Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Elife ; 122024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38577979

RESUMEN

Splicing is the stepwise molecular process by which introns are removed from pre-mRNA and exons are joined together to form mature mRNA sequences. The ordering and spatial distribution of these steps remain controversial, with opposing models suggesting splicing occurs either during or after transcription. We used single-molecule RNA FISH, expansion microscopy, and live-cell imaging to reveal the spatiotemporal distribution of nascent transcripts in mammalian cells. At super-resolution levels, we found that pre-mRNA formed clouds around the transcription site. These clouds indicate the existence of a transcription-site-proximal zone through which RNA move more slowly than in the nucleoplasm. Full-length pre-mRNA undergo continuous splicing as they move through this zone following transcription, suggesting a model in which splicing can occur post-transcriptionally but still within the proximity of the transcription site, thus seeming co-transcriptional by most assays. These results may unify conflicting reports of co-transcriptional versus post-transcriptional splicing.


Asunto(s)
Precursores del ARN , Transcripción Genética , Animales , Precursores del ARN/genética , Precursores del ARN/metabolismo , Empalme del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN , Intrones/genética , Mamíferos/genética
2.
Nat Genet ; 53(1): 76-85, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33398196

RESUMEN

Cellular plasticity describes the ability of cells to transition from one set of phenotypes to another. In melanoma, transient fluctuations in the molecular state of tumor cells mark the formation of rare cells primed to survive BRAF inhibition and reprogram into a stably drug-resistant fate. However, the biological processes governing cellular priming remain unknown. We used CRISPR-Cas9 genetic screens to identify genes that affect cell fate decisions by altering cellular plasticity. We found that many factors can independently affect cellular priming and fate decisions. We discovered a new plasticity-based mode of increasing resistance to BRAF inhibition that pushes cells towards a more differentiated state. Manipulating cellular plasticity through inhibition of DOT1L before the addition of the BRAF inhibitor resulted in more therapy resistance than concurrent administration. Our results indicate that modulating cellular plasticity can alter cell fate decisions and may prove useful for treating drug resistance in other cancers.


Asunto(s)
Plasticidad de la Célula/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Pruebas Genéticas , Neoplasias/genética , Neoplasias/patología , Animales , Sistemas CRISPR-Cas/genética , Diferenciación Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Ratones Endogámicos NOD , Ratones SCID , Modelos Biológicos , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Proteínas Proto-Oncogénicas B-raf/genética , Transcripción Genética
3.
Nat Biotechnol ; 2018 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-30418432

RESUMEN

Methods for detecting single nucleic acids in cell and tissues, such as fluorescence in situ hybridization (FISH), are limited by relatively low signal intensity and nonspecific probe binding. Here we present click-amplifying FISH (clampFISH), a method for fluorescence detection of nucleic acids that achieves high specificity and high-gain (>400-fold) signal amplification. ClampFISH probes form a 'C' configuration upon hybridization to the sequence of interest in a double helical manner. The ends of the probes are ligated together using bio-orthogonal click chemistry, effectively locking the probes around the target. Iterative rounds of hybridization and click amplify the fluorescence intensity. We show that clampFISH enables the detection of RNA species with low-magnification microscopy and in RNA-based flow cytometry. Additionally, we show that the modular design of clampFISH probes allows multiplexing of RNA and DNA detection, that the locking mechanism prevents probe detachment in expansion microscopy, and that clampFISH can be applied in tissue samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA