Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(19): e2221440120, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37126706

RESUMEN

Geraniol derived from essential oils of various plant species is widely used in the cosmetic and perfume industries. It is also an essential trait of the pleasant smell of rose flowers. In contrast to other monoterpenes which are produced in plastids via the methyl erythritol phosphate pathway, geraniol biosynthesis in roses relies on cytosolic NUDX1 hydrolase which dephosphorylates geranyl diphosphate (GPP). However, the metabolic origin of cytosolic GPP remains unknown. By feeding Rosa chinensis "Old Blush" flowers with pathway-specific precursors and inhibitors, combined with metabolic profiling and functional characterization of enzymes in vitro and in planta, we show that geraniol is synthesized through the cytosolic mevalonate (MVA) pathway by a bifunctional geranyl/farnesyl diphosphate synthase, RcG/FPPS1, producing both GPP and farnesyl diphosphate (FPP). The downregulation and overexpression of RcG/FPPS1 in rose petals affected not only geraniol and germacrene D emissions but also dihydro-ß-ionol, the latter due to metabolic cross talk of RcG/FPPS1-dependent isoprenoid intermediates trafficking from the cytosol to plastids. Phylogenetic analysis together with functional characterization of G/FPPS orthologs revealed that the G/FPPS activity is conserved among Rosaceae species. Site-directed mutagenesis and molecular dynamic simulations enabled to identify two conserved amino acids that evolved from ancestral FPPSs and contribute to GPP/FPP product specificity. Overall, this study elucidates the origin of the cytosolic GPP for NUDX1-dependent geraniol production, provides insights into the emergence of the RcG/FPPS1 GPPS activity from the ancestral FPPSs, and shows that RcG/FPPS1 plays a key role in the biosynthesis of volatile terpenoid compounds in rose flowers.


Asunto(s)
Geraniltranstransferasa , Rosa , Geraniltranstransferasa/genética , Ácido Mevalónico/metabolismo , Rosa/metabolismo , Citosol/metabolismo , Filogenia , Terpenos/metabolismo , Flores/metabolismo
2.
Plant Physiol ; 194(2): 1006-1023, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-37831417

RESUMEN

Citronellol is a pleasant-smelling compound produced in rose (Rosa spp.) flowers and in the leaves of many aromatic plants, including pelargoniums (Pelargonium spp.). Although geraniol production has been well studied in several plants, citronellol biosynthesis has been documented only in crab-lipped spider orchid (Caladenia plicata) and its mechanism remains open to question in other species. We therefore profiled 10 pelargonium accessions using RNA sequencing and gas chromatography-MS analysis. Three enzymes from the progesterone 5ß-reductase and/or iridoid synthase-like enzymes (PRISE) family were characterized in vitroand subsequently identified as citral reductases (named PhCIRs). Transgenic RNAi lines supported a role for PhCIRs in the biosynthesis of citronellol as well as in the production of mint-scented terpenes. Despite their high amino acid sequence identity, the 3 enzymes showed contrasting stereoselectivity, either producing mainly (S)-citronellal or a racemate of both (R)- and (S)-citronellal. Using site-directed mutagenesis, we identified a single amino acid substitution as being primarily responsible for the enzyme's enantioselectivity. Phylogenetic analysis of pelargonium PRISEs revealed 3 clades and 7 groups of orthologs. PRISEs from different groups exhibited differential affinities toward substrates (citral and progesterone) and cofactors (NADH/NADPH), but most were able to reduce both substrates, prompting hypotheses regarding the evolutionary history of PhCIRs. Our results demonstrate that pelargoniums evolved citronellol biosynthesis independently through a 3-step pathway involving PRISE homologs and both citral and citronellal as intermediates. In addition, these enzymes control the enantiomeric ratio of citronellol thanks to small alterations of the catalytic site.


Asunto(s)
Monoterpenos Acíclicos , Aldehídos , Pelargonium , Pelargonium/química , Pelargonium/metabolismo , Progesterona , Filogenia , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Plantas/metabolismo
3.
Plant Physiol ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39186538

RESUMEN

The fascinating scent of rose (Rosa genus) flowers has captivated human senses for centuries, making them one of the most popular and widely used floral fragrances. Despite much progress over the last decade, many biochemical pathways responsible for rose scents remain unclear. We analyzed the floral scent compositions from various rose varieties and selected the modern cultivar Rosa hybrida 'Double Delight' as a model system to unravel the formation of rose dominant volatile terpenes, which contribute substantially to the rose fragrance. Key genes involved in rose terpene biosynthesis were functionally characterized. Cytosolic geranyl diphosphate (GPP) generated by geranyl/farnesyl diphosphate synthase (G/FPPS1) catalysis, played a pivotal role in rose scent production, and terpene synthases (TPSs) in roses play an important role in the formation of most volatile terpenes, but not for geraniol, citral or ß-citronellol. Subsequently, a series of enzymes, including geraniol dehydrogenase (GeDH), geranial reductase (GER), 12-oxophytodienoate reductase (OPR) and citronellal reductase (CAR), were characterized as involved in the transformation of geraniol to ß-citronellol in roses through three successive steps. Interestingly, the ß-citronellol biosynthesis pathway appears to be conserved in other horticultural plants like Lagerstroemia caudata and Paeonia lactiflora. Our findings provide valuable insights into the biosynthesis of rose volatile terpenoid compounds and offer essential gene resources for future breeding and molecular modification efforts.

4.
Mol Biol Evol ; 39(2)2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35022771

RESUMEN

Nudix hydrolases are conserved enzymes ubiquitously present in all kingdoms of life. Recent research revealed that several Nudix hydrolases are involved in terpenoid metabolism in plants. In modern roses, RhNUDX1 is responsible for formation of geraniol, a major compound of rose scent. Nevertheless, this compound is produced by monoterpene synthases in many geraniol-producing plants. As a consequence, this raised the question about the origin of RhNUDX1 function and the NUDX1 gene evolution in Rosaceae, in wild roses or/and during the domestication process. Here, we showed that three distinct clades of NUDX1 emerged in the Rosoidae subfamily (Nudx1-1 to Nudx1-3 clades), and two subclades evolved in the Rosa genus (Nudx1-1a and Nudx1-1b subclades). We also showed that the Nudx1-1b subclade was more ancient than the Nudx1-1a subclade, and that the NUDX1-1a gene emerged by a trans-duplication of the more ancient NUDX1-1b gene. After the transposition, NUDX1-1a was cis-duplicated, leading to a gene dosage effect on the production of geraniol in different species. Furthermore, the NUDX1-1a appearance was accompanied by the evolution of its promoter, most likely from a Copia retrotransposon origin, leading to its petal-specific expression. Thus, our data strongly suggest that the unique function of NUDX1-1a in geraniol formation was evolved naturally in the genus Rosa before domestication.


Asunto(s)
Rosa , Rosaceae , Monoterpenos Acíclicos , Domesticación , Rosa/genética , Rosa/metabolismo
5.
Plant J ; 104(1): 185-199, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32639596

RESUMEN

Roses use a non-canonical pathway involving a Nudix hydrolase, RhNUDX1, to synthesize their monoterpenes, especially geraniol. Here we report the characterization of another expressed NUDX1 gene from the rose cultivar Rosa x wichurana, RwNUDX1-2. In order to study the function of the RwNUDX1-2 protein, we analyzed the volatile profiles of an F1 progeny generated by crossing R. chinensis cv. 'Old Blush' with R. x wichurana. A correlation test of the volatilomes with gene expression data revealed that RwNUDX1-2 is involved in the biosynthesis of a group of sesquiterpenoids, especially E,E-farnesol, in addition to other sesquiterpenes. In vitro enzyme assays and heterologous in planta functional characterization of the RwNUDX1-2 gene corroborated this result. A quantitative trait locus (QTL) analysis was performed using the data of E,E-farnesol contents in the progeny and a genetic map was constructed based on gene markers. The RwNUDX1-2 gene co-localized with the QTL for E,E-farnesol content, thereby confirming its function in sesquiterpenoid biosynthesis in R. x wichurana. Finally, in order to understand the structural bases for the substrate specificity of rose NUDX proteins, the RhNUDX1 protein was crystallized, and its structure was refined to 1.7 Å. By molecular modeling of different rose NUDX1 protein complexes with their respective substrates, a structural basis for substrate discrimination by rose NUDX1 proteins is proposed.


Asunto(s)
Proteínas de Plantas/metabolismo , Pirofosfatasas/metabolismo , Rosa/metabolismo , Sesquiterpenos/metabolismo , Farnesol/metabolismo , Genes de Plantas/genética , Genes de Plantas/fisiología , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Pirofosfatasas/genética , Pirofosfatasas/fisiología , Sitios de Carácter Cuantitativo/genética , Rosa/genética , Alineación de Secuencia , Hidrolasas Nudix
6.
Plant Physiol ; 179(3): 1064-1079, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30622153

RESUMEN

Floral scent is one of the most important characters in horticultural plants. Roses (Rosa spp.) have been cultivated for their scent since antiquity. However, probably by selecting for cultivars with long vase life, breeders have lost the fragrant character in many modern roses, especially the ones bred for the cut flower market. The genetic inheritance of scent characters has remained elusive so far. In-depth knowledge of this quantitative trait is thus very much needed to breed more fragrant commercial cultivars. Furthermore, rose hybrids harbor a composite genomic structure, which complexifies quantitative trait studies. To understand rose scent inheritance, we characterized a segregating population from two diploid cultivars, Rosa × hybrida cv H190 and Rosa wichurana, which have contrasting scent profiles. Several quantitative trait loci for the major volatile compounds in this progeny were identified. One among these loci contributing to the production of 2-phenylethanol, responsible for the characteristic odor of rose, was found to be colocalized with a candidate gene belonging to the 2-phenylethanol biosynthesis pathway: the PHENYLACETALDEHYDE SYNTHASE gene RhPAAS An in-depth allele-specific expression analysis in the progeny demonstrated that only one allele was highly expressed and was responsible for the production of 2-phenylethanol. Unexpectedly, its expression was found to start early during flower development, before the production of the volatile 2-phenylethanol, leading to the accumulation of glycosylated compounds in petals.


Asunto(s)
Alcohol Feniletílico/metabolismo , Proteínas de Plantas/fisiología , Rosa/metabolismo , Alelos , Vías Biosintéticas , Flores/genética , Flores/metabolismo , Odorantes , Alcohol Feniletílico/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sitios de Carácter Cuantitativo , Rosa/genética
7.
Plant Mol Biol ; 84(1-2): 227-41, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24078339

RESUMEN

In this paper we characterize three sTPSs: a germacrene D (LaGERDS), a (E)-ß-caryophyllene (LaCARS) and a τ-cadinol synthase (LaCADS). τ-cadinol synthase is reported here for the first time and its activity was studied in several biological models including transiently or stably transformed tobacco species. Three dimensional structure models of LaCADS and Ocimum basilicum γ-cadinene synthase were built by homology modeling using the template structure of Gossypium arboreum δ-cadinene synthase. The depiction of their active site organization provides evidence of the global influence of the enzymes on the formation of τ-cadinol: instead of a unique amino-acid, the electrostatic properties and solvent accessibility of the whole active site in LaCADS may explain the stabilization of the cadinyl cation intermediate. Quantitative PCR performed from leaves and inflorescences showed two patterns of expression. LaGERDS and LaCARS were mainly expressed during early stages of flower development and, at these stages, transcript levels paralleled the accumulation of the corresponding terpene products (germacrene D and (E)-ß-caryophyllene). By contrast, the expression level of LaCADS was constant in leaves and flowers. Phylogenetic analysis provided informative results on potential duplication process leading to sTPS diversification in lavender.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Lavandula/enzimología , Sesquiterpenos/metabolismo , Transferasas Alquil y Aril/genética , Secuencia de Aminoácidos , Lavandula/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Conformación Proteica , ARN de Planta/genética , ARN de Planta/metabolismo
8.
Naturwissenschaften ; 101(8): 623-35, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24925357

RESUMEN

Staining and histochemistry of volatile organic compounds (VOCs) were performed at different inflorescence developmental stages on nine aroid species; one temperate, Arum italicum and eight tropical from the genera Caladium, Dieffenbachia and Philodendron. Moreover, a qualitative and quantitative analysis of VOCs constituting the scent of A. italicum, depending on the stage of development of inflorescences was also conducted. In all nine species, vesicles were observed in the conical cells of either the appendix or the stamens (thecae) and the staminodes. VOCs were localised in intracellular vesicles from the early stages of inflorescence development until their release during receptivity of gynoecium. This localisation was observed by the increase of both number and diameter of the vesicles during 1 week before receptivity. Afterwards, vesicles were fewer and smaller but rarely absent. In A. italicum, staining and gas chromatography analyses confirmed that the vesicles contained terpenes. The quantitatively most important ones were the sesquiterpenes, but monoterpenes were not negligible. Indeed, the quantities of terpenes matched the vesicles' size evolution during 1 week. Furthermore, VOCs from different biosynthetic pathways (sesquiterpenes and alkanes) were at their maximum quantity 2 days before gynoecium receptivity (sesquiterpenes and alkanes) or during receptivity (isobutylamine, monoterpenes, skatole and p-cresol). VOCs seemed to be emitted during gynoecium receptivity and/or during thermogenesis, and FADs are accumulated after thermogenesis in the spadix. These complex dynamics of the different VOCs could indicate specialisation of some VOCs and cell machinery to attract pollinators on the one hand and to repulse/protect against phytophagous organisms and pathogens after pollination on the other hand.


Asunto(s)
Araceae/química , Arum/química , Polinización , Compuestos Orgánicos Volátiles/análisis , Araceae/crecimiento & desarrollo , Arum/crecimiento & desarrollo , Cromatografía de Gases , Hojas de la Planta/química , Terpenos/análisis
9.
BMC Genomics ; 13: 638, 2012 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-23164410

RESUMEN

BACKGROUND: For centuries roses have been selected based on a number of traits. Little information exists on the genetic and molecular basis that contributes to these traits, mainly because information on expressed genes for this economically important ornamental plant is scarce. RESULTS: Here, we used a combination of Illumina and 454 sequencing technologies to generate information on Rosa sp. transcripts using RNA from various tissues and in response to biotic and abiotic stresses. A total of 80714 transcript clusters were identified and 76611 peptides have been predicted among which 20997 have been clustered into 13900 protein families. BLASTp hits in closely related Rosaceae species revealed that about half of the predicted peptides in the strawberry and peach genomes have orthologs in Rosa dataset. Digital expression was obtained using RNA samples from organs at different development stages and under different stress conditions. qPCR validated the digital expression data for a selection of 23 genes with high or low expression levels. Comparative gene expression analyses between the different tissues and organs allowed the identification of clusters that are highly enriched in given tissues or under particular conditions, demonstrating the usefulness of the digital gene expression analysis. A web interface ROSAseq was created that allows data interrogation by BLAST, subsequent analysis of DNA clusters and access to thorough transcript annotation including best BLAST matches on Fragaria vesca, Prunus persica and Arabidopsis. The rose peptides dataset was used to create the ROSAcyc resource pathway database that allows access to the putative genes and enzymatic pathways. CONCLUSIONS: The study provides useful information on Rosa expressed genes, with thorough annotation and an overview of expression patterns for transcripts with good accuracy.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Proteínas de Plantas/genética , Brotes de la Planta/genética , ARN Mensajero/genética , Rosa/genética , Programas Informáticos , Bases de Datos Genéticas , Etiquetas de Secuencia Expresada , Fragaria/genética , Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Familia de Multigenes , Reacción en Cadena de la Polimerasa , Prunus/genética , Transcriptoma
10.
Foods ; 11(1)2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35010259

RESUMEN

Nowadays, the combination of molecules influences their biological effects, and interesting outcomes can be obtained from different component interactions. Using a mixture design method, this research seeks to simulate the efficacy of essential oil combinations against various bacteria and forecast the ideal combination. The chemical compositions of Myrtus communis, Artemisia herba-alba and Thymus serpyllum essential oils were analyzed using CG/MS. Then, the combined antibacterial effects were evaluated by testing mixture design formulations using the microdilution bioassay. The main compounds detected for M. communis essential oil were myrtenyl acetate (33.67%), linalool (19.77%) and 1,8-cineole (10.65%). A. herba-alba had piperitone as a chemotype, representing 85%. By contrast, the T. serpyllum oil contained thymol (17.29%), γ-terpinene (18.31%) and p-cymene (36.15%). The antibacterial effect of the essential oils studied, and the optimum mixtures obtained were target strain-dependent. T. serpyllum alone ensured the optimal inhibition against S. aureus and E. coli, while a ternary mixture consisting of 17.1%, 39.6% and 43.1% of M. communis, A. herba-alba and T. serpyllum respectively, was associated with optimal inhibitory activity against B. subtilis. The outcome of this research supports the idea of the boosting effect of essential oil combinations toward better activities, giving better understanding of the usefulness of mixture designs for food, cosmetics, and pharmaceutical applications.

11.
Proc Natl Acad Sci U S A ; 105(15): 5927-32, 2008 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-18413608

RESUMEN

The phenolic methyl ether 3,5-dimethoxytoluene (DMT) is a major scent compound of many modern rose varieties, and its fragrance participates in the characteristic "tea scent" that gave their name to Tea and Hybrid Tea roses. Among wild roses, phenolic methyl ether (PME) biosynthesis is restricted to Chinese rose species, but the progenitors of modern roses included both European and Chinese species (e.g., Rosa chinensis cv Old Blush), so this trait was transmitted to their hybrid progeny. The last steps of the biosynthetic pathways leading to DMT involve two methylation reactions catalyzed by the highly similar orcinol O-methyltransferases (OOMT) 1 and 2. OOMT1 and OOMT2 enzymes exhibit different substrate specificities that are consistent with their operating sequentially in DMT biosynthesis. Here, we show that these different substrate specificities are mostly due to a single amino acid polymorphism in the phenolic substrate binding site of OOMTs. An analysis of the OOMT gene family in 18 species representing the diversity of the genus Rosa indicated that only Chinese roses possess both the OOMT2 and the OOMT1 genes. In addition, we provide evidence that the Chinese-rose-specific OOMT1 genes most probably evolved from an OOMT2-like gene that has homologues in the genomes of all extant roses. We propose that the emergence of the OOMT1 gene may have been a critical step in the evolution of scent production in Chinese roses.


Asunto(s)
Anisoles , Evolución Biológica , Metiltransferasas/genética , Odorantes/análisis , Rosa , Secuencia de Bases , China , Europa (Continente) , Flores , Metilación , Datos de Secuencia Molecular , Polimorfismo Genético , Especificidad por Sustrato/genética
12.
Plants (Basel) ; 10(5)2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-34064538

RESUMEN

As requested by the Editorial Office, the authors remove the scientific consortium "Camille Nous" from the author list and the Author Contributions section in the published paper [...].

13.
New Phytol ; 188(2): 451-63, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20553385

RESUMEN

• Floral scents and visual cues of the globeflower Trollius europaeus may play a key role in the attraction of Chiastocheta flies, involved in a highly specific nursery pollination mutualism. • Here, headspace collection and GC-MS were used to identify and quantify the volatile organic compounds emitted by the globeflower. • Scents are produced in three different floral parts by four structures: secretory glands and flat epidermis cells in the abaxial sepal epidermis, conical cells in the adaxial sepal epidermis, and pollen. The blend is made up of 16 compounds commonly found in floral scents. Geographical variation among populations is low compared with variation amongst individuals within populations. Electroantenno-graphic analyses revealed that six compounds emitted by both anthers and sepals are detected by Chiastocheta flies. Removing the anthers hidden inside the globe from flowers in the field decreased the number of fly visits to globeflowers. • A multivariate analysis of the effect of several floral traits on pollinator visitation rate conducted in the field showed that both floral scents and visual flower cues play a role in pollinator attraction. However, their relative roles and the intensity of the selective pressures exerted on floral traits by pollinators appear to vary in time and space.


Asunto(s)
Dípteros/fisiología , Flores/anatomía & histología , Feromonas/metabolismo , Pigmentos Biológicos/metabolismo , Polinización/fisiología , Ranunculaceae/anatomía & histología , Compuestos Orgánicos Volátiles/análisis , Animales , Cromatografía de Gases , Intervalos de Confianza , Fenómenos Electrofisiológicos , Flores/citología , Análisis de los Mínimos Cuadrados , Modelos Lineales , Odorantes/análisis , Carácter Cuantitativo Heredable , Ranunculaceae/citología , Especificidad de la Especie
14.
Methods Mol Biol ; 2172: 223-232, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32557372

RESUMEN

Virus-induced gene silencing (VIGS) is a favorable method to study gene function by posttranscriptional gene silencing in plants. Here we describe a methodology of graft-accelerated VIGS in rose aimed at obtaining posttranscriptional gene silencing in the flower. The resulting phenotype can be observed within 5-6 weeks post infiltration. By using this method, we successfully silenced the expression of several genes involved in processes such as scent production, petal coloration, or flower architecture. We showed that graft-accelerated VIGS was faster, more efficient, and more convenient than conventional methods previously developed in rose such as agroinfiltration of young plantlets and in vitro cultured tissues or seeds.


Asunto(s)
Flores/virología , Virus de Plantas/patogenicidad , Rosa/virología , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Silenciador del Gen/fisiología , Virus de Plantas/genética , Rosa/metabolismo
15.
Plants (Basel) ; 9(12)2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33255497

RESUMEN

The true lavender Lavandula angustifolia Miller is a Mediterranean aromatic shrub widely cultivated for its high quality essential oil used in perfumery and phytotherapy. Despite its economic importance, the intra-specific diversity among wild, non-cultivated plants remains poorly understood. We analyzed the structure of the chemical and genetic diversity of plants from 14 sites sampled over the entire native range of the true lavender. Volatile organic compounds of inflorescences were analyzed using gas chromatography coupled to mass spectrometry. Genotyping was performed with fingerprinting genetic markers. To limit the influence of environmental variability on chemical composition, plants were grown in the same conditions in a common garden. Without prior knowledge, discriminant analysis of principal component identified unambiguously four distinct chemotypes among three genetic populations. Co-inertia analysis and supervised analysis which integrated multiple datasets indicated a strong congruency between chemical and genetic patterns. Two distinct genetic units were located at the edge of the distribution area in the south of Italy and in the northeast of Spain, and were associated with two distinct chemotypes. Our results confirmed the existence of three genetically distinct entities, suggesting speciation. All French populations and the Italian Piedmontese population were genetically homogeneous but separated in two distinct chemotypes. The dominant chemotype was present in the center of the native range in southeastern France and was at the origin of the current most cultivated French varieties. Its main compounds were linalyl acetate, linalool, and caryophyllene oxide. The second French chemotype was found in south of Massif Central and presented high abundance of valuable linalyl and lavandulyl acetates. Linalool, eucalyptol, ß-caryophyllene, borneol, camphor, and cis-sabinene-hydrate were significantly associated with southern latitudes and their role would be worth exploring.

16.
J Complement Integr Med ; 16(3)2019 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-30661057

RESUMEN

Background Myrtus communis L. is an aromatic evergreen plant common in Morocco. In addition to its culinary uses, it has been used medicinally as a disinfectant, an antiseptic or as a hypoglycemic agent. However, its cytotoxic activity has not been well investigated so far. The current study describes the chemical composition, cytotoxic and antioxidant activities of Myrtus communis L essential oil obtained from different regions of Morocco. Methods Myrtus communis essential oils were obtained by hydrodistillation, and analyzed by gas chromatography coupled with mass spectrometry. Cytotoxic activity was evaluated in murine mastocytoma P815 and MCF-7 breast cancer cells, using the MTT assay. In addition, DNA fragmentation was assessed by gel electrophoresis. The antioxidant effect was determined by measuring bleaching of ß-carotene with the linoleic acid and the DPPH radical scavenging methods. Results GC-MS analysis showed high amounts of methyl eugenol (18.7%), α-terpineol (15.5%) and geranyl acetate (11.64%) in essential oil from the Benslimane region. In contrast, essential oil from Ouazzane was particularly rich in 1,8-cineole (36.3%). The cytotoxicity results showed that MCF-7 cells were more sensitive than P815 cells to the essential oils from Ouazzane and Benslimane regions with IC50 values of 4 and 6.25 µg/mL, respectively. Moreover, this cytotoxicity was partly associated with DNA fragmentation, which is one of the characteristics of apoptosis. The tested essential oils did not show strong antioxidant activity. Conclusions Myrtus communis L. essential oil exhibits a weak antioxidant effect, but induced remarkable cytotoxic activity by a mechanism related to apoptosis, suggesting a possible application of the bioactive compounds as natural anticancer compounds.


Asunto(s)
Antioxidantes/química , Myrtus/química , Aceites Volátiles/química , Fitoquímicos/química , Aceites de Plantas/química , Animales , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Fragmentación del ADN/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas , Humanos , Ratones , Marruecos , Aceites Volátiles/farmacología , Fitoquímicos/farmacología , Aceites de Plantas/farmacología
17.
Hortic Res ; 6: 65, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31069087

RESUMEN

The recent completion of the rose genome sequence is not the end of a process, but rather a starting point that opens up a whole set of new and exciting activities. Next to a high-quality genome sequence other genomic tools have also become available for rose, including transcriptomics data, a high-density single-nucleotide polymorphism array and software to perform linkage and quantitative trait locus mapping in polyploids. Rose cultivars are highly heterogeneous and diverse. This vast diversity in cultivated roses can be explained through the genetic potential of the genus, introgressions from wild species into commercial tetraploid germplasm and the inimitable efforts of historical breeders. We can now investigate how this diversity can best be exploited and refined in future breeding work, given the rich molecular toolbox now available to the rose breeding community. This paper presents possible lines of research now that rose has entered the genomics era, and attempts to partially answer the question that arises after the completion of any draft genome sequence: 'Now that we have "the" genome, what's next?'. Having access to a genome sequence will allow both (fundamental) scientific and (applied) breeding-orientated questions to be addressed. We outline possible approaches for a number of these questions.

18.
Plant Physiol Biochem ; 127: 74-87, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29550664

RESUMEN

Roses are widely appreciated for the appearance of their flowers and for their fragrance. This latter character results from the combination of different odorant molecules among which monoterpenes are often prevalent constituents. In this study, we report the cloning and characterization of three rose monoterpene synthases. In vitro functional characterization of these enzymes showed that one is a (-)-(3R)-linalool synthase whereas the others have a dual (+)-(3S)-linalool nerolidol synthase activity. However, given that the characterized rose cultivars were only able to produce the (-)-(3R)-linalool stereoisomer, the linalool nerolidol synthases are probably not active in planta. Furthermore, these three enzymes were also characterized by a weak expression level as assessed by RT-qPCR and by the low abundance of the corresponding sequences in an EST library. This characteristic is likely to explain why linalool is generally a minor constituent in rose flowers' scents. On this basis, we propose that in roses the monoterpene biosynthesis effort is focused on the production of acyclic monoterpenes derived from geraniol through the recently characterized Nudix biosynthesis pathway, at the expense of conventional monoterpene biosynthesis via terpene synthases such as linalool or linalool nerolidol synthases.


Asunto(s)
Hidroliasas , Monoterpenos/metabolismo , Proteínas de Plantas , Rosa , Sesquiterpenos/metabolismo , Monoterpenos Acíclicos , Hidroliasas/genética , Hidroliasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rosa/genética , Rosa/metabolismo
19.
Plant Physiol Biochem ; 129: 21-26, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29787935

RESUMEN

The floral volatile compound eugenol is an important constituent in many aromatic plants, being a floral attractant for pollinators as well as having antimicrobial activity. Rose flowers emit eugenol and its derivatives. We recently reported a eugenol synthase gene (RcEGS1) (JQ522949) that was present in petals of R. chinensis cv. Old Blush. RcEGS1 has its highest expression levels in the petals compared to other tissues; it has higher transcript levels at the developmental blooming stage and lower levels at budding and senescence stages. Here, we overexpressed the RcEGS1 protein in Escherichia coli, and showed by Western-blot analysis that its expression was mainly detected in stamens and petals at the flower opening stage. RcEGS1 was principally localized in the upper and lower epidermal layers, which are the major sites of scent emission in roses. Furthermore, we demonstrated that down-regulation of RcEGS1 expression in flowers by virus-induced gene silencing led to a reduction of the relative content of eugenol. We suggested that RcEGS1 was responsible for eugenol biosynthesis in roses.


Asunto(s)
Eugenol/metabolismo , Genes de Plantas/genética , Proteínas de Plantas/genética , Rosa/genética , Western Blotting , Regulación hacia Abajo , Escherichia coli , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/fisiología , Microorganismos Modificados Genéticamente , Proteínas de Plantas/fisiología , Rosa/enzimología
20.
Front Plant Sci ; 9: 1435, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30483274

RESUMEN

Pelargonium genus contains about 280 species among which at least 30 species are odorant. Aromas produced by scented species are remarkably diverse such as rose, mint, lemon, nutmeg, ginger and many others scents. Amongst odorant species, rose-scented pelargoniums, also named pelargonium rosat, are the most famous hybrids for their production of essential oil (EO), widely used by perfume and cosmetic industries. Although EO composition has been extensively studied, the underlying biosynthetic pathways and their regulation, most notably of terpenes, are largely unknown. To gain a better understanding of the terpene metabolic pathways in pelargonium rosat, we generated a transcriptome dataset of pelargonium leaf and used a candidate gene approach to functionally characterise four terpene synthases (TPSs), including a geraniol synthase, a key enzyme responsible for the biosynthesis of the main rose-scented terpenes. We also report for the first time the characterisation of a novel sesquiterpene synthase catalysing the biosynthesis of 10-epi-γ-eudesmol. We found a strong correlation between expression of the four genes encoding the respective TPSs and accumulation of the corresponding products in several pelargonium cultivars and species. Finally, using publically available RNA-Seq data and de novo transcriptome assemblies, we inferred a maximum likelihood phylogeny from 270 pelargonium TPSs, including the four newly discovered enzymes, providing clues about TPS evolution in the Pelargonium genus. Notably, we show that, by contrast to other TPSs, geraniol synthases from the TPS-g subfamily conserved their molecular function throughout evolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA