Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Mol Psychiatry ; 26(10): 5592-5607, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33144711

RESUMEN

Although APP metabolism is being intensively investigated, a large fraction of its modulators is yet to be characterized. In this context, we combined two genome-wide high-content screenings to assess the functional impact of miRNAs and genes on APP metabolism and the signaling pathways involved. This approach highlighted the involvement of FERMT2 (or Kindlin-2), a genetic risk factor of Alzheimer's disease (AD), as a potential key modulator of axon guidance, a neuronal process that depends on the regulation of APP metabolism. We found that FERMT2 directly interacts with APP to modulate its metabolism, and that FERMT2 underexpression impacts axonal growth, synaptic connectivity, and long-term potentiation in an APP-dependent manner. Last, the rs7143400-T allele, which is associated with an increased AD risk and localized within the 3'UTR of FERMT2, induced a downregulation of FERMT2 expression through binding of miR-4504 among others. This miRNA is mainly expressed in neurons and significantly overexpressed in AD brains compared to controls. Altogether, our data provide strong evidence for a detrimental effect of FERMT2 underexpression in neurons and insight into how this may influence AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Humanos , Proteínas de la Membrana , Proteínas de Neoplasias , Plasticidad Neuronal/genética , Neuronas , Factores de Riesgo
2.
Acta Neuropathol ; 141(1): 39-65, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33079262

RESUMEN

Several lines of recent evidence indicate that the amyloid precursor protein-derived C-terminal fragments (APP-CTFs) could correspond to an etiological trigger of Alzheimer's disease (AD) pathology. Altered mitochondrial homeostasis is considered an early event in AD development. However, the specific contribution of APP-CTFs to mitochondrial structure, function, and mitophagy defects remains to be established. Here, we demonstrate in neuroblastoma SH-SY5Y cells expressing either APP Swedish mutations, or the ß-secretase-derived APP-CTF fragment (C99) combined with ß- and γ-secretase inhibition, that APP-CTFs accumulation independently of Aß triggers excessive mitochondrial morphology alteration (i.e., size alteration and cristae disorganization) associated with enhanced mitochondrial reactive oxygen species production. APP-CTFs accumulation also elicit basal mitophagy failure illustrated by enhanced conversion of LC3, accumulation of LC3-I and/or LC3-II, non-degradation of SQSTM1/p62, inconsistent Parkin and PINK1 recruitment to mitochondria, enhanced levels of membrane and matrix mitochondrial proteins, and deficient fusion of mitochondria with lysosomes. We confirm the contribution of APP-CTFs accumulation to morphological mitochondria alteration and impaired basal mitophagy in vivo in young 3xTgAD transgenic mice treated with γ-secretase inhibitor as well as in adeno-associated-virus-C99 injected mice. Comparison of aged 2xTgAD and 3xTgAD mice indicates that, besides APP-CTFs, an additional contribution of Aß to late-stage mitophagy activation occurs. Importantly, we report on mitochondrial accumulation of APP-CTFs in human post-mortem sporadic AD brains correlating with mitophagy failure molecular signature. Since defective mitochondria homeostasis plays a pivotal role in AD pathogenesis, targeting mitochondrial dysfunctions and/or mitophagy by counteracting early APP-CTFs accumulation may represent relevant therapeutic interventions in AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/patología , Mitocondrias/patología , Mitocondrias/ultraestructura , Mitofagia/genética , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/metabolismo , Autopsia , Línea Celular , Femenino , Humanos , Potencial de la Membrana Mitocondrial , Ratones , Mitocondrias/metabolismo , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Especies Reactivas de Oxígeno/metabolismo
4.
Acta Neuropathol ; 134(5): 749-767, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28631094

RESUMEN

The mechanisms underlying ryanodine receptor (RyR) dysfunction associated with Alzheimer disease (AD) are still not well understood. Here, we show that neuronal RyR2 channels undergo post-translational remodeling (PKA phosphorylation, oxidation, and nitrosylation) in brains of AD patients, and in two murine models of AD (3 × Tg-AD, APP +/- /PS1 +/-). RyR2 is depleted of calstabin2 (KFBP12.6) in the channel complex, resulting in endoplasmic reticular (ER) calcium (Ca2+) leak. RyR-mediated ER Ca2+ leak activates Ca2+-dependent signaling pathways, contributing to AD pathogenesis. Pharmacological (using a novel RyR stabilizing drug Rycal) or genetic rescue of the RyR2-mediated intracellular Ca2+ leak improved synaptic plasticity, normalized behavioral and cognitive functions and reduced Aß load. Genetically altered mice with congenitally leaky RyR2 exhibited premature and severe defects in synaptic plasticity, behavior and cognitive function. These data provide a mechanism underlying leaky RyR2 channels, which could be considered as potential AD therapeutic targets.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Calcio/metabolismo , Trastornos del Conocimiento/metabolismo , Procesamiento Proteico-Postraduccional , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Enfermedad de Alzheimer/patología , Animales , Señalización del Calcio , Trastornos del Conocimiento/patología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Femenino , Humanos , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Transgénicos , Estrés Oxidativo/fisiología , Fosforilación , Reconocimiento en Psicología/fisiología , Retículo Sarcoplasmático/metabolismo
5.
Acta Neuropathol ; 133(6): 955-966, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27933404

RESUMEN

Genome-wide association studies (GWASs) have identified 19 susceptibility loci for Alzheimer's disease (AD). However, understanding how these genes are involved in the pathophysiology of AD is one of the main challenges of the "post-GWAS" era. At least 123 genes are located within the 19 susceptibility loci; hence, a conventional approach (studying the genes one by one) would not be time- and cost-effective. We therefore developed a genome-wide, high-content siRNA screening approach and used it to assess the functional impact of gene under-expression on APP metabolism. We found that 832 genes modulated APP metabolism. Eight of these genes were located within AD susceptibility loci. Only FERMT2 (a ß3-integrin co-activator) was also significantly associated with a variation in cerebrospinal fluid Aß peptide levels in 2886 AD cases. Lastly, we showed that the under-expression of FERMT2 increases Aß peptide production by raising levels of mature APP at the cell surface and facilitating its recycling. Taken as a whole, our data suggest that FERMT2 modulates the AD risk by regulating APP metabolism and Aß peptide production.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , ARN Interferente Pequeño/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Biomarcadores/líquido cefalorraquídeo , Membrana Celular/metabolismo , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Sitios Genéticos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Células HEK293 , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Neuronas/metabolismo , Neuronas/patología , Interferencia de ARN , Ratas
7.
Cell Mol Life Sci ; 73(1): 217-36, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26202697

RESUMEN

Membrane-type 5-matrix metalloproteinase (MT5-MMP) is a proteinase mainly expressed in the nervous system with emerging roles in brain pathophysiology. The implication of MT5-MMP in Alzheimer's disease (AD), notably its interplay with the amyloidogenic process, remains elusive. Accordingly, we crossed the genetically engineered 5xFAD mouse model of AD with MT5-MMP-deficient mice and examined the impact of MT5-MMP deficiency in bigenic 5xFAD/MT5-MMP(-/-) mice. At early stages (4 months) of the pathology, the levels of amyloid beta peptide (Aß) and its amyloid precursor protein (APP) C-terminal fragment C99 were largely reduced in the cortex and hippocampus of 5xFAD/MT5-MMP(-/-), compared to 5xFAD mice. Reduced amyloidosis in bigenic mice was concomitant with decreased glial reactivity and interleukin-1ß (IL-1ß) levels, and the preservation of long-term potentiation (LTP) and spatial learning, without changes in the activity of α-, ß- and γ-secretases. The positive impact of MT5-MMP deficiency was still noticeable at 16 months of age, as illustrated by reduced amyloid burden and gliosis, and a better preservation of the cortical neuronal network and synaptophysin levels in bigenic mice. MT5-MMP expressed in HEKswe cells colocalized and co-immunoprecipitated with APP and significantly increased the levels of Aß and C99. MT5-MMP also promoted the release of a soluble APP fragment of 95 kDa (sAPP95) in HEKswe cells. sAPP95 levels were significantly reduced in brain homogenates of 5xFAD/MT5-MMP(-/-) mice, supporting altogether the idea that MT5-MMP influences APP processing. MT5-MMP emerges as a new pro-amyloidogenic regulator of APP metabolism, whose deficiency alleviates amyloid pathology, neuroinflammation and cognitive decline.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/fisiopatología , Hipocampo/enzimología , Hipocampo/fisiopatología , Metaloproteinasas de la Matriz Asociadas a la Membrana/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/análisis , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/análisis , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/análisis , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Cognición , Femenino , Eliminación de Gen , Células HEK293 , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Potenciación a Largo Plazo , Masculino , Metaloproteinasas de la Matriz Asociadas a la Membrana/análisis , Metaloproteinasas de la Matriz Asociadas a la Membrana/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Aprendizaje Espacial
8.
Acta Neuropathol ; 132(2): 257-276, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27138984

RESUMEN

Endosomal-autophagic-lysosomal (EAL) dysfunction is an early and prominent neuropathological feature of Alzheimers's disease, yet the exact molecular mechanisms contributing to this pathology remain undefined. By combined biochemical, immunohistochemical and ultrastructural approaches, we demonstrate a link between EAL pathology and the intraneuronal accumulation of the ß-secretase-derived ßAPP fragment (C99) in two in vivo models, 3xTgAD mice and adeno-associated viral-mediated C99-infected mice. We present a pathological loop in which the accumulation of C99 is both the effect and causality of impaired lysosomal-autophagic function. The deleterious effect of C99 was found to be linked to its aggregation within EAL-vesicle membranes leading to disrupted lysosomal proteolysis and autophagic impairment. This effect was Aß independent and was even exacerbated when γ-secretase was pharmacologically inhibited. No effect was observed in inhibitor-treated wild-type animals suggesting that lysosomal dysfunction was indeed directly linked to C99 accumulation. In some brain areas, strong C99 expression also led to inflammatory responses and synaptic dysfunction. Taken together, this work demonstrates a toxic effect of C99 which could underlie some of the early-stage anatomical hallmarks of Alzheimer's disease pathology. Our work also proposes molecular mechanisms likely explaining some of the unfavorable side-effects associated with γ-secretase inhibitor-directed therapies.


Asunto(s)
Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/patología , Neuronas/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Autofagia/fisiología , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Endosomas/metabolismo , Lisosomas/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/patología
9.
Cell Death Dis ; 15(5): 367, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806484

RESUMEN

Mitochondria dysfunctions and mitophagy failure have been associated with several Alzheimer's disease (AD) related molecular actors including amyloid beta (Aß) and recently the amyloid precursor protein-C terminal fragments (APP-CTFs). The efficacy of the mitophagy process in neurons relies on regulated mitochondrial transport along axons involving a complex molecular machinery. The contribution of the amyloid precursor protein (APP) and its derived fragments to the mitochondrial transport machinery alterations in AD have not been investigated before. We report herein a change of the expression of mitochondrial transport proteins (SNPH and Miro1), motor adapters (TRANK1 and TRAK2), and components of the dynein and kinesin motors (i.e., IC1,2 and Kif5 (A, B, C) isoforms) by endogenous APP and by overexpression of APP carrying the familial Swedish mutation (APPswe). We show that APP-CTFs and Aß concomitantly regulate the expression of a set of transport proteins as demonstrated in APPswe cells treated with ß- and γ-secretase inhibitors and in cells Knock-down for presenilin 1 and 2. We further report the impact of APP-CTFs on the expression of transport proteins in AAV-injected C99 mice brains. Our data also indicate that both Aß oligomers (Aßo) and APP-CTFs impair the colocalization of mitochondria and transport proteins. This has been demonstrated in differentiated SH-SY5Y naive cells treated with Aßo and in differentiated SH-SY5Y and murine primary neurons expressing APPswe and treated with the γ-secretase inhibitor. Importantly, we uncover that the expression of a set of transport proteins is modulated in a disease-dependent manner in 3xTgAD mice and in human sporadic AD brains. This study highlights molecular mechanisms underlying mitochondrial transport defects in AD that likely contribute to mitophagy failure and disease progression.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Mitocondrias , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Mitocondrias/metabolismo , Humanos , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Cinesinas/metabolismo , Transporte Biológico , Mitofagia , Proteínas del Tejido Nervioso , Proteínas de Unión al GTP rho , Péptidos y Proteínas de Señalización Intracelular
10.
J Neurosci ; 32(46): 16243-1655a, 2012 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-23152608

RESUMEN

Triple-transgenic mice (3xTgAD) overexpressing Swedish-mutated ß-amyloid precursor protein (ßAPP(swe)), P310L-Tau (Tau(P301L)), and physiological levels of M146V-presenilin-1 (PS1(M146V)) display extracellular amyloid-ß peptides (Aß) deposits and Tau tangles. More disputed is the observation that these mice accumulate intraneuronal Aß that has been linked to synaptic dysfunction and cognitive deficits. Here, we provide immunohistological, genetic, and pharmacological evidences for early, age-dependent, and hippocampus-specific accumulation of the ß-secretase-derived ßAPP fragment C99 that is observed from 3 months of age and enhanced by pharmacological blockade of γ-secretase. Notably, intracellular Aß is only detectable several months later and appears, as is the case of C99, in enlarged cathepsin B-positive structures, while extracellular Aß deposits are detected ~12 months of age and beyond. Early C99 production occurs mainly in the CA1/subicular interchange area of the hippocampus corresponding to the first region exhibiting plaques and tangles in old mice. Furthermore, the comparison of 3xTgAD mice with double-transgenic mice bearing the ßAPP(swe) and Tau(P301L) mutations but expressing endogenous PS1 (2xTgAD) demonstrate that C99 accumulation is not accounted for by a loss of function triggered by PS1 mutation that would have prevented C99 secondary cleavage by γ-secretase. Together, our work identifies C99 as the earliest ßAPP catabolite and main contributor to the intracellular ßAPP-related immunoreactivity in 3xTgAD mice, suggesting its implication as an initiator of the neurodegenerative process and cognitive alterations taking place in this mouse model.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/fisiología , Precursor de Proteína beta-Amiloide/fisiología , Hipocampo/patología , Interneuronas/patología , Fragmentos de Péptidos/fisiología , Envejecimiento/fisiología , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Precursor de Proteína beta-Amiloide/química , Animales , Western Blotting , Electroforesis en Gel de Poliacrilamida , Ensayo de Inmunoadsorción Enzimática , Hipocampo/enzimología , Hipocampo/crecimiento & desarrollo , Hipocampo/metabolismo , Inmunohistoquímica , Inmunoprecipitación , Ratones , Ratones Transgénicos , Fragmentos de Péptidos/química , Presenilina-1/genética , Presenilina-1/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Proteínas tau/genética , Proteínas tau/metabolismo
11.
J Biol Chem ; 287(7): 5021-32, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-22184125

RESUMEN

In physiological conditions, both ß-amyloid precursor protein (ßAPP) and cellular prion (PrP(c)) undergo similar disintegrin-mediated α-secretase cleavage yielding N-terminal secreted products referred to as soluble amyloid precursor protein-α (sAPPα) and N1, respectively. We recently demonstrated that N1 displays neuroprotective properties by reducing p53-dependent cell death both in vitro and in vivo. In this study, we examined the potential of N1 as a neuroprotector against amyloid ß (Aß)-mediated toxicity. We first show that both recombinant sAPPα and N1, but not its inactive parent fragment N2, reduce staurosporine-stimulated caspase-3 activation and TUNEL-positive cell death by lowering p53 promoter transactivation and activity in human cells. We demonstrate that N1 also lowers toxicity, cell death, and p53 pathway exacerbation triggered by Swedish mutated ßAPP overexpression in human cells. We designed a CHO cell line overexpressing the London mutated ßAPP (APP(LDN)) that yields Aß oligomers. N1 protected primary cultured neurons against toxicity and cell death triggered by oligomer-enriched APP(LDN)-derived conditioned medium. Finally, we establish that N1 also protects neurons against oligomers extracted from Alzheimer disease-affected brain tissues. Overall, our data indicate that a cellular prion catabolite could interfere with Aß-associated toxicity and that its production could be seen as a cellular protective mechanism aimed at compensating for an sAPPα deficit taking place at the early asymptomatic phase of Alzheimer disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Péptidos/metabolismo , Proteínas PrPC/metabolismo , Multimerización de Proteína , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Células CHO , Caspasa 3/genética , Caspasa 3/metabolismo , Muerte Celular , Cricetinae , Cricetulus , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Inhibidores Enzimáticos/farmacología , Células HEK293 , Humanos , Ratones , Neuronas/metabolismo , Neuronas/patología , Péptidos/genética , Proteínas PrPC/genética , Estaurosporina/farmacología
12.
Cells ; 12(24)2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38132122

RESUMEN

The SORL1 gene encodes LR11/SorLA, a protein that binds ß-amyloid precursor protein (APP) and drives its intracellular trafficking. SORL1 mutations, occurring frequently in a subset of familial cases of Alzheimer's disease (AD), have been documented, but their pathogenic potential is not yet clear and questions remain concerning their putative influence on the physiopathological processing of APP. We have assessed the influence of two SORL1 mutations that were described as likely disease-causing and that were associated with either benign (SorLA924) or severe (SorLA511) AD phenotypes. We examined the influence of wild-type and mutants SorLA in transiently transfected HEK293 cells expressing either wild-type or Swedish mutated APP on APP expression, secreted Aß and sAPPα levels, intracellular Aß 40 and Aß42 peptides, APP-CTFs (C99 and C83) expressions, α-, ß- and γ-secretases expressions and activities as well as Aß and CTFs-degrading enzymes. These paradigms were studied in control conditions or after pharmacological proteasomal modulation. We also established stably transfected CHO cells expressing wild-type SorLA and established the colocalization of APP and either wild-type or mutant SorLA. SorLA mutations partially disrupt co-localization of wild-type sorLA with APP. Overall, although we mostly confirmed previous data concerning the influence of wild-type SorLA on APP processing, we were unable to evidence significant alterations triggered by our set of SorLA mutants, whatever the cells or pharmacological conditions examined. Our study , however, does not rule out the possibility that other AD-linked SORL1 mutations could indeed affect APP processing, and that pathogenic mutations examined in the present study could interfere with other cellular pathways/triggers in AD.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Animales , Cricetinae , Humanos , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Cricetulus , Células HEK293 , Proteínas Relacionadas con Receptor de LDL/metabolismo , Proteínas de Transporte de Membrana/genética , Mutación/genética
13.
J Biol Chem ; 286(33): 29192-29206, 2011 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-21586567

RESUMEN

The α-secretases A disintegrin and metalloprotease 10 (ADAM10) and ADAM17 trigger constitutive and regulated processing of the cellular prion protein (PrP(c)) yielding N1 fragment. The latter depends on protein kinase C (PKC)-coupled M1/M3 muscarinic receptor activation and subsequent phosphorylation of ADAM17 on its intracytoplasmic threonine 735. Here we show that regulated PrP(c) processing and ADAM17 phosphorylation and activation are controlled by the extracellular-regulated kinase-1/MAP-ERK kinase (ERK1/MEK) cascade. Thus, reductions of ERK1 or MEK activities by dominant-negative analogs, pharmacological inhibition, or genetic ablation all impair N1 secretion, whereas constitutively active proteins increase N1 recovery in the conditioned medium. Interestingly, we also observed an ERK1-mediated enhanced expression of PrP(c). We demonstrate that the ERK1-associated increase in PrP(c) promoter transactivation and mRNA levels involve transcription factor AP-1 as a downstream effector. Altogether, our data identify ERK1 as an important regulator of PrP(c) cellular homeostasis and indicate that this kinase exerts a dual control of PrP(c) levels through transcriptional and post-transcriptional mechanisms.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas PrPC/metabolismo , Regiones Promotoras Genéticas/fisiología , Activación Transcripcional/fisiología , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Proteína ADAM10 , Proteína ADAM17 , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Proteína Quinasa 3 Activada por Mitógenos/genética , Fosforilación/fisiología , Proteínas PrPC/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Receptor Muscarínico M1/genética , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/metabolismo , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo
14.
Neurobiol Aging ; 71: 21-31, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30071370

RESUMEN

The triple transgenic mouse model (3×TgAD: APPswe, TauP301L, PS1M146V) recapitulates both amyloid ß (Aß)- and tau-related lesions as well as synaptic and memory deficits. In these mice, we reported an early apathy-like behavior and alterations in synaptic plasticity appearing concomitantly with intraneuronal accumulation of C99 in the subiculum. To delineate the genuine contribution of C99 on the above phenotypes, we generated double transgenic mice (2×TgAD: APPswe, TauP301L) that accumulate C99 without Aß deposition or hyperphosphorylation of tau and compared them to 3×TgAD mice. Here, we show that both TgAD mice display similar decreases in long-term potentiation and in spontaneous locomotor activity measured by actimetry suggesting that the synaptic alterations and the apathy-like behavior were likely linked to C99 rather than Aß. However, spatial learning alterations, assessed by the Morris water maze task, are more pronounced in 3×TgAD than in 2×TgAD, suggesting that both Aß and C99 contribute to defects in the acquisition of spatial information. Finally, even if similar results are observed in males, cognitive and non-cognitive deficits are more severe in females.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Apatía/fisiología , Potenciación a Largo Plazo , Neuronas/metabolismo , Aprendizaje Espacial/fisiología , Sinapsis/fisiología , Precursor de Proteína beta-Amiloide/genética , Animales , Modelos Animales de Enfermedad , Femenino , Hipocampo/metabolismo , Locomoción , Masculino , Ratones Transgénicos , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fenotipo , Fosforilación , Proteínas tau/genética , Proteínas tau/metabolismo
15.
J Alzheimers Dis ; 55(4): 1549-1570, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27911326

RESUMEN

Alteration of mitochondria-associated membranes (MAMs) has been proposed to contribute to the pathogenesis of Alzheimer's disease (AD). We studied herein the subcellular distribution, the processing, and the protein interactome of the amyloid-ß protein precursor (AßPP) and its proteolytic products in MAMs. We reveal that AßPP and its catabolites are present in MAMs in cellular models overexpressing wild type AßPP or AßPP harboring the double Swedish or London familial AD mutations, and in brains of transgenic mice model of AD. Furthermore, we evidenced that both ß- and γ-secretases are present and harbor AßPP processing activities in MAMs. Interestingly, cells overexpressing APPswe show increased ER-mitochondria contact sites. We also document increased neutral lipid accumulation linked to Aß production and reversed by inhibiting ß- or γ-secretases. Using a proteomic approach, we show that AßPP and its catabolites interact with key proteins of MAMs controlling mitochondria and ER functions. These data highlight the role of AßPP processing and proteomic interactome in MAMs deregulation taking place in AD.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Membrana Celular/metabolismo , Mitocondrias/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Células CHO , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/ultraestructura , Cricetulus , Complejo IV de Transporte de Electrones/metabolismo , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Humanos , Inmunoprecipitación , Ratones , Ratones Transgénicos , Microscopía Electrónica , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura , Mutación/genética , Neuroblastoma/patología , Presenilina-1/genética , Presenilina-1/metabolismo , Pirazoles/farmacología , Quinolinas/farmacología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Transfección , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
16.
Sci Rep ; 6: 37436, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27853315

RESUMEN

The aspartyl protease ß-site APP cleaving enzyme, BACE1, is the rate-limiting enzyme involved in the production of amyloid-ß peptide, which accumulates in both sporadic and familial cases of Alzheimer's disease and is at the center of gravity of the amyloid cascade hypothesis. In this context, unravelling the molecular mechanisms controlling BACE1 expression and activity in both physiological and pathological conditions remains of major importance. We previously demonstrated that Aß controlled BACE1 transcription in an NFκB-dependent manner. Here, we delineate an additional cellular pathway by which natural and synthetic Aß42 oligomers enhance active X-box binding protein XBP-1s. XBP-1s lowers BACE1 expression and activity indirectly, via the up-regulation of the ubiquitin-ligase HRD1 that acts as an endogenous down-regulator of BACE1. Thus, we delineate a novel pathway by which cells could compensate for Aß42 oligomers production and thus, associated toxicity, by triggering a compensatory mechanism aimed at lowering BACE-1-mediated Aß production by a molecular cascade involving XBP-1s and HRD1. It thus identifies HRD1 as a potential target for a novel Aß-centered therapeutic strategy.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/genética , Péptidos beta-Amiloides/farmacología , Ácido Aspártico Endopeptidasas/genética , Neuronas/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Ubiquitina-Proteína Ligasas/genética , Proteína 1 de Unión a la X-Box/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Ácido Aspártico Endopeptidasas/metabolismo , Línea Celular , Línea Celular Tumoral , Cicloheximida/farmacología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Ratones , Neuronas/citología , Neuronas/metabolismo , Plásmidos/química , Plásmidos/metabolismo , Inhibidores de la Síntesis de la Proteína/farmacología , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Transfección , Ubiquitina-Proteína Ligasas/metabolismo , Proteína 1 de Unión a la X-Box/metabolismo
17.
Front Mol Neurosci ; 9: 163, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28119565

RESUMEN

We previously reported that deficiency of membrane-type five matrix metalloproteinase (MT5-MMP) prevents amyloid pathology in the cortex and hippocampus of 5xFAD mice, and ameliorates the functional outcome. We have now investigated whether the integrity of another important area affected in Alzheimer's disease (AD), the frontal cortex, was also preserved upon MT5-MMP deficiency in 4-month old mice at prodromal stages of the pathology. We used the olfactory H-maze (OHM) to show that learning impairment associated with dysfunctions of the frontal cortex in 5xFAD was prevented in bigenic 5xFAD/MT5-MMP-/- mice. The latter exhibited concomitant drastic reductions of amyloid beta peptide (Aß) assemblies (soluble, oligomeric and fibrillary) and its immediate precursor, C99. Simultaneously, astrocyte reactivity and tumor necrosis factor alpha (TNF-α) levels were also lowered. Moreover, MT5-MMP deficiency induced a decrease in N-terminal soluble fragments of amyloid precursor protein (APP), including soluble APPα (sAPPα), sAPPß and the MT5-MMP-linked fragment of 95 kDa, sAPP95. However, the lack of MT5-MMP did not affect the activity of ß- and γ-secretases. In cultured HEKswe cells, transiently expressed MT5-MMP localized to early endosomes and increased the content of APP and Aß40 in these organelles, as well as Aß levels in cell supernatants. This is the first evidence that the pro-amyloidogenic features of MT5-MMP lie, at least in part, on the ability of the proteinase to promote trafficking into one of the amyloidogenic subcellular loci. Together, our data further support the pathogenic role of MT5-MMP in AD and that its inhibition improves the functional and pathological outcomes, in this case in the frontal cortex. These data also support the idea that MT5-MMP could become a novel therapeutic target in AD.

18.
EBioMedicine ; 9: 278-292, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27333034

RESUMEN

Although several ADAMs (A disintegrin-like and metalloproteases) have been shown to contribute to the amyloid precursor protein (APP) metabolism, the full spectrum of metalloproteases involved in this metabolism remains to be established. Transcriptomic analyses centred on metalloprotease genes unraveled a 50% decrease in ADAM30 expression that inversely correlates with amyloid load in Alzheimer's disease brains. Accordingly, in vitro down- or up-regulation of ADAM30 expression triggered an increase/decrease in Aß peptides levels whereas expression of a biologically inactive ADAM30 (ADAM30(mut)) did not affect Aß secretion. Proteomics/cell-based experiments showed that ADAM30-dependent regulation of APP metabolism required both cathepsin D (CTSD) activation and APP sorting to lysosomes. Accordingly, in Alzheimer-like transgenic mice, neuronal ADAM30 over-expression lowered Aß42 secretion in neuron primary cultures, soluble Aß42 and amyloid plaque load levels in the brain and concomitantly enhanced CTSD activity and finally rescued long term potentiation alterations. Our data thus indicate that lowering ADAM30 expression may favor Aß production, thereby contributing to Alzheimer's disease development.


Asunto(s)
Proteínas ADAM/metabolismo , Péptidos beta-Amiloides/metabolismo , Catepsina D/metabolismo , Proteínas ADAM/antagonistas & inhibidores , Proteínas ADAM/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Encéfalo/patología , Catepsina D/química , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Células HEK293 , Humanos , Lisosomas/metabolismo , Macrólidos/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Fluorescente , Técnicas de Placa-Clamp , Pepstatinas/farmacología , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
19.
Neurobiol Aging ; 35(7): 1570-81, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24495834

RESUMEN

The ß-amyloid precursor protein undergoes cleavages by ß- and γ-secretasses yielding amyloid-ß peptides (Aß) that accumulate in Alzheimer's disease. Subsequently, Aß peptides are targets of additional truncations or endoproteolytic cleavages explaining the diversity of Aß-related fragments recovered in cell media or pathologic human fluids. Here, we focused on Aß1-34 (Aß34) that has been detected both in vitro and in vivo and that derives from the hydrolysis of Aß by ß-secretase. We have obtained and fully characterized by immunologic and biochemical approaches, a polyclonal antibody that specifically recognizes the C-terminus of Aßx-34. We present immunohistochemical evidence for the presence of Aßx-34 in the brain of 3xTg mice and Alzheimer's disease-affected human brains. Finally, we demonstrate a neprilysin-mediated degradation process of Aß34 and the ability of synthetic Aß34 to protect HEK cells overexpressing either wild type or Swedish-mutated ß-amyloid precursor protein from apoptosis.


Asunto(s)
Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Fragmentos de Péptidos/metabolismo , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/fisiología , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Apoptosis/genética , Ácido Aspártico Endopeptidasas/metabolismo , Caspasa 3/metabolismo , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Células HEK293 , Humanos , Ratones , Ratones Transgénicos , Neprilisina/fisiología
20.
J Mol Cell Biol ; 5(2): 132-42, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23359614

RESUMEN

We previously established that besides its canonical function as E3-ubiquitin ligase, parkin also behaves as a transcriptional repressor of p53. Here we show that parkin differently modulates presenilin-1 and presenilin-2 expression and functions at transcriptional level. Thus, parkin enhances/reduces the protein expression, promoter activity and mRNA levels of presenilin-1 and presenilin-2, respectively, in cells and in vivo. This parkin-associated function is independent of its ubiquitin-ligase activity and remains unrelated to its capacity to repress p53. Accordingly, physical interaction of endogenous or overexpressed parkin with presenilins promoters is demonstrated by chromatin immunoprecipitation assays (ChIP). Furthermore, we identify a consensus sequence, the deletion of which abolishes parkin-dependent modulation of presenilins-1/2 and p53 promoter activities. Interestingly, electrophoretic mobility shift assays (EMSA) revealed a physical interaction between this consensus sequence and wild-type but not mutated parkin. Finally, we demonstrate that the RING1-IBR-RING2 domain of parkin harbors parkin's potential to modulate presenilins promoters. This transcriptional control impacts on presenilins-associated phenotypes, since parkin increases presenilin-1-associated γ-secretase activity and reduces presenilin-2-linked caspase-3 activation. Overall, our data delineate a promoter responsive element targeted by parkin that drives differential regulation of presenilin-1 and presenilin-2 transcription with functional consequences for γ-secretase activity and cell death.


Asunto(s)
Presenilina-1/metabolismo , Presenilina-2/metabolismo , Regiones Promotoras Genéticas/fisiología , Transcripción Genética/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Caspasa 3/genética , Caspasa 3/metabolismo , Muerte Celular/fisiología , Activación Enzimática/fisiología , Ratones , Ratones Noqueados , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Presenilina-1/genética , Presenilina-2/genética , Proteína p53 Supresora de Tumor/biosíntesis , Proteína p53 Supresora de Tumor/genética , Ubiquitina-Proteína Ligasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA