Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Am J Physiol Heart Circ Physiol ; 326(4): H900-H906, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38363213

RESUMEN

Imaging tools are crucial for studying the vascular network and its barrier function in various physiopathological conditions. Shortwave infrared (SWIR) window optical imaging allows noninvasive, in-depth exploration. We applied SWIR imaging, combined with vessel segmentation and deep learning analyses, to study real-time dextran probe extravasation in mice experiencing intermittent hypoxia (IH)-a characteristic of obstructive sleep apnea associated with potential cardiovascular alterations due to early vascular permeability. Evidence for permeability in this context is limited, making our investigation significant. C57Bl/6 mice were exposed to normoxia or intermittent hypoxia for 14 days. Then SWIR imaging between 1,250 and 1,700 nm was performed on the saphenous artery and vein and on the surrounding tissue after intravenous injection of labeled dextrans of two different sizes (10 or 70 kDa). Postprocessing and segmentation of the SWIR images were conducted using deep learning treatment. We monitored high-resolution signals, distinguishing arteries, veins, and surrounding tissues. In the saphenous artery and vein, after 70-kD dextran injection, tissue/vessel ratio was higher after intermittent hypoxia (IH) than normoxia (N) over 500 seconds (P < 0.05). However, the ratio was similar in N and IH after 10-kD dextran injection. The SWIR imaging technique allows noninvasive, real-time monitoring of dextran extravasation in vivo. Dextran 70 extravasation is increased after exposure to IH, suggesting an increased vessel permeability in this mice model of obstructive sleep apnea.NEW & NOTEWORTHY We demonstrate that SWIR imaging technique is a useful tool to monitor real-time dextran extravasation from vessels in vivo, with a high resolution. We report for the first time an increased real-time dextran (70 kD) extravasation in mice exposed to intermittent hypoxia for 14 days compared with normoxic controls.


Asunto(s)
Dextranos , Apnea Obstructiva del Sueño , Animales , Ratones , Hipoxia , Arterias , Ratones Endogámicos C57BL
2.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34326264

RESUMEN

Estimated millions of tons of plastic are dumped annually into oceans. Plastic has been produced only for 70 y, but the exponential rise of mass production leads to its widespread proliferation in all environments. As a consequence of their large abundance globally, microplastics are also found in many living organisms including humans. While the health impact of digested microplastics on living organisms is debatable, we reveal a physical mechanism of mechanical stretching of model cell lipid membranes induced by adsorbed micrometer-sized microplastic particles most commonly found in oceans. Combining experimental and theoretical approaches, we demonstrate that microplastic particles adsorbed on lipid membranes considerably increase membrane tension even at low particle concentrations. Each particle adsorbed at the membrane consumes surface area that is proportional to the contact area between particle and the membrane. Although lipid membranes are liquid and able to accommodate mechanical stress, the relaxation time is much slower than the rate of adsorption; thus, the cumulative effect from arriving microplastic particles to the membrane leads to the global reduction of the membrane area and increase of membrane tension. This, in turn, leads to a strong reduction of membrane lifetime. The effect of mechanical stretching of microplastics on living cells membranes was demonstrated by using the aspiration micropipette technique on red blood cells. The described mechanical stretching mechanism on lipid bilayers may provide better understanding of the impact of microplastic particles in living systems.


Asunto(s)
Lípidos/química , Fenómenos Mecánicos , Membranas Artificiales , Microplásticos/química , Tamaño de la Partícula , Polietileno/química , Polimetil Metacrilato/química , Poliestirenos/química
3.
Proc Natl Acad Sci U S A ; 117(23): 12598-12605, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32457154

RESUMEN

The mechano-bactericidal activity of nanostructured surfaces has become the focus of intensive research toward the development of a new generation of antibacterial surfaces, particularly in the current era of emerging antibiotic resistance. This work demonstrates the effects of an incremental increase of nanopillar height on nanostructure-induced bacterial cell death. We propose that the mechanical lysis of bacterial cells can be influenced by the degree of elasticity and clustering of highly ordered silicon nanopillar arrays. Herein, silicon nanopillar arrays with diameter 35 nm, periodicity 90 nm and increasing heights of 220, 360, and 420 nm were fabricated using deep UV immersion lithography. Nanoarrays of 360-nm-height pillars exhibited the highest degree of bactericidal activity toward both Gram stain-negative Pseudomonas aeruginosa and Gram stain-positive Staphylococcus aureus bacteria, inducing 95 ± 5% and 83 ± 12% cell death, respectively. At heights of 360 nm, increased nanopillar elasticity contributes to the onset of pillar deformation in response to bacterial adhesion to the surface. Theoretical analyses of pillar elasticity confirm that deflection, deformation force, and mechanical energies are more significant for the substrata possessing more flexible pillars. Increased storage and release of mechanical energy may explain the enhanced bactericidal action of these nanopillar arrays toward bacterial cells contacting the surface; however, with further increase of nanopillar height (420 nm), the forces (and tensions) can be partially compensated by irreversible interpillar adhesion that reduces their bactericidal effect. These findings can be used to inform the design of next-generation mechano-responsive surfaces with tuneable bactericidal characteristics for antimicrobial surface technologies.


Asunto(s)
Antibacterianos/farmacología , Nanoestructuras/química , Estrés Mecánico , Antibacterianos/química , Adhesión Bacteriana , Elasticidad , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Silicio/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología
4.
Phys Rev Lett ; 124(3): 038001, 2020 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-32031854

RESUMEN

Cholesterol is a crucial component of mammalian cell membranes that takes part in many vital processes. It is generally accepted that cholesterol stabilizes the membrane and induces transitions into ordered states. In contrast to expectations, we demonstrate that cholesterol can destabilize the membrane by creating a nanodomain around a perpendicularly embedded ultrashort carbon nanotube (CNT), and we show that cholesterol triggers the translocation of an ultrashort CNT through the cell membrane. Using atomistic simulations, we report the existence of a nanoscale domain around an ultrashort carbon nanotube within a crossover distance of 0.9 nm from the surface of the nanotube, where the properties of the bilayer are different from the bulk: the domain is characterized by increased fluctuations, increased thickness, and increased order of the lipids with respect to the bulk. Cholesterol decreases the thickness and order of lipids and increases the fluctuations with respect to a pure lipid bilayer. Experimentally, we confirm that cholesterol nanodomains provoke spontaneous translocation of nanotubes through a lipid bilayer even for low membrane tensions. A specially designed microfluidic device allows us to trace the kinetic pathway of the translocation process and establish the threshold cholesterol concentration of 20% for translocation. The reported nanoscale cholesterol-induced membrane restructuring near the ultrashort CNT in lipid membranes enables precise control and specific targeting of a membrane using cholesterol. As an example, it may allow for specific targeting between cholesterol-rich mammalian cells and cholesterol-poor bacterial cells.


Asunto(s)
Membrana Celular/química , Colesterol/química , Lípidos de la Membrana/química , Modelos Químicos , Nanotubos de Carbono/química , Membrana Celular/metabolismo , Colesterol/metabolismo , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Lípidos de la Membrana/metabolismo , Modelos Biológicos
5.
Langmuir ; 35(6): 2422-2430, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30628784

RESUMEN

The waxy epicuticle of dragonfly wings contains a unique nanostructured pattern that exhibits bactericidal properties. In light of emerging concerns of antibiotic resistance, these mechano-bactericidal surfaces represent a particularly novel solution by which bacterial colonization and the formation of biofilms on biomedical devices can be prevented. Pathogenic bacterial biofilms on medical implant surfaces cause a significant number of human deaths every year. The proposed mechanism of bactericidal activity is through mechanical cell rupture; however, this is not yet well understood and has not been well characterized. In this study, we used giant unilamellar vesicles (GUVs) as a simplified cell membrane model to investigate the nature of their interaction with the surface of the wings of two dragonfly species, Austrothemis nigrescens and Trithemis annulata, sourced from Victoria, Australia, and the Baix Ebre and Terra Alta regions of Catalonia, Spain. Confocal laser scanning microscopy and cryo-scanning electron microscopy techniques were used to visualize the interactions between the GUVs and the wing surfaces. When exposed to both natural and gold-coated wing surfaces, the GUVs were adsorbed on the surface, exhibiting significant deformation, in the process of membrane rupture. Differences between the tensile rupture limit of GUVs composed of 1,2-dioleoyl- sn-glycero-3-phosphocholine and the isotropic tension generated from the internal osmotic pressure were used to indirectly determine the membrane tensions, generated by the nanostructures present on the wing surfaces. These were estimated as being in excess of 6.8 mN m-1, the first experimental estimate of such mechano-bactericidal surfaces. This simple model provides a convenient bottom-up approach toward understanding and characterizing the bactericidal properties of nanostructured surfaces.


Asunto(s)
Nanoestructuras/química , Liposomas Unilamelares/química , Alas de Animales/química , Adsorción , Animales , Odonata/anatomía & histología , Fosfatidilcolinas/química , Humectabilidad
6.
J Chem Phys ; 149(1): 014902, 2018 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-29981558

RESUMEN

The Single Chain Mean Field theory is used to link coarse-grained models of amphiphilic molecules with analytical models for membrane elasticity, where phenomenological parameters are deduced from explicit molecular models and force fields. We estimate the elastic constants based on the free energy of the amphiphilic bilayer in planar and cylindrical geometries on the example of four amphiphilic molecules that differ in length and stiffness. We study how these variations affect the equilibrium bilayer structure, the equilibrium free energy, and the elastic constants. Bending rigidities are obtained within the typical range of experimental values for phospholipid membranes in a liquid state.


Asunto(s)
Membrana Dobles de Lípidos/química , Modelos Químicos , Modelos Moleculares , Módulo de Elasticidad , Fosfolípidos/química
7.
Soft Matter ; 13(20): 3690-3700, 2017 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-28327750

RESUMEN

Deeper understanding of the molecular interactions between polymeric materials and the lipid membrane is important across a range of applications from permeation for drug delivery to encapsulation for immuno-evasion. Using highly fluidic microcavity supported lipid bilayers, we studied the interactions between amphiphilic polymer PP50 and a DOPC lipid bilayer. As the PP50 polymer is pH responsive the studies were carried out at pH 6.5, 7.05 and 7.5, corresponding to fully, partly protonated (pH = pKa = 7.05) and fully ionized states of the polymer, respectively. Fluorescence correlation spectroscopy (FCS) using both labelled lipid and polymer revealed the PP50 associates with the bilayer interface across all pHs where its diffusion along the interface is impeded. Both FCS and electrochemical impedance spectroscopy (EIS) data indicate that the PP50 does not penetrate fully into the bilayer core but rather forms a layer at the bilayer aqueous interface reflected in increased resistance and decreased capacitance of the bilayer on PP50 binding. The extent of these effects and the dynamics of binding are influenced by pH, increasing with decreasing pH. These experimental trends concurred with coarse grained Monte Carlo simulations of polymer-bilayer interactions wherein a model hydrophilic polymer backbone grafted with side chains of varying hydrophobicity, to mimic the effect of varying pH, was simulated based on the bond fluctuation model with explicit solvent. Simulation results showed that with increasing hydrophobicity, the polymer penetrated deeper into the contacting bilayer leaflet of the membrane suppressing, consistent with EIS data, solvent permeation and that a full insertion of the polymer into the bilayer core is not necessary for suppression of permeability.


Asunto(s)
Membrana Celular/química , Interacciones Hidrofóbicas e Hidrofílicas , Fosfatidilcolinas/química , Polímeros/química , Electroquímica , Oro/química , Concentración de Iones de Hidrógeno , Modelos Moleculares , Método de Montecarlo
8.
Appl Microbiol Biotechnol ; 101(11): 4683-4690, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28246886

RESUMEN

Nanostructured insect wing surfaces have been reported to possess the ability to resist bacterial colonization through the mechanical rupture of bacterial cells coming into contact with the surface. In this work, the susceptibility of physiologically young, mature and old Staphylococcus aureus CIP 65.8 and Pseudomonas aeruginosa ATCC 9721 bacterial cells, to the action of the bactericidal nano-pattern of damselfly Calopteryx haemorrhoidalis wing surfaces, was investigated. The results were obtained using several surface characterization techniques including optical profilometry, scanning electron microscopy, synchrotron-sourced Fourier transform infrared microspectroscopy, water contact angle measurements and antibacterial assays. The data indicated that the attachment propensity of physiologically young S. aureus CIP 65.8T and mature P. aeruginosa ATCC 9721 bacterial cells was greater than that of the cells at other stages of growth. Both the S. aureus CIP 65.8T and P. aeruginosa ATCC 9721 cells, grown at the early (1 h) and late stationary phase (24 h), were found to be most susceptible to the action of the wings, with up to 89.7 and 61.3% as well as 97.9 and 97.1% dead cells resulting from contact with the wing surface, respectively.


Asunto(s)
Nanoestructuras , Odonata/microbiología , Pseudomonas aeruginosa/fisiología , Staphylococcus aureus/fisiología , Alas de Animales/microbiología , Animales , Microscopía Electrónica de Rastreo , Pseudomonas aeruginosa/crecimiento & desarrollo , Staphylococcus aureus/crecimiento & desarrollo , Propiedades de Superficie , Alas de Animales/ultraestructura
9.
Langmuir ; 32(41): 10744-10751, 2016 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-27718587

RESUMEN

The protein adsorption of two human plasma proteins-albumin (Alb) and fibronectin (Fn)-onto synthetic nanostructured bactericidal material-black silicon (bSi) surfaces (that contain an array of nanopillars) and silicon wafer (nonstructured) surfaces-was investigated. The adsorption behavior of Alb and Fn onto two types of substrata was studied using a combination of complementary analytical techniques. A two-step Alb adsorption mechanism onto the bSi surface has been proposed. At low bulk concentrations (below 40 µg/mL), the Alb preferentially adsorbed at the base of the nanopillars. At higher bulk concentrations, the Alb adsorbed on the top of the nanopillars. In the case of Fn, the protein preferentially adsorbed on the top of the nanopillars, irrespective of its bulk concentration.

10.
Soft Matter ; 12(1): 263-71, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26462464

RESUMEN

An original coarse-grained model for peroxidised phospholipids is presented, based on the MARTINI lipid force field. This model results from a combination of thermodynamic modelling and structural information on the area per lipid, which have been made available recently. The resulting coarse-grained lipid molecules form stable bilayers, and a set of elastic coefficients (compressibility and bending moduli) is obtained. We compare the compressibility coefficient to the experimental values [Weber et al., Soft Matter, 2014, 10, 4241]. Predictions for the mechanical properties, membrane thickness and lateral distribution of hydroperoxide groups in the phospholipid bilayer are presented.


Asunto(s)
Membrana Dobles de Lípidos/química , Peroxidación de Lípido , Simulación de Dinámica Molecular , Fosfolípidos/química , Elasticidad
11.
Soft Matter ; 10(24): 4241-7, 2014 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-24871383

RESUMEN

Oxidation can intimately influence and structurally compromise the levels of biological self-assembly embodied by intracellular and plasma membranes. Lipid peroxidation, a natural metabolic outcome of life with oxygen under light, is also a salient oxidation reaction in photomedicine treatments. However, the effect of peroxidation on the fate of lipid membranes remains elusive. Here we use a new photosensitizer that anchors and disperses in the membrane to achieve spatial control of the oxidizing species. We find, surprisingly, that the integrity of unsaturated unilamellar vesicles is preserved even for fully oxidized membranes. Membrane survival allows for the quantification of the transformations of the peroxidized bilayers, providing key physical and chemical information to understand the effect of lipid oxidation on protein insertion and on other mechanisms of cell function. We anticipate that spatially controlled oxidation will emerge as a new powerful strategy for tuning and evaluating lipid membranes in biomimetic media under oxidative stress.


Asunto(s)
Indoles/química , Peroxidación de Lípido , Fármacos Fotosensibilizantes/farmacología , Porfirinas/química , Liposomas Unilamelares/química , Absorción de Radiación , Indoles/síntesis química , Fármacos Fotosensibilizantes/efectos de la radiación , Porfirinas/síntesis química , Rayos Ultravioleta
12.
J Chem Phys ; 140(17): 174903, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24811664

RESUMEN

Coarse-grained model for saturated phospholipids: 1,2-didecanoyl-sn-glycero-3-phosphocholine (DCPC), 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and unsaturated phospholipids: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2- dioleoyl-sn-glycero-3-phosphocholine (DOPC) is introduced within the single chain mean field theory. A single set of parameters adjusted for DMPC bilayers gives an adequate description of equilibrium and mechanical properties of a range of saturated lipid molecules that differ only in length of their hydrophobic tails and unsaturated (POPC, DOPC) phospholipids which have double bonds in the tails. A double bond is modeled with a fixed angle of 120°, while the rest of the parameters are kept the same as saturated lipids. The thickness of the bilayer and its hydrophobic core, the compressibility, and the equilibrium area per lipid correspond to experimentally measured values for each lipid, changing linearly with the length of the tail. The model for unsaturated phospholipids also fetches main thermodynamical properties of the bilayers. This model is used for an accurate estimation of the free energies of the compressed or stretched bilayers in stacks or multilayers and gives reasonable estimates for free energies. The proposed model may further be used for studies of mixtures of lipids, small molecule inclusions, interactions of bilayers with embedded proteins.


Asunto(s)
Membrana Dobles de Lípidos/química , Lípidos/química , Fosfolípidos/química , Termodinámica , Interacciones Hidrofóbicas e Hidrofílicas , Conformación Molecular , Proteínas/química
13.
Chempluschem ; : e202400210, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38895895

RESUMEN

The advancements in the capabilities of artificial sensory technologies, such as electronic/optical noses and tongues, have significantly enhanced their ability to identify complex mixtures of analytes. These improvements are rooted in the evolving manufacturing processes of cross-reactive sensor arrays (CRSAs) and the development of innovative computational methods. The potential applications in early diagnosis, food quality control, environmental monitoring, and more, position CRSAs as an exciting area of research for scientists from diverse backgrounds. Among these, plasmonic CRSAs are particularly noteworthy because they offer enhanced capabilities for remote, fast, and even real-time monitoring, in addition to better portability of instrumentation. Specifically, the synergy between the localized surface plasmon resonance (LSPR) of nanoparticles (NPs) and CRSAs introduces advanced techniques such as surface plasmon resonance (SPR), metal-enhanced fluorescence (MEF), surface-enhanced infrared absorption (SEIRA), surface-enhanced Raman scattering (SERS), and surface-enhanced resonance Raman scattering (SERRS) spectroscopies. This review delves into the importance and versatility of optical-CRSAs, especially those based on plasmonic materials, discussing recent applications and potential new research directions.

14.
ACS Nano ; 18(2): 1404-1419, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38127731

RESUMEN

This paper presents a comprehensive experimental and theoretical investigation into the antiviral properties of nanostructured surfaces and explains the underlying virucidal mechanism. We used reactive ion etching to fabricate silicon (Si) surfaces featuring an array of sharp nanospikes with an approximate tip diameter of 2 nm and a height of 290 nm. The nanospike surfaces exhibited a 1.5 log reduction in infectivity of human parainfluenza virus type 3 (hPIV-3) after 6 h, a substantially enhanced efficiency, compared to that of smooth Si. Theoretical modeling of the virus-nanospike interactions determined the virucidal action of the nanostructured substrata to be associated with the ability of the sharp nanofeatures to effectively penetrate the viral envelope, resulting in the loss of viral infectivity. Our research highlights the significance of the potential application of nanostructured surfaces in combating the spread of viruses and bacteria. Notably, our study provides valuable insights into the design and optimization of antiviral surfaces with a particular emphasis on the crucial role played by sharp nanofeatures in maximizing their effectiveness.


Asunto(s)
Nanoestructuras , Infecciones por Paramyxoviridae , Humanos , Silicio , Virus de la Parainfluenza 3 Humana , Antivirales
15.
Biophys J ; 104(4): 835-40, 2013 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-23442962

RESUMEN

The nanopattern on the surface of Clanger cicada (Psaltoda claripennis) wings represents the first example of a new class of biomaterials that can kill bacteria on contact based solely on their physical surface structure. The wings provide a model for the development of novel functional surfaces that possess an increased resistance to bacterial contamination and infection. We propose a biophysical model of the interactions between bacterial cells and cicada wing surface structures, and show that mechanical properties, in particular cell rigidity, are key factors in determining bacterial resistance/sensitivity to the bactericidal nature of the wing surface. We confirmed this experimentally by decreasing the rigidity of surface-resistant strains through microwave irradiation of the cells, which renders them susceptible to the wing effects. Our findings demonstrate the potential benefits of incorporating cicada wing nanopatterns into the design of antibacterial nanomaterials.


Asunto(s)
Bacterias/química , Modelos Biológicos , Nanoestructuras/química , Alas de Animales/química , Animales , Antibacterianos/química , Bacterias/patogenicidad , Bacterias/efectos de la radiación , Hemípteros , Interacciones Huésped-Patógeno , Rayos Infrarrojos , Modelos Químicos , Alas de Animales/ultraestructura
16.
Appl Microbiol Biotechnol ; 97(20): 9257-62, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23250225

RESUMEN

The nanopattern on the surface of Clanger cicada (Psaltoda claripennis) wings represents the first example of a new class of biomaterials that can kill bacteria on contact based solely on its physical surface structure. As such, they provide a model for the development of novel functional surfaces that possess an increased resistance to bacterial contamination and infection. Their effectiveness against a wide spectrum of bacteria, however, is yet to be established. Here, the bactericidal properties of the wings were tested against several bacterial species, possessing a range of combinations of morphology and cell wall type. The tested species were primarily pathogens, and included Bacillus subtilis, Branhamella catarrhalis, Escherichia coli, Planococcus maritimus, Pseudomonas aeruginosa, Pseudomonas fluorescens, and Staphylococcus aureus. The wings were found to consistently kill Gram-negative cells (i.e., B. catarrhalis, E. coli, P. aeruginosa, and P. fluorescens), while Gram-positive cells (B. subtilis, P. maritimus, and S. aureus) remained resistant. The morphology of the cells did not appear to play any role in determining cell susceptibility. The bactericidal activity of the wing was also found to be quite efficient; 6.1 ± 1.5 × 10(6) P. aeruginosa cells in suspension were inactivated per square centimeter of wing surface after 30-min incubation. These findings demonstrate the potential for the development of selective bactericidal surfaces incorporating cicada wing nanopatterns into the design.


Asunto(s)
Bacterias/crecimiento & desarrollo , Hemípteros/microbiología , Alas de Animales/química , Animales , Bacterias/citología , Hemípteros/química , Interacciones Hidrofóbicas e Hidrofílicas , Viabilidad Microbiana , Propiedades de Superficie , Alas de Animales/microbiología
17.
Small ; 8(16): 2489-94, 2012 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-22674670

RESUMEN

Natural superhydrophobic surfaces are often thought to have antibiofouling potential due to their self-cleaning properties. However, when incubated on cicada wings, Pseudomonas aeruginosa cells are not repelled; instead they are penetrated by the nanopillar arrays present on the wing surface, resulting in bacterial cell death. Cicada wings are effective antibacterial, as opposed to antibiofouling, surfaces.


Asunto(s)
Antibacterianos/química , Hemípteros/anatomía & histología , Pseudomonas aeruginosa/citología , Estrés Mecánico , Alas de Animales/anatomía & histología , Alas de Animales/fisiología , Animales , Pseudomonas aeruginosa/ultraestructura , Análisis Espectral , Propiedades de Superficie , Alas de Animales/ultraestructura
18.
Langmuir ; 28(6): 3071-6, 2012 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-22256854

RESUMEN

The stability of micelles self-assembled from block co-polymers can be altered by the degradation of the blocks. Slow degradation shifts the equilibrium size distribution of block co-polymer micelles and changes their properties. The quasi-equilibrium scaling theory shows that the degradation of hydrophobic blocks in the core of micelles destabilizes the micelles, reducing their size, while the degradation of hydrophilic blocks forming coronas of micelles favors larger micelles and may, at certain conditions, induce the formation of micelles from individual chains.


Asunto(s)
Micelas , Polímeros/química , Cinética , Modelos Químicos
19.
Nanoscale ; 14(36): 13178-13186, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36043913

RESUMEN

Lateral diffusion of nano-objects on lipid membranes is a crucial process in cell biology. Recent studies indicate that nanoparticle lateral diffusion is affected by the presence of membrane proteins and deviates from Brownian motion. Gold nanoparticles (Au NPs) stabilized by short thiol ligands were dispersed near a free-standing bilayer formed in a 3D microfluidic chip. Using dark-field microscopy, the position of single NPs at the bilayer surface was tracked over time. Numerical analysis of the NP trajectories shows that NP diffusion on the bilayer surface corresponds to Brownian motion. The addition of bovine serum albumin (BSA) protein to the solution led to the formation of a protein corona on the NP surface. We found that protein-coated NPs show anomalous superdiffusion and that the distribution of their relative displacement obeys Lévy flight statistics. This superdiffusive motion is attributed to a drastic reduction in adhesive energies between the NPs and the bilayer in the presence of the protein corona. This hypothesis was confirmed by numerical simulations mimicking the random walk of a single particle near a weakly adhesive surface. These results may be generalized to other classes of nano-objects that experience adsorption-desorption behaviour with a weakly adhesive surface.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Corona de Proteínas , Oro , Membrana Dobles de Lípidos , Proteínas de la Membrana , Nanopartículas/metabolismo , Albúmina Sérica Bovina , Compuestos de Sulfhidrilo
20.
Sci Rep ; 12(1): 14664, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-36038758

RESUMEN

Design problems of finding efficient patterns, adaptation of complex molecules to external environments, affinity of molecules to specific targets, dynamic adaptive behavior of chemical systems, reconstruction of 3D structures from diffraction data are examples of difficult to solve optimal design or inverse search problems. Nature inspires evolution strategies to solve design problems that are based on selection of successful adaptations and heritable traits over generations. To exploit this strategy in the creation of new materials, a concept of adaptive chemistry was proposed to provide a route for synthesis of self-adapting molecules that can fit to their environment. We propose a computational method of an efficient exhaustive search exploiting massive parallelization on modern GPUs, which finds a solution for an inverse problem by solving repetitively a direct problem in the mean field approximation. One example is the search for a composition of a copolymer that allows the polymer to translocate through a lipid membrane at a minimal time. Another example is a search of a copolymer sequence that maximizes the polymer load in the micelle defined by the radial core-shell potentials. The length and the composition of the sequence are adjusted to fit into the restricted environment. Hydrogen bonding is another pathway of adaptation to the environment through reversible links. A linear polymer that interacts with water through hydrogen bonds adjusts the position of hydrogen bonds along the chain as a function of the concentration field around monomers. In the last example, branching of the molecules is adjusted to external fields, providing molecules with annealed topology, that can be flexibly changed by changing external conditions. The method can be generalized and applied to a broad spectrum of design problems in chemistry and physics, where adaptive behavior in multi-parameter space in response to environmental conditions lead to non-trivial patterns or molecule architectures and compositions. It can further be combined with machine learning or other optimization techniques to explore more efficiently the parameter space.


Asunto(s)
Aprendizaje Automático , Física , Enlace de Hidrógeno , Polímeros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA