacearum/genética , Transportadoras de Casetes de Unión a ATP/genética , Adaptación Fisiológica/genética , Evolución Biológica , Fabaceae/microbiología , Fabaceae/fisiología , Mimosa/microbiología , Mimosa/fisiología , Mutación , Simbiosis/genética
4.
Proc Natl Acad Sci U S A ; 109(17): 6751-6, 2012 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-22493242

RESUMEN

Legumes and soil bacteria called rhizobia have coevolved a facultative nitrogen-fixing symbiosis. Establishment of the symbiosis requires bacterial entry via root hair infection threads and, in parallel, organogenesis of nodules that subsequently are invaded by bacteria. Tight control of nodulation and infection is required to maintain the mutualistic character of the interaction. Available evidence supports a passive bacterial role in nodulation and infection after the microsymbiont has triggered the symbiotic plant developmental program. Here we identify in Sinorhizobium meliloti, the Medicago symbiont, a cAMP-signaling regulatory cascade consisting of three receptor-like adenylate cyclases, a Crp-like regulator, and a target gene of unknown function. The cascade is activated specifically by a plant signal during nodule organogenesis. Cascade inactivation results in a hyperinfection phenotype consisting of abortive epidermal infection events uncoupled from nodulation. These findings show that, in response to a plant signal, rhizobia play an active role in the control of infection. We suggest that rhizobia may modulate the plant's susceptibility to infection. This regulatory loop likely aims at optimizing legume infection.


Asunto(s)
Adenilil Ciclasas/metabolismo , Medicago/parasitología , Plantas/metabolismo , Sinorhizobium meliloti/patogenicidad , AMP Cíclico/metabolismo , Transducción de Señal , Simbiosis
5.
Mol Plant Microbe Interact ; 27(9): 956-64, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25105803

RESUMEN

Nitrogen-fixing symbionts of legumes have appeared after the emergence of legumes on earth, approximately 70 to 130 million years ago. Since then, symbiotic proficiency has spread to distant genera of α- and ß-proteobacteria, via horizontal transfer of essential symbiotic genes and subsequent recipient genome remodeling under plant selection pressure. To tentatively replay rhizobium evolution in laboratory conditions, we previously transferred the symbiotic plasmid of the Mimosa symbiont Cupriavidus taiwanensis in the plant pathogen Ralstonia solanacearum, and selected spontaneous nodulating variants of the chimeric Ralstonia sp. using Mimosa pudica as a trap. Here, we pursued the evolution experiment by submitting two of the rhizobial drafts to serial ex planta-in planta (M. pudica) passages that may mimic alternating of saprophytic and symbiotic lives of rhizobia. Phenotyping 16 cycle-evolved clones showed strong and parallel evolution of several symbiotic traits (i.e., nodulation competitiveness, intracellular infection, and bacteroid persistence). Simultaneously, plant defense reactions decreased within nodules, suggesting that the expression of symbiotic competence requires the capacity to limit plant immunity. Nitrogen fixation was not acquired in the frame of this evolutionarily short experiment, likely due to the still poor persistence of final clones within nodules compared with the reference rhizobium C. taiwanensis. Our results highlight the potential of experimental evolution in improving symbiotic proficiency and for the elucidation of relationship between symbiotic capacities and elicitation of immune responses.


Asunto(s)
Mimosa/microbiología , Inmunidad de la Planta , Nodulación de la Raíz de la Planta , Ralstonia solanacearum/genética , Simbiosis/genética , Cupriavidus/genética , Evolución Molecular Dirigida , Leghemoglobina/análisis , Leghemoglobina/metabolismo , Mimosa/citología , Mimosa/inmunología , Fijación del Nitrógeno , Fenotipo , Raíces de Plantas/inmunología , Raíces de Plantas/microbiología , Plásmidos/genética , Ralstonia solanacearum/fisiología , Especies Reactivas de Oxígeno/análisis , Especies Reactivas de Oxígeno/metabolismo
6.
BMC Microbiol ; 13: 268, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24279347

RESUMEN

BACKGROUND: 3', 5'cAMP signaling in Sinorhizobium meliloti was recently shown to contribute to the autoregulation of legume infection. In planta, three adenylate cyclases CyaD1, CyaD2 and CyaK, synthesizing 3', 5'cAMP, together with the Crp-like transcriptional regulator Clr and smc02178, a gene of unknown function, are involved in controlling plant infection. RESULTS: Here we report on the characterization of a gene (smc02179, spdA) at the cyaD1 locus that we predicted to encode a class III cytoplasmic phosphodiesterase.First, we have shown that spdA had a similar pattern of expression as smc02178 in planta but did not require clr nor 3', 5'cAMP for expression.Second, biochemical characterization of the purified SpdA protein showed that, contrary to expectation, it had no detectable activity against 3', 5'cAMP and, instead, high activity against the positional isomers 2', 3'cAMP and 2', 3'cGMP.Third, we provide direct experimental evidence that the purified Clr protein was able to bind both 2', 3'cAMP and 3', 5'cAMP in vitro at high concentration. We further showed that Clr is a 3', 5'cAMP-dependent DNA-binding protein and identified a DNA-binding motif to which Clr binds. In contrast, 2', 3'cAMP was unable to promote Clr specific-binding to DNA and activate smc02178 target gene expression ex planta.Fourth, we have shown a negative impact of exogenous 2', 3'cAMP on 3', 5'cAMP-mediated signaling in vivo. A spdA null mutant was also partially affected in 3', 5'cAMP signaling. CONCLUSIONS: SpdA is a nodule-expressed 2', 3' specific phosphodiesterase whose biological function remains elusive. Circumstantial evidence suggests that SpdA may contribute insulating 3', 5'cAMP-based signaling from 2', 3' cyclic nucleotides of metabolic origin.


Asunto(s)
2',3'-Nucleótido Cíclico Fosfodiesterasas/metabolismo , Nucleótidos de Adenina/metabolismo , Sinorhizobium meliloti/enzimología , 2',3'-Nucleótido Cíclico Fosfodiesterasas/genética , 2',3'-Nucleótido Cíclico Fosfodiesterasas/aislamiento & purificación , Perfilación de la Expresión Génica , Unión Proteica , Sinorhizobium meliloti/genética
7.
PLoS Biol ; 8(1): e1000280, 2010 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-20084095

RESUMEN

Rhizobia are phylogenetically disparate alpha- and beta-proteobacteria that have achieved the environmentally essential function of fixing atmospheric nitrogen in symbiosis with legumes. Ample evidence indicates that horizontal transfer of symbiotic plasmids/islands has played a crucial role in rhizobia evolution. However, adaptive mechanisms that allow the recipient genomes to express symbiotic traits are unknown. Here, we report on the experimental evolution of a pathogenic Ralstonia solanacearum chimera carrying the symbiotic plasmid of the rhizobium Cupriavidus taiwanensis into Mimosa nodulating and infecting symbionts. Two types of adaptive mutations in the hrpG-controlled virulence pathway of R. solanacearum were identified that are crucial for the transition from pathogenicity towards mutualism. Inactivation of the hrcV structural gene of the type III secretion system allowed nodulation and early infection to take place, whereas inactivation of the master virulence regulator hrpG allowed intracellular infection of nodule cells. Our findings predict that natural selection of adaptive changes in the legume environment following horizontal transfer has been a major driving force in rhizobia evolution and diversification and show the potential of experimental evolution to decipher the mechanisms leading to symbiosis.


Asunto(s)
Fabaceae/microbiología , Rhizobium/genética , Simbiosis/genética , Adaptación Biológica , Quimera , Evolución Molecular Dirigida , Transferencia de Gen Horizontal , Fijación del Nitrógeno , Nodulación de la Raíz de la Planta/genética , Polimorfismo de Nucleótido Simple , Rhizobium/fisiología
8.
Appl Environ Microbiol ; 77(6): 2161-4, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21257807

RESUMEN

The beta-rhizobium Cupriavidus taiwanensis forms indeterminate nodules on Mimosa pudica. C. taiwanensis bacteroids resemble free-living bacteria in terms of genomic DNA content, cell size, membrane permeability, and viability, in contrast to bacteroids in indeterminate nodules of the galegoid clade. Bacteroid differentiation is thus unrelated to nodule ontogeny.


Asunto(s)
Cupriavidus/citología , Mimosa/microbiología , Nódulos de las Raíces de las Plantas/microbiología
9.
PLoS One ; 15(10): e0235446, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33002000

RESUMEN

We recently described a regulatory loop, which we termed autoregulation of infection (AOI), by which Sinorhizobium meliloti, a Medicago endosymbiont, downregulates the root susceptibility to secondary infection events via ethylene. AOI is initially triggered by so-far unidentified Medicago nodule signals named signal 1 and signal 1' whose transduction in bacteroids requires the S. meliloti outer-membrane-associated NsrA receptor protein and the cognate inner-membrane-associated adenylate cyclases, CyaK and CyaD1/D2, respectively. Here, we report on advances in signal 1 identification. Signal 1 activity is widespread as we robustly detected it in Medicago nodule extracts as well as in yeast and bacteria cell extracts. Biochemical analyses indicated a peptidic nature for signal 1 and, together with proteomic analyses, a universally conserved Medicago ribosomal protein of the uL2 family was identified as a candidate signal 1. Specifically, MtRPuL2A (MtrunA17Chr7g0247311) displays a strong signal activity that requires S. meliloti NsrA and CyaK, as endogenous signal 1. We have shown that MtRPuL2A is active in signaling only in a non-ribosomal form. A Medicago truncatula mutant in the major symbiotic transcriptional regulator MtNF-YA1 lacked most signal 1 activity, suggesting that signal 1 is under developmental control. Altogether, our results point to the MtRPuL2A ribosomal protein as the candidate for signal 1. Based on the Mtnf-ya1 mutant, we suggest a link between root infectiveness and nodule development. We discuss our findings in the context of ribosomal protein moonlighting.


Asunto(s)
Medicago truncatula , Proteínas de Plantas/metabolismo , Proteínas Ribosómicas/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Sinorhizobium meliloti/metabolismo , Coinfección/prevención & control , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/microbiología , Inmunidad de la Planta/genética , Proteínas de Plantas/genética , Nodulación de la Raíz de la Planta/fisiología , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Proteínas Ribosómicas/genética , Nódulos de las Raíces de las Plantas/microbiología , Transducción de Señal , Simbiosis
10.
Mol Plant Microbe Interact ; 21(9): 1232-41, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18700827

RESUMEN

Some Sinorhizobium meliloti mutants in genes involved in isoleucine, valine, and leucine biosynthesis were previously described as being unable to induce nodule formation on host plants. Here, we present a reappraisal of the interconnection between the branched-chain amino acid biosynthesis pathway and the nodulation process in S. meliloti. We characterized the symbiotic phenotype of seven mutants that are auxotrophic for isoleucine, valine, or leucine in two closely related S. meliloti strains, 1021 and 2011. We showed that all mutants were similarly impaired for nodulation and infection of the Medicago sativa host plant. In most cases, the nodulation phenotype was fully restored by the addition of the missing amino acids to the plant growth medium. This strongly suggests that auxotrophy is the cause of the nodulation defect of these mutants. However, we confirmed previous findings that ilvC and ilvD2 mutants in the S. meliloti 1021 genetic background could not be restored to nodulation by supplementation with exogenous amino acids even though their Nod factor production appeared to be normal.


Asunto(s)
Aminoácidos de Cadena Ramificada/biosíntesis , Medicago sativa/microbiología , Nódulos de las Raíces de las Plantas/microbiología , Sinorhizobium meliloti/fisiología , Proteínas Bacterianas/genética , Vías Biosintéticas/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Interacciones Huésped-Patógeno , Isoleucina/farmacología , Leucina/farmacología , Mutación , N-Acetilglucosaminiltransferasas/genética , Nodulación de la Raíz de la Planta/efectos de los fármacos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sinorhizobium meliloti/genética , Simbiosis/efectos de los fármacos , Simbiosis/genética , Simbiosis/fisiología , Valina/farmacología
11.
Nat Rev Microbiol ; 2(12): 933-45, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15550939

RESUMEN

Many of the alpha-proteobacteria establish long-term, often chronic, interactions with higher eukaryotes. These interactions range from pericellular colonization through facultative intracellular multiplication to obligate intracellular lifestyles. A common feature in this wide range of interactions is modulation of host-cell proliferation, which sometimes leads to the formation of tumour-like structures in which the bacteria can grow. Comparative genome analyses reveal genome reduction by gene loss in the intracellular alpha-proteobacterial lineages, and genome expansion by gene duplication and horizontal gene transfer in the free-living species. In this review, we discuss alpha-proteobacterial genome evolution and highlight strategies and mechanisms used by these bacteria to infect and multiply in eukaryotic cells.


Asunto(s)
Alphaproteobacteria/fisiología , Alphaproteobacteria/patogenicidad , Genoma Bacteriano , Animales , Evolución Biológica , Enfermedad Crónica , Células Eucariotas/microbiología , Infecciones por Bacterias Gramnegativas/microbiología , Humanos , Plantas/microbiología , Simbiosis , Virulencia
12.
Front Microbiol ; 8: 1236, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28729859

RESUMEN

The cAMP-dependent transcriptional regulator Clr of Sinorhizobium meliloti regulates the overall number of infection events on Medicago roots by a so-far unknown mechanism requiring smc02178, a Clr-target gene of unknown function. In order to shed light on the mode of action of Clr on infection and potentially reveal additional biological functions for Clr, we inventoried genomic Clr target genes by transcriptome profiling. We have found that Clr positively controls the synthesis of cAMP-dependent succinoglycan as well as the expression of genes involved in the synthesis of a so-far unknown polysaccharide compound. In addition, Clr activated expression of 24 genes of unknown function in addition to smc02178. Genes negatively controlled by Clr were mainly involved in swimming motility and chemotaxis. Functional characterization of two novel Clr-activated genes of unknown function, smb20495 and smc02177, showed that their expression was activated by the same plant signal as smc02178 ex planta. In planta, however, symbiotic expression of smc02177 proved independent of clr. Both smc02177 and smb20495 genes were strictly required for the control of secondary infection on M. sativa. None of the three smc02177, smc02178 and smb20495 genes were needed for plant signal perception. Altogether this work provides a refined view of the cAMP-dependent Clr regulon of S. meliloti. We specifically discuss the possible roles of smc02177, smc02178, smb20495 genes and other Clr-controlled genes in the control of secondary infection of Medicago roots.

13.
Mol Plant Microbe Interact ; 19(4): 363-72, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16610739

RESUMEN

Sinorhizobium meliloti is a soil bacterium able to induce the formation of nodules on the root of specific legumes, including alfalfa (Medicago sativa). Bacteria colonize nodules through infection threads, invade the plant intracellularly, and ultimately differentiate into bacteroids capable of reducing atmospheric nitrogen to ammonia, which is directly assimilated by the plant. As a first step to describe global changes in gene expression of S. meliloti during the symbiotic process, we used whole genome microarrays to establish the transcriptome profile of bacteria from nodules induced by a bacterial mutant blocked at the infection stage and from wild-type nodules harvested at various timepoints after inoculation. Comparison of these profiles to those of cultured bacteria grown either to log or stationary phase as well as examination of a number of genes with known symbiotic transcription patterns allowed us to correlate global gene-expression patterns to three known steps of symbiotic bacteria bacteroid differentiation, i.e., invading bacteria inside infection threads, young differentiating bacteroids, and fully differentiated, nitrogen-fixing bacteroids. Finally, analysis of individual gene transcription profiles revealed a number of new potential symbiotic genes.


Asunto(s)
Regulación Bacteriana de la Expresión Génica/genética , Medicago sativa/microbiología , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/fisiología , Simbiosis , Transcripción Genética/genética , Proteínas Bacterianas/metabolismo , Análisis por Conglomerados , Perfilación de la Expresión Génica , Raíces de Plantas
14.
Mol Plant Microbe Interact ; 17(3): 235-44, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15000390

RESUMEN

In this article, we describe the typA gene of Sinorhizobium meliloti, the orthologue of typA/bipA genes found in a wide range of bacteria. We found that typA was required for survival of S. meliloti under certain stress conditions, such as growth at low temperature or low pH and in the presence of sodium dodecyl sulfate (SDS). The cold-sensitive phenotype of both Escherichia coli bipA and S. meliloti typA mutants were cross-complemented, indicating that the two genes are functionally equivalent. typA was indispensable for symbiosis on Medicago truncatula Jemalong and F83005.5 and contributes to the full efficiency of symbiosis on other host plant lines such as DZA315.16 or several cultivars of M. sativa. Hence, the symbiotic requirement for typA is host dependent. Interestingly, the symbiotic defect was different on Jemalong and F83005.5 plants, thus indicating that typA is required at a different stage of the symbiotic interaction.


Asunto(s)
Adaptación Fisiológica/genética , Proteínas Bacterianas/genética , GTP Fosfohidrolasas/genética , Genes Bacterianos , Medicago/genética , Fijación del Nitrógeno/genética , Sinorhizobium meliloti/genética , Simbiosis/genética , Adaptación Fisiológica/fisiología , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Frío , Secuencia Conservada/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , GTP Fosfohidrolasas/metabolismo , Regulación Bacteriana de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Concentración de Iones de Hidrógeno , Lipopolisacáridos/metabolismo , Medicago/microbiología , Medicago/fisiología , Datos de Secuencia Molecular , Mutación , Fijación del Nitrógeno/fisiología , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología , Homología de Secuencia de Aminoácido , Sinorhizobium meliloti/efectos de los fármacos , Sinorhizobium meliloti/crecimiento & desarrollo , Dodecil Sulfato de Sodio/farmacología , Simbiosis/fisiología
15.
Mol Plant Microbe Interact ; 15(6): 598-607, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12059108

RESUMEN

AICAR, a purine-related metabolite, was recently shown to inhibit respiratory and nifA gene expression in Sino-rhizobium meliloti. Here, we demonstrate that AICAR has essentially no or little effect in a wild-type S. meliloti strain and inhibits respiratory and nitrogen fixation gene expression only in specific mutant backgrounds. We have analyzed in detail a mutant in which addition of AICAR inhibited fixK,fixN,fixT and nifA expression. The corresponding gene,fixM, is located just downstream of fixK1 on pSymA megaplasmid and encodes a flavoprotein oxidoreductase. 5'AMP, a structural analogue of AICAR, mimicked AICAR effect as well as the nucleoside precursors AICAriboside and adenosine. The mode of action of AICAR and 5'AMP in vivo was investigated. We demonstrate that AICAR does not affect FixK transcriptional activity and instead regulates fixK and nifA gene expression. We hypothesize that AICAR and 5'AMP may modulate, possibly indirectly, the activity of the FixLJ two-component regulatory system. The possible physiological roles of AICAR, 5'AMP, and fixM in the context of symbiosis are discussed.


Asunto(s)
Adenosina Monofosfato/farmacología , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Genes Bacterianos , Oxidorreductasas/metabolismo , Consumo de Oxígeno/genética , Ribonucleótidos/farmacología , Sinorhizobium meliloti/efectos de los fármacos , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Flavoproteínas/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Mutación , Fijación del Nitrógeno/genética , Oxidorreductasas/genética , Fenotipo , Homología de Secuencia de Aminoácido , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Simbiosis/genética
16.
Mol Plant Microbe Interact ; 17(3): 292-303, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15000396

RESUMEN

Sinorhizobium meliloti is an alpha-proteobacterium that alternates between a free-living phase in bulk soil or in the rhizosphere of plants and a symbiotic phase within the host plant cells, where the bacteria ultimately differentiate into nitrogen-fixing organelle-like cells, called bacteroids. As a step toward understanding the physiology of S. meliloti in its free-living and symbiotic forms and the transition between the two, gene expression profiles were determined under two sets of biological conditions: growth under oxic versus microoxic conditions, and in free-living versus symbiotic state. Data acquisition was based on both macro- and microarrays. Transcriptome profiles highlighted a profound modification of gene expression during bacteroid differentiation, with 16% of genes being altered. The data are consistent with an overall slow down of bacteroid metabolism during adaptation to symbiotic life and acquisition of nitrogen fixation capability. A large number of genes of unknown function, including potential regulators, that may play a role in symbiosis were identified. Transcriptome profiling in response to oxygen limitation indicated that up to 5% of the genes were oxygen regulated. However, the microoxic and bacteroid transcriptomes only partially overlap, implying that oxygen contributes to a limited extent to the control of symbiotic gene expression.


Asunto(s)
Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Oxígeno/farmacología , Sinorhizobium meliloti/genética , Simbiosis/genética , Adaptación Biológica/genética , Adaptación Biológica/fisiología , Perfilación de la Expresión Génica/métodos , Fijación del Nitrógeno/genética , Fijación del Nitrógeno/fisiología , Filogenia , Análisis por Matrices de Proteínas/métodos , Proteoma/genética , Proteoma/metabolismo , Sinorhizobium meliloti/metabolismo , Simbiosis/efectos de los fármacos , Simbiosis/fisiología , Transcripción Genética/genética
17.
PLoS One ; 8(2): e56043, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23409119

RESUMEN

Rhizobia are symbiotic soil bacteria able to intracellularly colonize legume nodule cells and form nitrogen-fixing symbiosomes therein. How the plant cell cytoskeleton reorganizes in response to rhizobium colonization has remained poorly understood especially because of the lack of an in vitro infection assay. Here, we report on the use of the heterologous HeLa cell model to experimentally tackle this question. We observed that the model rhizobium Sinorhizobium meliloti, and other rhizobia as well, were able to trigger a major reorganization of actin cytoskeleton of cultured HeLa cells in vitro. Cell deformation was associated with an inhibition of the three major small RhoGTPases Cdc42, RhoA and Rac1. Bacterial entry, cytoskeleton rearrangements and modulation of RhoGTPase activity required an intact S. meliloti biosynthetic pathway for queuosine, a hypermodifed nucleoside regulating protein translation through tRNA, and possibly mRNA, modification. We showed that an intact bacterial queuosine biosynthetic pathway was also required for effective nitrogen-fixing symbiosis of S. meliloti with its host plant Medicago truncatula, thus indicating that one or several key symbiotic functions of S. meliloti are under queuosine control. We discuss whether the symbiotic defect of que mutants may originate, at least in part, from an altered capacity to modify plant cell actin cytoskeleton.


Asunto(s)
Citoesqueleto/metabolismo , Medicago truncatula/microbiología , Nucleósido Q/biosíntesis , Sinorhizobium meliloti/metabolismo , Simbiosis , Vías Biosintéticas , GTP Fosfohidrolasas/metabolismo , Células HeLa , Humanos , Mutación , Nucleósido Q/genética , Sinorhizobium meliloti/genética , Proteínas de Unión al GTP rho/metabolismo
18.
ISME J ; 7(7): 1367-77, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23426010

RESUMEN

Soil bacteria known as rhizobia are able to establish an endosymbiosis with legumes that takes place in neoformed nodules in which intracellularly hosted bacteria fix nitrogen. Intracellular accommodation that facilitates nutrient exchange between the two partners and protects bacteria from plant defense reactions has been a major evolutionary step towards mutualism. Yet the forces that drove the selection of the late event of intracellular infection during rhizobium evolution are unknown. To address this question, we took advantage of the previous conversion of the plant pathogen Ralstonia solanacearum into a legume-nodulating bacterium that infected nodules only extracellularly. We experimentally evolved this draft rhizobium into intracellular endosymbionts using serial cycles of legume-bacterium cocultures. The three derived lineages rapidly gained intracellular infection capacity, revealing that the legume is a highly selective environment for the evolution of this trait. From genome resequencing, we identified in each lineage a mutation responsible for the extracellular-intracellular transition. All three mutations target virulence regulators, strongly suggesting that several virulence-associated functions interfere with intracellular infection. We provide evidence that the adaptive mutations were selected for their positive effect on nodulation. Moreover, we showed that inactivation of the type three secretion system of R. solanacearum that initially allowed the ancestral draft rhizobium to nodulate, was also required to permit intracellular infection, suggesting a similar checkpoint for bacterial invasion at the early nodulation/root infection and late nodule cell entry levels. We discuss our findings with respect to the spread and maintenance of intracellular infection in rhizobial lineages during evolutionary times.


Asunto(s)
Evolución Biológica , Fabaceae/microbiología , Rhizobium/genética , Simbiosis/genética , Sistemas de Secreción Bacterianos/genética , Mutación , Raíces de Plantas/microbiología , Rhizobium/patogenicidad , Factores de Virulencia/genética
19.
Curr Opin Microbiol ; 14(2): 181-7, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21236724

RESUMEN

For two decades, signalling research in the rhizobium-legume symbiosis field has been dominated by oligosaccharide signals (mainly Nod factors and, to a lesser extent, surface polysaccharides made by the microsymbionts) and phytohormones. Recently, plant peptides have emerged as another major class of signalling molecules in the rhizobium-legume symbioses contributing to the control of nodulation, infection and bacteroid differentiation. Here we focus on three examples of symbiotically relevant peptides, namely Enod40, CLE and NCR peptides. The number of genes encoding these peptides, as well as the recent discovery of additional peptide players in the context of symbiosis, suggests that we might be seeing only the tip of the peptide iceberg in the sea of symbiotic regulations.


Asunto(s)
Fabaceae/microbiología , Fabaceae/fisiología , Proteínas de Plantas/metabolismo , Rhizobium/fisiología , Transducción de Señal , Simbiosis , Nodulación de la Raíz de la Planta , Rhizobium/crecimiento & desarrollo , Rhizobium/metabolismo
20.
Trends Microbiol ; 17(10): 458-66, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19766492

RESUMEN

Rhizobia are phylogenetically disparate alpha- and beta-proteobacteria that have achieved the environmentally essential function of fixing atmospheric nitrogen (N(2)) in symbiosis with legumes. All rhizobia elicit the formation of root - or occasionally stem - nodules, plant organs dedicated to the fixation and assimilation of nitrogen. Bacterial colonization of these nodules culminates in a remarkable case of sustained intracellular infection in plants. Rhizobial phylogenetic diversity raised the question of whether these soil bacteria shared a common core of symbiotic genes. In this article, we review the cumulative evidence from recent genomic and genetic analyses pointing toward an unexpected variety of mechanisms that lead to symbiosis with legumes.


Asunto(s)
Alphaproteobacteria/fisiología , Betaproteobacteria/fisiología , Fabaceae/microbiología , Fijación del Nitrógeno , Raíces de Plantas/microbiología , Nódulos de las Raíces de las Plantas/microbiología , Simbiosis , Alphaproteobacteria/crecimiento & desarrollo , Alphaproteobacteria/metabolismo , Betaproteobacteria/crecimiento & desarrollo , Betaproteobacteria/metabolismo , Fabaceae/metabolismo , Modelos Biológicos , Raíces de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA