Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Cell ; 82(15): 2738-2753.e6, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35662392

RESUMEN

The proper function of the genome relies on spatial organization of DNA, RNA, and proteins, but how transcription contributes to the organization is unclear. Here, we show that condensates induced by transcription inhibition (CITIs) drastically alter genome spatial organization. CITIs are formed by SFPQ, NONO, FUS, and TAF15 in nucleoli upon inhibition of RNA polymerase II (RNAPII). Mechanistically, RNAPII inhibition perturbs ribosomal RNA (rRNA) processing, releases rRNA-processing factors from nucleoli, and enables SFPQ to bind rRNA. While accumulating in CITIs, SFPQ/TAF15 remain associated with active genes and tether active chromatin to nucleoli. In the presence of DNA double-strand breaks (DSBs), the altered chromatin compartmentalization induced by RNAPII inhibition increases gene fusions in CITIs and stimulates the formation of fusion oncogenes. Thus, proper RNAPII transcription and rRNA processing prevent the altered compartmentalization of active chromatin in CITIs, suppressing the generation of gene fusions from DSBs.


Asunto(s)
Cromatina , Transcripción Genética , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Roturas del ADN de Doble Cadena , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo
2.
J Biol Chem ; 296: 100540, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33722609

RESUMEN

The functions of long noncoding (lnc)RNAs, such as MEG3, are defined by their interactions with other RNAs and proteins. These interactions, in turn, are shaped by their subcellular localization and temporal context. Therefore, it is important to be able to analyze the relationships of lncRNAs while preserving cellular architecture. The ability of MEG3 to suppress cell proliferation led to its recognition as a tumor suppressor. MEG3 has been proposed to activate p53 by disrupting the interaction of p53 with mouse double minute 2 homolog (Mdm2). To test this mechanism in the native cellular context, we employed two-color direct stochastic optical reconstruction microscopy, a single-molecule localization microscopy technique, to detect and quantify the localizations of p53, Mdm2, and MEG3 in U2OS cells. We developed a new cross-nearest neighbor/Monte Carlo algorithm to quantify the association of these molecules. Proof of concept for our method was obtained by examining the association between FKBP1A and mTOR, MEG3 and p53, and Mdm2 and p53. In contrast to previous models, our data support a model in which MEG3 modulates p53 independently of the interaction with Mdm2.


Asunto(s)
Algoritmos , Método de Montecarlo , Dominios y Motivos de Interacción de Proteínas , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , ARN Largo no Codificante/metabolismo , Imagen Individual de Molécula/métodos , Proteína p53 Supresora de Tumor/metabolismo , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Fluorescente/métodos , Proteínas Proto-Oncogénicas c-mdm2/genética , ARN Largo no Codificante/genética , Proteína p53 Supresora de Tumor/genética
3.
J Biol Chem ; 295(17): 5761-5770, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32152223

RESUMEN

Over the last several years it has become clear that higher order assemblies on membranes, exemplified by signalosomes, are a paradigm for the regulation of many membrane signaling processes. We have recently combined two-color direct stochastic optical reconstruction microscopy (dSTORM) with the (Clus-DoC) algorithm that combines cluster detection and colocalization analysis to observe the organization of 5-lipoxygenase (5-LO) and 5-lipoxygenase-activating protein (FLAP) into higher order assemblies on the nuclear envelope of mast cells; these assemblies were linked to leukotriene (LT) C4 production. In this study we investigated whether higher order assemblies of 5-LO and FLAP included cytosolic phospholipase A2 (cPLA2) and were linked to LTB4 production in murine neutrophils. Using two- and three-color dSTORM supported by fluorescence lifetime imaging microscopy we identified higher order assemblies containing 40 molecules (median) (IQR: 23, 87) of 5-LO, and 53 molecules (62, 156) of FLAP monomer. 98 (18, 154) molecules of cPLA2 were clustered with 5-LO, and 77 (33, 114) molecules of cPLA2 were associated with FLAP. These assemblies were tightly linked to LTB4 formation. The activation-dependent close associations of cPLA2, FLAP, and 5-LO in higher order assemblies on the nuclear envelope support a model in which arachidonic acid is generated by cPLA2 in apposition to FLAP, facilitating its transfer to 5-LO to initiate LT synthesis.


Asunto(s)
Proteínas Activadoras de la 5-Lipooxigenasa/metabolismo , Araquidonato 5-Lipooxigenasa/metabolismo , Leucotrieno C4/metabolismo , Neutrófilos/metabolismo , Proteínas Activadoras de la 5-Lipooxigenasa/análisis , Algoritmos , Animales , Araquidonato 5-Lipooxigenasa/análisis , Núcleo Celular/metabolismo , Células Cultivadas , Leucotrieno C4/análisis , Ratones , Ratones Endogámicos C57BL , Microscopía/métodos , Neutrófilos/citología , Imagen Óptica/métodos
4.
Traffic ; 16(10): 1039-61, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26172624

RESUMEN

Cellular functions are dictated by protein content and activity. There are numerous strategies to regulate proteins varying from modulating gene expression to post-translational modifications. One commonly used mode of regulation in eukaryotes is targeted localization. By specifically redirecting the localization of a pool of existing protein, cells can achieve rapid changes in local protein function. Eukaryotic cells have evolved elegant targeting pathways to direct proteins to the appropriate cellular location or locations. Here, we provide a general overview of these localization pathways, with a focus on nuclear and mitochondrial transport, and present a survey of the evolutionarily conserved regulatory strategies identified thus far. We end with a description of several specific examples of proteins that exploit localization as an important mode of regulation.


Asunto(s)
Transporte de Proteínas/fisiología , Proteínas/metabolismo , Transducción de Señal/fisiología , Animales , Núcleo Celular/metabolismo , Humanos , Mitocondrias/fisiología , Señales de Localización Nuclear/metabolismo , Procesamiento Proteico-Postraduccional/fisiología
5.
Nucleic Acids Res ; 43(21): 10083-101, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26519467

RESUMEN

DNA damage is a natural hazard of life. The most common DNA lesions are base, sugar, and single-strand break damage resulting from oxidation, alkylation, deamination, and spontaneous hydrolysis. If left unrepaired, such lesions can become fixed in the genome as permanent mutations. Thus, evolution has led to the creation of several highly conserved, partially redundant pathways to repair or mitigate the effects of DNA base damage. The biochemical mechanisms of these pathways have been well characterized and the impact of this work was recently highlighted by the selection of Tomas Lindahl, Aziz Sancar and Paul Modrich as the recipients of the 2015 Nobel Prize in Chemistry for their seminal work in defining DNA repair pathways. However, how these repair pathways are regulated and interconnected is still being elucidated. This review focuses on the classical base excision repair and strand incision pathways in eukaryotes, considering both Saccharomyces cerevisiae and humans, and extends to some important questions and challenges facing the field of DNA base damage repair.


Asunto(s)
Daño del ADN , Reparación del ADN , Roturas del ADN de Cadena Simple , Enzimas Reparadoras del ADN/metabolismo , Humanos , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética
6.
Traffic ; 14(12): 1200-8, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24034606

RESUMEN

In eukaryotic cells, proteins can occupy multiple intracellular compartments and even move between compartments to fulfill critical biological functions or respond to cellular signals. Examples include transcription factors that reside in the cytoplasm but are mobilized to the nucleus as well as dual-purpose DNA repair proteins that are charged with simultaneously maintaining the integrity of both the nuclear and mitochondrial genomes. While numerous methods exist to study protein localization and dynamics, automated methods to quantify the relative amounts of proteins that occupy multiple subcellular compartments have not been extensively developed. To address this need, we present a rapid, automated method termed quantitative subcellular compartmentalization analysis (Q-SCAn). To develop this method, we exploited the facile molecular biology of the budding yeast, Saccharomyces cerevisiae. Individual subcellular compartments are defined by a fluorescent marker protein and the intensity of a target GFP-tagged protein is then quantified within each compartment. To validate Q-SCAn, we analyzed relocalization of the transcription factor Yap1 following oxidative stress and then extended the approach to multicompartment localization by examining two DNA repair proteins critical for the base excision repair pathway, Ntg1 and Ung1. Our findings demonstrate the utility of Q-SCAn for quantitative analysis of the subcellular distribution of multicompartment proteins.


Asunto(s)
Núcleo Celular/metabolismo , Microscopía Fluorescente/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Uracil-ADN Glicosidasa/metabolismo , Transporte Activo de Núcleo Celular , Automatización , Citoplasma/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Uracil-ADN Glicosidasa/genética
7.
PLoS One ; 14(2): e0211943, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30735559

RESUMEN

The initial steps in the synthesis of leukotrienes are the translocation of 5-lipoxygenase (5-LO) to the nuclear envelope and its subsequent association with its scaffold protein 5-lipoxygenase-activating protein (FLAP). A major gap in our understanding of this process is the knowledge of how the organization of 5-LO and FLAP on the nuclear envelope regulates leukotriene synthesis. We combined single molecule localization microscopy with Clus-DoC cluster analysis, and also a novel unbiased cluster analysis to analyze changes in the relationships between 5-LO and FLAP in response to activation of RBL-2H3 cells to generate leukotriene C4. We identified the time-dependent reorganization of both 5-LO and FLAP into higher-order assemblies or clusters in response to cell activation via the IgE receptor. Clus-DoC analysis identified a subset of these clusters with a high degree of interaction between 5-LO and FLAP that specifically correlates with the time course of LTC4 synthesis, strongly suggesting their role in the initiation of leukotriene biosynthesis.


Asunto(s)
Proteínas Activadoras de la 5-Lipooxigenasa/metabolismo , Araquidonato 5-Lipooxigenasa/metabolismo , Basófilos/metabolismo , Leucotrieno C4/biosíntesis , Membrana Nuclear/metabolismo , Proteínas Activadoras de la 5-Lipooxigenasa/química , Proteínas Activadoras de la 5-Lipooxigenasa/genética , Animales , Araquidonato 5-Lipooxigenasa/química , Araquidonato 5-Lipooxigenasa/genética , Basófilos/citología , Basófilos/efectos de los fármacos , Línea Celular Tumoral , Análisis por Conglomerados , Regulación de la Expresión Génica , Inmunoglobulina E/genética , Inmunoglobulina E/metabolismo , Inmunoglobulina E/farmacología , Membrana Nuclear/efectos de los fármacos , Membrana Nuclear/genética , Membrana Nuclear/ultraestructura , Unión Proteica , Ratas , Receptores de IgE/genética , Receptores de IgE/metabolismo , Transducción de Señal , Imagen Individual de Molécula
8.
Structure ; 26(1): 118-129.e3, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29276038

RESUMEN

Rationally engineering thermostability in proteins would create enzymes and receptors that function under harsh industrial applications. Several sequence-based approaches can generate thermostable variants of mesophilic proteins. To gain insight into the mechanisms by which proteins become more stable, we use structural and dynamic analyses to compare two popular approaches, ancestral sequence reconstruction (ASR) and the consensus method, used to generate thermostable variants of Elongation Factor Thermo-unstable (EF-Tu). We present crystal structures of ancestral and consensus EF-Tus, accompanied by molecular dynamics simulations aimed at probing the strategies employed to enhance thermostability. All proteins adopt crystal structures similar to extant EF-Tus, revealing no difference in average structure between the methods. Molecular dynamics reveals that ASR-generated sequences retain dynamic properties similar to extant, thermostable EF-Tu from Thermus aquaticus, while consensus EF-Tu dynamics differ from evolution-based sequences. This work highlights the advantage of ASR for engineering thermostability while preserving natural motions in multidomain proteins.


Asunto(s)
Proteínas Bacterianas/química , Escherichia coli/metabolismo , Guanosina Difosfato/química , Factor Tu de Elongación Peptídica/química , Ingeniería de Proteínas , Thermus/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Clonación Molecular , Secuencia de Consenso , Cristalografía por Rayos X , Escherichia coli/clasificación , Escherichia coli/genética , Evolución Molecular , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Guanosina Difosfato/metabolismo , Simulación de Dinámica Molecular , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , Filogenia , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidad Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Thermus/clasificación , Thermus/genética
9.
Prog Mol Biol Transl Sci ; 110: 93-121, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22749144

RESUMEN

This chapter discusses base excision repair (BER) and the known mechanisms defined thus far regulating BER in eukaryotes. Unlike the situation with nucleotide excision repair and double-strand break repair, little is known about how BER is regulated to allow for efficient and accurate repair of many types of DNA base damage in both nuclear and mitochondrial genomes. Regulation of BER has been proposed to occur at multiple, different levels including transcription, posttranslational modification, protein-protein interactions, and protein localization; however, none of these regulatory mechanisms characterized thus far affect a large spectrum of BER proteins. This chapter discusses a recently discovered mode of BER regulation defined in budding yeast cells that involves mobilization of DNA repair proteins to DNA-containing organelles in response to genotoxic stress.


Asunto(s)
Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN , Eucariontes/metabolismo , Animales , Daño del ADN , Humanos , Modelos Biológicos , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA