Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Sci ; 130(2): 344-359, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27884932

RESUMEN

The Wiskott-Aldrich syndrome protein and SCAR homolog (WASH; also known as Washout in flies) is a conserved actin-nucleation-promoting factor controlling Arp2/3 complex activity in endosomal sorting and recycling. Previous studies have identified WASH as an essential regulator in Drosophila development. Here, we show that homozygous wash mutant flies are viable and fertile. We demonstrate that Drosophila WASH has conserved functions in integrin receptor recycling and lysosome neutralization. WASH generates actin patches on endosomes and lysosomes, thereby mediating both aforementioned functions. Consistently, loss of WASH function results in cell spreading and cell migration defects of macrophages, and an increased lysosomal acidification that affects efficient phagocytic and autophagic clearance. WASH physically interacts with the vacuolar (V)-ATPase subunit Vha55 that is crucial to establish and maintain lysosome acidification. As a consequence, starved flies that lack WASH function show a dramatic increase in acidic autolysosomes, causing a reduced lifespan. Thus, our data highlight a conserved role for WASH in the endocytic sorting and recycling of membrane proteins, such as integrins and the V-ATPase, that increase the likelihood of survival under nutrient deprivation.


Asunto(s)
Movimiento Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Cadenas alfa de Integrinas/metabolismo , Lisosomas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Ácidos/metabolismo , Actinas/metabolismo , Animales , Autofagia , Adhesión Celular , Endosomas/metabolismo , Fertilidad , Homocigoto , Macrófagos/citología , Macrófagos/metabolismo , Mutación/genética , Oogénesis , Fagocitosis , Fagosomas/metabolismo , Unión Proteica , Subunidades de Proteína/metabolismo , Pupa/citología , ATPasas de Translocación de Protón Vacuolares/metabolismo
2.
Development ; 141(6): 1366-80, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24553290

RESUMEN

A tight spatiotemporal control of actin polymerization is important for many cellular processes that shape cells into a multicellular organism. The formation of unbranched F-actin is induced by several members of the formin family. Drosophila encodes six formin genes, representing six of the seven known mammalian subclasses. Knittrig, the Drosophila homolog of mammalian FHOD1, is specifically expressed in the developing central nervous system midline glia, the trachea, the wing and in macrophages. knittrig mutants exhibit mild tracheal defects but survive until late pupal stages and mainly die as pharate adult flies. knittrig mutant macrophages are smaller and show reduced cell spreading and cell migration in in vivo wounding experiments. Rescue experiments further demonstrate a cell-autonomous function of Knittrig in regulating actin dynamics and cell migration. Knittrig localizes at the rear of migrating macrophages in vivo, suggesting a cellular requirement of Knittrig in the retraction of the trailing edge. Supporting this notion, we found that Knittrig is a target of the Rho-dependent kinase Rok. Co-expression with Rok or expression of an activated form of Knittrig induces actin stress fibers in macrophages and in epithelial tissues. Thus, we propose a model in which Rok-induced phosphorylation of residues within the basic region mediates the activation of Knittrig in controlling macrophage migration.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Quinasas Asociadas a rho/metabolismo , Animales , Movimiento Celular/inmunología , Movimiento Celular/fisiología , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto , Inmunidad Celular , Macrófagos/inmunología , Macrófagos/fisiología , Mutación , Fibras de Estrés/metabolismo , Quinasas Asociadas a rho/genética
3.
Small GTPases ; 5(2): 11, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25483300

RESUMEN

Eukaryotic cells have evolved a variety of actin-binding proteins to regulate the architecture and the dynamics of the actin cytoskeleton in time and space. The Diaphanous-related formins (DRF) represent a diverse group of Rho-GTPase-regulated actin regulators that control a range of actin structures composed of tightly-bundled, unbranched actin filaments as found in stress fibers and in filopodia. Under resting conditions, DRFs are auto-inhibited by an intra-molecular interaction between the C-terminal and the N-terminal domains. The auto-inhibition is thought to be released by binding of an activated RhoGTPase to the N-terminal GTPase-binding domain (GBD). However, there is growing evidence for more sophisticated variations from this simplified linear activation model. In this review we focus on the formin homology domain-containing proteins (FHOD), an unconventional group of DRFs. Recent findings on the molecular control and cellular functions of FHOD proteins in vivo are discussed in the light of the phylogeny of FHOD proteins.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Humanos , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/genética , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA