Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 912: 168858, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38030001

RESUMEN

Perennially frozen soil, also known as permafrost, is important for the functioning and productivity of most of the boreal forest, the world's largest terrestrial biome. A better understanding of complex vegetation-permafrost interrelationships is needed to predict changes in local- to large-scale carbon, nutrient, and water cycle dynamics under future global warming. Here, we analyze tree-ring width and tree-ring stable isotope (C and O) measurements of Gmelin larch (Larix gmelinii (Rupr.) Rupr.) from six permafrost sites in the northern taiga of central Siberia. Our multi-parameter approach shows that changes in tree growth were predominantly controlled by the air and topsoil temperature and moisture content of the active soil and upper permafrost layers. The observed patterns range from strong growth limitations by early summer temperatures at higher elevations to significant growth controls by precipitation at warmer and well-drained lower-elevation sites. Enhanced radial tree growth is mainly found at sites with fast thawing upper mineral soil layers, and the comparison of tree-ring isotopes over five-year periods with different amounts of summer precipitation indicates that trees can prevent drought stress by accessing water from melted snow and seasonally frozen soil. Identifying the active soil and upper permafrost layers as central water resources for boreal tree growth during dry summers demonstrates the complexity of ecosystem responses to climatic changes.


Asunto(s)
Hielos Perennes , Taiga , Ecosistema , Sequías , Suelo , Bosques
2.
Sci Data ; 9(1): 367, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35760795

RESUMEN

The data set presented represents 15 years of collection. It contains tree-ring width measurements from 64 sites of living trees and ten historical chronologies based on archaeological and construction wood up to year 572 CE, altogether 2909 tree-ring series and more than 450000 measured and cross-dated tree rings. It covers the vast territory of European Russia, including its forested northern and central parts, and the Northern Caucasus mountains. The potential use of these data include climatic reconstructions of regional and hemispheric scale, dendrochronological dating of historical and cultural wood, ecological and remote sensing studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA