Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38473717

RESUMEN

Seasonal affective disorder is characterized by depression during fall/winter as a result of shorter daylight. Catalepsy is a syndrome of some grave mental diseases. Both the neurotransmitter serotonin (5-HT) and brain-derived neurotrophic factor (BDNF) are involved in the pathophysiological mechanisms underlying catalepsy and depressive disorders. The aim was to compare the response of behavior and brain plasticity to photoperiod alterations in catalepsy-resistant C57BL/6J and catalepsy-prone CBA/Lac male mice. Mice of both strains were exposed for six weeks to standard-day (14 h light/10 h darkness) or short-day (4 h light/20 h darkness) conditions. Short photoperiod increased depressive-like behavior in both strains. Only treated CBA/Lac mice demonstrated increased cataleptic immobility, decreased brain 5-HT level, and the expression of Tph2 gene encoding the key enzyme for 5-HT biosynthesis. Mice of both strains maintained under short-day conditions, compared to those under standard-day conditions, showed a region-specific decrease in the brain transcription of the Htr1a, Htr4, and Htr7 genes. After a short photoperiod exposure, the mRNA levels of the BDNF-related genes were reduced in CBA/Lac mice and were increased in the C57BL/6J mice. Thus, the predisposition to catalepsy considerably influences the photoperiodic changes in neuroplasticity, wherein both C57BL/6J and CBA/Lac mice can serve as a powerful tool for investigating the link between seasons and mood.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Serotonina , Masculino , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Catalepsia , Fotoperiodo , Susceptibilidad a Enfermedades , Plasticidad Neuronal
2.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38256229

RESUMEN

Tumor necrosis factor alpha (TNF-α) is a cytokine that is responsible for many processes associated with immune response and inflammation. It is involved in the development of an antiviral response to many virus infections. This factor was shown to be activated in influenza A virus infection, which enhances production of other cytokines. The overexpression of these cytokines can lead to a cytokine storm. To study the role of TNF-α in the development of pathologies associated with viral infection, we generated a Tnfa knockout mouse strain. We demonstrated that these mice were characterized by a significant increase in the number of viral genomes compared to that in the parental strain, but the amount of live virus did not differ. A histopathology of the lungs in the genetically modified animals was significantly lower in terms of interalveolar septal infiltration. The generated model may be used to further study pathological processes in viral infections.


Asunto(s)
Virus de la Influenza A , Infecciones por Orthomyxoviridae , Factor de Necrosis Tumoral alfa , Animales , Ratones , Citocinas/genética , Ratones Noqueados , Factor de Necrosis Tumoral alfa/genética , Infecciones por Orthomyxoviridae/patología
3.
Brain Behav Evol ; 98(3): 148-159, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36913918

RESUMEN

Here, we present the first evidence for brain adaptation in pigs tolerant to the human presence, as a behavioral trait favoring domestication. The study was carried out on minipiglets from population bred at the Institute of Cytology and Genetics (Novosibirsk, Russia). We compared the behavior, metabolism of monoaminergic neurotransmitter systems, and functional activity of the hypothalamic-pituitary-adrenal system, as well as neurotrophic markers in the brain of minipigs differing by tolerance to human presence (HT and LT - high and low tolerance). The piglets did not differ in the levels of activity in the open field test. However, the concentration of cortisol plasma was significantly higher in minipigs with a low tolerance to the presence of humans. Moreover, LT minipigs demonstrated a decreased level of serotonin in the hypothalamus and augmented levels of serotonin and its metabolite 5-HIAA in the substantia nigra as compared to HT animals. In addition, LT minipigs showed increased content of dopamine and its metabolite DOPAC in the substantia nigra and decreased dopamine level in the striatum as well as reduced content of noradrenaline in the hippocampus. Increased mRNA levels of two markers of the serotonin system - TPH2 and HTR7 genes - in the raphe nuclei and in the prefrontal cortex, respectively, were associated in minipigs with a low tolerance to human presence. However, the expression of genes regulating a dopaminergic system (COMT, DRD1, and DRD2) in HT and LT animal groups varied depending on brain structure. In addition, a decrease in the expression of genes encoding BDNF (brain-derived neurotrophic factor) and GDNF (glial cell line-derived neurotrophic factor) was revealed in LT minipigs. The results may contribute to our understanding of the initial stage of domestication in pigs.


Asunto(s)
Dopamina , Serotonina , Humanos , Animales , Porcinos , Dopamina/metabolismo , Porcinos Enanos/metabolismo , Serotonina/metabolismo , Encéfalo/metabolismo , Norepinefrina
4.
Biochemistry (Mosc) ; 88(3): 291-302, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37076278

RESUMEN

Tryptophan hydroxylase 2 is a key enzyme in the synthesis of the neurotransmitter serotonin, which plays an important role in the regulation of behavior and various physiological functions. We studied the effect of acute ethanol administration on the expression of the early response c-fos gene and metabolism of serotonin and catecholamines in the brain structures of B6-1473C and B6-1473G congenic mouse strains differing in the single-nucleotide substitution C1473G in the Tph2 gene and activity of the encoded enzyme. Acute alcoholization led to a significant upregulation of the c-fos gene expression in the frontal cortex and striatum of B6-1473G mice and in the hippocampus of B6-1473C mice and caused a decrease in the index of serotonin metabolism in the nucleus accumbens in B6-1473C mice and in the hippocampus and striatum of B6-1473G mice, as well as to the decrease in the norepinephrine level in the hypothalamus of B6-1473C mice. Therefore, the C1473G polymorphism in the Tph2 gene has a significant effect of acute ethanol administration on the c-fos expression pattern and metabolism of biogenic amines in the mouse brain.


Asunto(s)
Etanol , Oxigenasas de Función Mixta , Ratones , Animales , Oxigenasas de Función Mixta/metabolismo , Etanol/farmacología , Serotonina/metabolismo , Genes fos , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/metabolismo , Encéfalo/metabolismo , Expresión Génica
5.
J Neurosci Res ; 100(7): 1506-1523, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35443076

RESUMEN

Heterodimerization between 5-HT7 and 5-HT1A receptors seems to play an important role in the mechanism of depression and antidepressant drug action. It was suggested that the shift of the ratio between 5-HT1A /5-HT7 hetero- and 5-HT1A /5-HT1A homodimers in presynaptic neurons toward 5-HT1A /5-HT1A homodimers is one of the reasons of depression. Consequently, the artificial elevation of 5-HT7 receptor number in presynaptic terminals might restore physiological homo-/heterodimer ratio resulting in antidepressive effect. Here we showed that adeno-associated virus (AAV)-based 5-HT7 receptor overexpression in the midbrain raphe nuclei area produced antidepressive effect in male mice of both C57Bl/6J and genetically predisposed to depressive-like behavior ASC (antidepressant sensitive cataleptics) strains. These changes were accompanied by the elevation of 5-HT7 receptor mRNA level in the frontal cortex of C57Bl/6J and its reduction in the hippocampus of ASC mice. The presence of engineered 5-HT7 receptor in the midbrain of both mouse strains was further demonstrated. Importantly that 5-HT7 receptor overexpression resulted in the reduction of 5-HT1A receptor level in the membrane protein fraction from the midbrain samples of C57Bl/6J, but not ASC, mice. 5-HT7 receptor overexpression caused an increase of 5-HIAA/5-HT ratio in the midbrain and the frontal cortex of C57Bl/6J and in all investigated brain structures of ASC mice. Thus, 5-HT7 receptor overexpression in the raphe nuclei area affects brain 5-HT system and causes antidepressive effect both in C57Bl/6J and in "depressive" ASC male mice. Obtained results indicate the involvement of 5-HT7 receptor in the mechanisms underlying depressive behavior.


Asunto(s)
Núcleos del Rafe , Receptores de Serotonina , Serotonina , Animales , Antidepresivos/metabolismo , Encéfalo/metabolismo , Dependovirus , Vectores Genéticos , Masculino , Ratones , Ratones Endogámicos C57BL , Núcleos del Rafe/metabolismo , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo , Serotonina/metabolismo
6.
Int J Mol Sci ; 22(21)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34769417

RESUMEN

Experiments were carried out on recombinant B6.CBA-D13Mit76C (B6-M76C) and B6.CBA-D13Mit76B (B6-M76B) mouse lines created by transferring a 102.73-118.83 Mbp fragment of chromosome 13, containing the 5-HT1A receptor gene, from CBA or C57BL/6 strains to a C57BL/6 genetic background, correspondingly. We have recently shown different levels of 5-HT1A receptor functionality in these mouse lines. The administration of BDNF (300 ng/mouse, i.c.v.) increased the levels of exploratory activity and intermale aggression only in B6-M76B mice, without affecting depressive-like behavior in both lines. In B6-M76B mice the behavioral alterations were accompanied by a decrease in the 5-HT2A receptor functional activity and the augmentation of levels of serotonin and its main metabolite, 5-HIAA (5-hydroxyindoleacetic acid), in the midbrain. Moreover, the levels of dopamine and its main metabolites, HVA (homovanillic acid) and DOPAC (3,4-dihydroxyphenylacetic acid), were also elevated in the striatum of B6-M76B mice after BDNF treatment. In B6-M76C mice, central BDNF administration led only to a reduction in the functional activity of the 5-HT1A receptor and a rise in DOPAC levels in the midbrain. The obtained data suggest the importance of the 102.73-118.83 Mbp fragment of mouse chromosome 13, which contains the 5-HT1A receptor gene, for BDNF-induced alterations in behavior and the brain monoamine system.


Asunto(s)
Agresión/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/farmacología , Encéfalo/metabolismo , Receptor de Serotonina 5-HT1A/metabolismo , Serotonina/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Receptor de Serotonina 5-HT1A/genética
7.
BMC Genomics ; 18(1): 988, 2017 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-29273011

RESUMEN

BACKGROUND: Stress is a generic term used to describe non-specific responses of the body to all kinds of challenges. A very large variability in the response can be observed across individuals, depending on numerous conditioning factors like genetics, early influences and life history. As a result, there is a wide range of individual vulnerability and resilience to stress, also called robustness. The importance of robustness-related traits in breeding strategies is increasing progressively towards the production of animals with a high level of production under a wide range of climatic conditions and management systems, together with a lower environmental impact and a high level of animal welfare. The present study aims at describing blood transcriptomic, hormonal, and metabolic responses of pigs to a systemic challenge using lipopolysaccharide (LPS). The objective is to analyze the individual variation of the biological responses in relation to the activity of the HPA axis measured by the levels of plasma cortisol after LPS and ACTH in 120 juvenile Large White (LW) pigs. The kinetics of the response was measured with biological variables and whole blood gene expression at 4 time points. A multilevel statistical analysis was used to take into account the longitudinal aspect of the data. RESULTS: Cortisol level reaches its peak 4 h after LPS injection. The characteristic changes of white blood cell count to LPS were observed, with a decrease of total count, maximal at t=+4 h, and the mirror changes in the respective proportions of lymphocytes and granulocytes. The lymphocytes / granulocytes ratio was maximal at t=+1 h. An integrative statistical approach was used and provided a set of candidate genes for kinetic studies and ongoing complementary studies focused on the LPS-stimulated inflammatory response. CONCLUSIONS: The present study demonstrates the specific biomarkers indicative of an inflammation in swine. Furthermore, these stress responses persist for prolonged periods of time and at significant expression levels, making them good candidate markers for evaluating the efficacy of anti-inflammatory drugs.


Asunto(s)
Redes Reguladoras de Genes , Lipopolisacáridos/farmacología , Transcriptoma , Animales , Recuento de Células Sanguíneas , Femenino , Perfilación de la Expresión Génica , Hidrocortisona/sangre , Inmunidad/genética , Cinética , Masculino , Porcinos , Transcriptoma/efectos de los fármacos
8.
Neural Plast ; 2015: 846589, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26380122

RESUMEN

In the present study behavioral effects of the 5-HT2C serotonin receptor were investigated in different mouse strains. The 5-HT2C receptor agonist MK-212 applied intraperitoneally induced significant dose-dependent reduction of distance traveled in the open field test in CBA/Lac mice. This effect was receptor-specific because it was inhibited by the 5-HT2C receptor antagonist RS102221. To study the role of genotype in 5-HT2C receptor-induced hypolocomotion, locomotor activity of seven inbred mouse strains was measured after MK-212 acute treatment. We found that the 5-HT2C receptor stimulation by MK-212 decreased distance traveled in the open field test in CBA/Lac, C57Bl/6, C3H/He, and ICR mice, whereas it failed to affect locomotor activity in DBA/2J, Asn, and Balb/c mice. We also compared the interstrain differences in functional response to 5-HT2C and 5-HT2A receptors activation measured by the quantification of receptor-mediated head-twitches. These experiments revealed significant positive correlation between 5-HT2C and 5-HT2A receptors functional responses for all investigated mouse strains. Moreover, we found that 5-HT2A receptor activation with DOI did not change locomotor activity in CBA/Lac mice. Taken together, our data indicate the implication of 5-HT2C receptors in regulation of locomotor activity and suggest the shared mechanism for functional responses mediated by 5-HT2C and 5-HT2A receptors.


Asunto(s)
Actividad Motora/genética , Receptor de Serotonina 5-HT2A/genética , Receptor de Serotonina 5-HT2C/genética , Anfetaminas/farmacología , Animales , Relación Dosis-Respuesta a Droga , Genotipo , Movimientos de la Cabeza/efectos de los fármacos , Inyecciones Intraperitoneales , Masculino , Ratones , Ratones Endogámicos , Actividad Motora/efectos de los fármacos , Pirazinas/farmacología , Receptor de Serotonina 5-HT2C/efectos de los fármacos , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Especificidad de la Especie , Compuestos de Espiro/farmacología , Sulfonamidas/farmacología
9.
Biomed Pharmacother ; 147: 112667, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35104695

RESUMEN

Striatal-enriched protein tyrosine phosphatase (STEP) is a signal transduction protein involved in the pathogenesis of neuropathologies. A STEP inhibitor (TC-2153) has antipsychotic and antidepressant effects. Here, we evaluated the role of STEP in fear-induced aggression using Norway rats selectively bred for 90 generations for either high aggression toward humans (aggressive rats) or its absence (tame rats). We studied the effects of acute administration of TC-2153 on behavior and STEP expression in the brain of these animals and the influence of chronic treatment with TC-2153 on the behavior and STEP expression in aggressive rats in comparison with classic antidepressant fluoxetine, which is known to exert antiaggressive action. Acute TC-2153 administration decreased the aggressive reaction to humans in aggressive rats, while having no impact on the friendly behavior of tame rats. Moreover, in the elevated plus-maze test, the drug had an anxiolytic effect on both aggressive and tame rats. Aggressive rats demonstrated elevated levels of a STEP isoform (STEP46) as compared to tame animals, whereas acute TC-2153 administration significantly reduced STEP46 protein concentration in the brain of aggressive rats. Chronic treatment of aggressive rats with either TC-2153 or fluoxetine attenuated fear-induced aggression. Chronic administration of fluoxetine enhanced the exploratory activity in the elevated plus-maze test and decreased the STEP46 protein level in aggressive rats' hippocampus, whereas chronic TC-2153 administration did not affect these parameters. Thus, STEP46 can play an important role in the mechanisms of aggression and may mediate antiaggressive effects of TC-2153 and fluoxetine.


Asunto(s)
Agresión/efectos de los fármacos , Ansiolíticos/farmacología , Benzotiepinas/farmacología , Encéfalo/efectos de los fármacos , Miedo/efectos de los fármacos , Proteínas Tirosina Fosfatasas no Receptoras/antagonistas & inhibidores , Animales , Conducta Animal/efectos de los fármacos , Fluoxetina/farmacología , Hipocampo/efectos de los fármacos , Masculino , Ratas
10.
Alcohol ; 87: 1-15, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32330588

RESUMEN

We investigated the effect of chronic (6 weeks) consumption of 10% alcohol on the principal elements of BDNF (BDNF, proBDNF, p75, and TrkB receptors) and 5-HT (5-HT, 5-HIAA, tryptophan hydroxylase-2 [Tph-2], 5-HT transporter [5-HTT], 5-HT1A, 5-HT2A, and 5-HT7 receptors) systems in the brain of C57Bl/6 mice. BDNF mRNA level in the raphe nuclei area and BDNF protein level in the hippocampus were lowered in ethanol-treated mice. The increase in proBDNF protein level in the raphe nuclei area, cortex, and amygdala and the increase of p75 receptor protein levels in the raphe nuclei area were revealed after ethanol exposure. Alcohol intake reduced the protein level and increased the activity of Tph-2, the key enzyme for serotonin biosynthesis in the brain, and increased the main 5-HT metabolite 5-HIAA level and 5-HIAA/5-НТ ratio as well as the 5-HT7 receptor mRNA level in the raphe nuclei area. In the cortex, 5-HT2A receptor protein level was reduced, and 5-HIAA/5-HT ratio was increased. These data showed considerable impact of alcoholization on the BDNF system, resulting in proBDNF and p75 receptor expression enhancement. Alcohol-induced changes in BDNF and 5-HT systems were revealed in the raphe nuclei area where the majority of the cell bodies of the 5-HT neurons are localized, as well as in the cortex, hippocampus, and amygdala. Our data suggest that the BDNF/5-HT interaction contributes to the mechanism underlying chronic alcohol-induced neurodegenerative disorders.


Asunto(s)
Consumo de Bebidas Alcohólicas/efectos adversos , Factor Neurotrófico Derivado del Encéfalo , Hipocampo/efectos de los fármacos , Serotonina , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Etanol , Hipocampo/metabolismo , Ratones , Ratones Endogámicos C57BL , Serotonina/metabolismo
11.
Neurosci Lett ; 589: 79-82, 2015 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-25603476

RESUMEN

Tryptophan hydroxylase-2 (Tph2) is the rate limiting enzyme of serotonin synthesis in the brain. The functional (C1473G) polymorphism in the mouse Tph2 gene affecting the enzymatic activity was suspected to be involved in behavioral actions of ethanol (EtOH). Congenic B6-1473C (C/C) and B6-1473G (G/G) lines bred from C57BL/6 mice were not different in EtOH-induced sleep time and hypothermia. B6-1473C mice displayed increased EtOH preference on the second and third days compared to that of the first day, but no differences in this parameter was found across genotypes. Both lines demonstrated the same responsiveness to hypothermic and hypnotic effect of acute EtOH treatment after repeated alcohol exposure. However, acute EtOH administration led to reduction of locomotor activity in B6-1473C, but not in B6-1473G animals and to increase of time spent in the center of open-field arena in B6-1473G, but not in B6-1473C mice. Thus, the present study indicates the involvement of C1473G polymorphism in mTph2 gene in the regulation of EtOH-induced effects on locomotor activity and anxiety-like behavior in mice.


Asunto(s)
Temperatura Corporal/efectos de los fármacos , Etanol/farmacología , Locomoción/efectos de los fármacos , Sueño/efectos de los fármacos , Triptófano Hidroxilasa/metabolismo , Animales , Cruzamientos Genéticos , Genotipo , Masculino , Ratones Endogámicos C57BL , Polimorfismo Genético , Triptófano Hidroxilasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA