Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Pflugers Arch ; 476(4): 593-610, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38374228

RESUMEN

The transport of bicarbonate across the enterocyte cell membrane regulates the intracellular as well as the luminal pH and is an essential part of directional fluid movement in the gut. Since the first description of "active" transport of HCO3- ions against a concentration gradient in the 1970s, the fundamental role of HCO3- transport for multiple intestinal functions has been recognized. The ion transport proteins have been identified and molecularly characterized, and knockout mouse models have given insight into their individual role in a variety of functions. This review describes the progress made in the last decade regarding novel techniques and new findings in the molecular regulation of intestinal HCO3- transport in the different segments of the gut. We discuss human diseases with defects in intestinal HCO3- secretion and potential treatment strategies to increase luminal alkalinity. In the last part of the review, the cellular and organismal mechanisms for acid/base sensing in the intestinal tract are highlighted.


Asunto(s)
Bicarbonatos , Enterocitos , Animales , Ratones , Humanos , Bicarbonatos/metabolismo , Transporte Iónico , Enterocitos/metabolismo , Membrana Celular/metabolismo , Secreciones Corporales/metabolismo , Concentración de Iones de Hidrógeno , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo
2.
Anal Bioanal Chem ; 414(10): 3243-3255, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34936009

RESUMEN

The present paper describes a compact point of care (POC) optical device for therapeutic drug monitoring (TDM). The core of the device is a disposable plastic chip where an immunoassay for the determination of immunosuppressants takes place. The chip is designed in order to have ten parallel microchannels allowing the simultaneous detection of more than one analyte with replicate measurements. The device is equipped with a microfluidic system, which provides sample mixing with the necessary chemicals and pumping samples, reagents and buffers into the measurement chip, and with integrated thin film amorphous silicon photodiodes for the fluorescence detection. Submicrometric fluorescent magnetic particles are used as support in the immunoassay in order to improve the efficiency of the assay. In particular, the magnetic feature is used to concentrate the antibody onto the sensing layer leading to a much faster implementation of the assay, while the fluorescent feature is used to increase the optical signal leading to a larger optical dynamic change and consequently a better sensitivity and a lower limit of detection. The design and development of the whole integrated optical device are here illustrated. In addition, detection of mycophenolic acid and cyclosporine A in spiked solutions and in microdialysate samples from patient blood with the implemented device are reported.


Asunto(s)
Inmunosupresores , Dispositivos Ópticos , Humanos , Inmunoensayo , Microfluídica , Silicio
3.
Int J Mol Sci ; 22(6)2021 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-33804674

RESUMEN

Intra- and extracellular pH regulation is a pivotal function of all cells and tissues. Net outward transport of H+ is a prerequisite for normal physiological function, since a number of intracellular processes, such as metabolism and energy supply, produce acid. In tumor tissues, distorted pH regulation results in extracellular acidification and the formation of a hostile environment in which cancer cells can outcompete healthy local host cells. Cancer cells employ a variety of H+/HCO3--coupled transporters in combination with intra- and extracellular carbonic anhydrase (CA) isoforms, to alter intra- and extracellular pH to values that promote tumor progression. Many of the transporters could closely associate to CAs, to form a protein complex coined "transport metabolon". While transport metabolons built with HCO3--coupled transporters require CA catalytic activity, transport metabolons with monocarboxylate transporters (MCTs) operate independently from CA catalytic function. In this article, we assess some of the processes and functions of CAs for tumor pH regulation and discuss the role of intra- and extracellular pH regulation for cancer pathogenesis and therapeutic intervention.


Asunto(s)
Anhidrasas Carbónicas/metabolismo , Neoplasias/metabolismo , Protones , Animales , Biomarcadores , Anhidrasas Carbónicas/genética , Susceptibilidad a Enfermedades , Descubrimiento de Drogas , Metabolismo Energético/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Espacio Intracelular/metabolismo , Bombas Iónicas/genética , Bombas Iónicas/metabolismo , Transporte Iónico/efectos de los fármacos , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/etiología , Neoplasias/patología
4.
J Biol Chem ; 294(2): 593-607, 2019 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-30446621

RESUMEN

Monocarboxylate transporters (MCTs) mediate the proton-coupled exchange of high-energy metabolites, including lactate and pyruvate, between cells and tissues. The transport activity of MCT1, MCT2, and MCT4 can be facilitated by the extracellular carbonic anhydrase IV (CAIV) via a noncatalytic mechanism. Combining physiological measurements in HEK-293 cells and Xenopus oocytes with pulldown experiments, we analyzed the direct interaction between CAIV and the two MCT chaperones basigin (CD147) and embigin (GP70). Our results show that facilitation of MCT transport activity requires direct binding of CAIV to the transporters chaperones. We found that this binding is mediated by the highly conserved His-88 residue in CAIV, which is also the central residue of the enzyme's intramolecular proton shuttle, and a charged amino acid residue in the Ig1 domain of the chaperone. Although the position of the CAIV-binding site in the chaperone was conserved, the amino acid residue itself varied among different species. In human CD147, binding of CAIV was mediated by the negatively charged Glu-73 and in rat CD147 by the positively charged Lys-73. In rat GP70, we identified the positively charged Arg-130 as the binding site. Further analysis of the CAIV-binding site revealed that the His-88 in CAIV can either act as H donor or H acceptor for the hydrogen bond, depending on the charge of the binding residue in the chaperone. Our results suggest that the CAIV-mediated increase in MCT transport activity requires direct binding between CAIV-His-88 and a charged amino acid in the extracellular domain of the transporter's chaperone.


Asunto(s)
Basigina/metabolismo , Anhidrasa Carbónica IV/metabolismo , Glicoproteínas/metabolismo , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Mapas de Interacción de Proteínas , Secuencia de Aminoácidos , Animales , Basigina/química , Células HEK293 , Humanos , Proteínas de la Membrana , Modelos Moleculares , Dominios Proteicos , Ratas , Alineación de Secuencia , Simportadores/metabolismo , Xenopus
5.
Br J Cancer ; 122(2): 157-167, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31819195

RESUMEN

Alterations in tumour metabolism and acid/base regulation result in the formation of a hostile environment, which fosters tumour growth and metastasis. Acid/base homoeostasis in cancer cells is governed by the concerted interplay between carbonic anhydrases (CAs) and various transport proteins, which either mediate proton extrusion or the shuttling of acid/base equivalents, such as bicarbonate and lactate, across the cell membrane. Accumulating evidence suggests that some of these transporters interact both directly and functionally with CAIX to form a protein complex coined the 'transport metabolon'. Transport metabolons formed between bicarbonate transporters and CAIX require CA catalytic activity and have a function in cancer cell migration and invasion. Another type of transport metabolon is formed by CAIX and monocarboxylate transporters. In this complex, CAIX functions as a proton antenna for the transporter, which drives the export of lactate and protons from the cell. Since CAIX is almost exclusively expressed in cancer cells, these transport metabolons might serve as promising targets to interfere with tumour pH regulation and energy metabolism. This review provides an overview of the current state of research on the function of CAIX in tumour acid/base transport and discusses how CAIX transport metabolons could be exploited in modern cancer therapy.


Asunto(s)
Antígenos de Neoplasias/genética , Anhidrasa Carbónica IX/genética , Metabolismo Energético/genética , Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Anhidrasa Carbónica IX/metabolismo , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Concentración de Iones de Hidrógeno , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Metástasis de la Neoplasia , Neoplasias/metabolismo , Neoplasias/patología
6.
EMBO Rep ; 18(12): 2172-2185, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29066459

RESUMEN

Elevated amino acid catabolism is common to many cancers. Here, we show that glioblastoma are excreting large amounts of branched-chain ketoacids (BCKAs), metabolites of branched-chain amino acid (BCAA) catabolism. We show that efflux of BCKAs, as well as pyruvate, is mediated by the monocarboxylate transporter 1 (MCT1) in glioblastoma. MCT1 locates in close proximity to BCKA-generating branched-chain amino acid transaminase 1, suggesting possible functional interaction of the proteins. Using in vitro models, we demonstrate that tumor-excreted BCKAs can be taken up and re-aminated to BCAAs by tumor-associated macrophages. Furthermore, exposure to BCKAs reduced the phagocytic activity of macrophages. This study provides further evidence for the eminent role of BCAA catabolism in glioblastoma by demonstrating that tumor-excreted BCKAs might have a direct role in tumor immune suppression. Our data further suggest that the anti-proliferative effects of MCT1 knockdown observed by others might be related to the blocked excretion of BCKAs.


Asunto(s)
Aminoácidos de Cadena Ramificada/metabolismo , Glioblastoma/fisiopatología , Macrófagos/fisiología , Transportadores de Ácidos Monocarboxílicos/metabolismo , Simportadores/metabolismo , Transporte Biológico , Recuento de Células , Línea Celular Tumoral , Glioblastoma/inmunología , Humanos , Técnicas In Vitro , Macrófagos/inmunología , Macrófagos/patología , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Transportadores de Ácidos Monocarboxílicos/deficiencia , Transportadores de Ácidos Monocarboxílicos/genética , Proteínas Musculares/deficiencia , Proteínas Musculares/genética , Fagocitosis , Fenotipo , Ácido Pirúvico/metabolismo , Simportadores/antagonistas & inhibidores , Simportadores/genética , Transaminasas
7.
Arch Toxicol ; 92(3): 1133-1149, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29209748

RESUMEN

The metabolic activity of hepatocytes is a central prerequisite for drug activity and a key element in drug-drug interaction. This central role in metabolism largely depends on the activity of the cytochrome P450 (CYP450) enzyme family, which is not only dependent on liver cell maturation but is also controlled in response to drug and chemical exposure. Here, we report the use of VividDye fluorogenic CYP450 substrates to directly measure and continuously monitor metabolic activity in living hepatocytes. We observed time- and dose-dependent correlation in response to established and putative CYP450 inducers acting through the aryl hydrocarbon receptor and drug combinations. Using repetitive addition of VividDye fluorogenic substrate on a daily basis, we demonstrated the new application of VividDye for monitoring the maturation and dedifferentiation of hepatic cells. Despite a lack of high specificity for individual CYP450 isoenzymes, our approach enables continuous monitoring of metabolic activity in living cells with no need to disrupt cultivation. Our assay can be integrated in in vitro liver-mimetic models for on-line monitoring and thus should enhance the reliability of these tissue model systems.


Asunto(s)
Bioensayo/métodos , Compuestos Cromogénicos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Hepatocitos/enzimología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Bioensayo/instrumentación , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Sistema Enzimático del Citocromo P-450/análisis , Inducción Enzimática/efectos de los fármacos , Colorantes Fluorescentes/análisis , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/fisiología , Humanos , Indoles/farmacología , Dispositivos Laboratorio en un Chip , Masculino , Ratones Endogámicos C57BL , Oximas , Dibenzodioxinas Policloradas/farmacología , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo
8.
J Enzyme Inhib Med Chem ; 33(1): 1064-1073, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29909747

RESUMEN

Carbonic anhydrase (CA) IX is a hypoxia inducible enzyme that is highly expressed in solid tumours. Therefore, it has been considered as an anticancer target using specific chemical inhibitors. The nitroimidazoles DTP338 and DTP348 have been shown to inhibit CA IX in nanomolar range in vitro and reduce extracellular acidification in hypoxia, and impair tumour growth. We screened these compounds for toxicity using zebrafish embryos and measured their in vivo effects on human CA IX in Xenopus oocytes. In the toxicity screening, the LD50 for both compounds was 3.5 mM. Neither compound showed apparent toxicity below 300 µM concentration. Above this concentration, both compounds altered the movement of zebrafish larvae. The IC50 was 0.14 ± 0.02 µM for DTP338 and 19.26 ± 1.97 µM for DTP348, suggesting that these compounds efficiently inhibit CA IX in vivo. Our results suggest that these compounds can be developed as drugs for cancer therapy.


Asunto(s)
Anhidrasa Carbónica IX/antagonistas & inhibidores , Inhibidores de Anhidrasa Carbónica/farmacología , Nitroimidazoles/farmacología , Oocitos/efectos de los fármacos , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Anhidrasa Carbónica IX/metabolismo , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Relación Dosis-Respuesta a Droga , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Mycobacterium marinum/efectos de los fármacos , Nitroimidazoles/síntesis química , Nitroimidazoles/química , Oocitos/metabolismo , Relación Estructura-Actividad , Xenopus , Pez Cebra/embriología
9.
J Biol Chem ; 290(49): 29202-16, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26487715

RESUMEN

HCO3 (-) is a key factor in the regulation of sperm motility. High concentrations of HCO3 (-) in the female genital tract induce an increase in sperm beat frequency, which speeds progress of the sperm through the female reproductive tract. Carbonic anhydrases (CA), which catalyze the reversible hydration of CO2 to HCO3 (-), represent potential candidates in the regulation of the HCO3 (-) homeostasis in sperm and the composition of the male and female genital tract fluids. We show that two CA isoforms, CAII and CAIV, are distributed along the epididymal epithelium and appear with the onset of puberty. Expression analyses reveal an up-regulation of CAII and CAIV in the different epididymal sections of the knockout lines. In sperm, we find that CAII is located in the principal piece, whereas CAIV is present in the plasma membrane of the entire sperm tail. CAII and CAIV single knockout animals display an imbalanced HCO3 (-) homeostasis, resulting in substantially reduced sperm motility, swimming speed, and HCO3 (-)-enhanced beat frequency. The CA activity remaining in the sperm of CAII- and CAIV-null mutants is 35% and 68% of that found in WT mice. Sperm of the double knockout mutant mice show responses to stimulus by HCO3 (-) or CO2 that were delayed in onset and reduced in magnitude. In comparison with sperm from CAII and CAIV double knockout animals, pharmacological loss of CAIV in sperm from CAII knockout animals, show an even lower response to HCO3 (-). These results suggest that CAII and CAIV are required for optimal fertilization.


Asunto(s)
Anhidrasa Carbónica II/metabolismo , Anhidrasa Carbónica IV/metabolismo , Fertilidad , Espermatozoides/enzimología , Animales , Catálisis , Membrana Celular/enzimología , Femenino , Fertilización , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Homeostasis , Concentración de Iones de Hidrógeno , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Fenotipo , Motilidad Espermática
10.
J Biol Chem ; 290(7): 4476-86, 2015 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-25561737

RESUMEN

Proton-coupled monocarboxylate transporters (MCTs) mediate the exchange of high energy metabolites like lactate between different cells and tissues. We have reported previously that carbonic anhydrase II augments transport activity of MCT1 and MCT4 by a noncatalytic mechanism, while leaving transport activity of MCT2 unaltered. In the present study, we combined electrophysiological measurements in Xenopus oocytes and pulldown experiments to analyze the direct interaction between carbonic anhydrase II (CAII) and MCT1, MCT2, and MCT4, respectively. Transport activity of MCT2-WT, which lacks a putative CAII-binding site, is not augmented by CAII. However, introduction of a CAII-binding site into the C terminus of MCT2 resulted in CAII-mediated facilitation of MCT2 transport activity. Interestingly, introduction of three glutamic acid residues alone was not sufficient to establish a direct interaction between MCT2 and CAII, but the cluster had to be arranged in a fashion that allowed access to the binding moiety in CAII. We further demonstrate that functional interaction between MCT4 and CAII requires direct binding of the enzyme to the acidic cluster (431)EEE in the C terminus of MCT4 in a similar fashion as previously shown for binding of CAII to the cluster (489)EEE in the C terminus of MCT1. In CAII, binding to MCT1 and MCT4 is mediated by a histidine residue at position 64. Taken together, our results suggest that facilitation of MCT transport activity by CAII requires direct binding between histidine 64 in CAII and a cluster of glutamic acid residues in the C terminus of the transporter that has to be positioned in surroundings that allow access to CAII.


Asunto(s)
Anhidrasa Carbónica II/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Oocitos/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Transporte Biológico , Anhidrasa Carbónica II/genética , Electrofisiología , Humanos , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Transportadores de Ácidos Monocarboxílicos/genética , Mutagénesis Sitio-Dirigida , Mutación/genética , Oocitos/citología , Unión Proteica , Isoformas de Proteínas , Ratas , Homología de Secuencia de Aminoácido , Xenopus laevis/crecimiento & desarrollo , Xenopus laevis/metabolismo
11.
J Enzyme Inhib Med Chem ; 31(sup4): 38-44, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27557419

RESUMEN

Human carbonic anhydrase IX (CA IX) is overexpressed in the most aggressive and invasive tumors. Therefore, CA IX has become the promising antitumor drug target. Three inhibitors have been shown to selectively and with picomolar affinity inhibit human recombinant CA IX. Their inhibitory potencies were determined for the CA IX, CA II, CA IV and CA XII in Xenopus oocytes and MDA-MB-231 cancer cells. The inhibition IC50 value of microelectrode-monitored intracellular and extracellular acidification reached 15 nM for CA IX, but with no effect on CA II expressed in Xenopus oocytes. Results were confirmed by mass spectrometric gas analysis of lysed oocytes, when an inhibitory effect on CA IX catalytic activity was found after the injection of 1 nM VD11-4-2. Moreover, VD11-4-2 inhibited CA activity in MDA-MB-231 cancer cells at nanomolar concentrations. This combination of high selectivity and potency renders VD11-4-2, an auspicious therapeutic drug for target-specific tumor therapy.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/enzimología , Anhidrasa Carbónica IX/antagonistas & inhibidores , Inhibidores de Anhidrasa Carbónica/farmacología , Oocitos/enzimología , Xenopus laevis , Animales , Anhidrasa Carbónica IX/metabolismo , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Estructura Molecular , Relación Estructura-Actividad
12.
Proc Natl Acad Sci U S A ; 110(4): 1494-9, 2013 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-23297198

RESUMEN

Soluble cytosolic carbonic anhydrases (CAs) are well known to participate in pH regulation of the cytoplasm of mammalian cells. Membrane-bound CA isoforms--such as isoforms IV, IX, XII, XIV, and XV--also catalyze the reversible conversion of carbon dioxide to protons and bicarbonate, but at the extracellular face of the cell membrane. When human CA isoform IV was heterologously expressed in Xenopus oocytes, we observed, by measuring H(+) at the outer face of the cell membrane and in the cytosol with ion-selective microelectrodes, not only extracellular catalytic CA activity but also robust intracellular activity. CA IV expression in oocytes was confirmed by immunocytochemistry, and CA IV activity measured by mass spectrometry. Extra- and intracellular catalytic activity of CA IV could be pharmacologically dissected using benzolamide, the CA inhibitor, which is relatively slowly membrane-permeable. In acute cerebellar slices of mutant mice lacking CA IV, cytosolic H(+) shifts of granule cells following CO(2) removal/addition were significantly slower than in wild-type mice. Our results suggest that membrane-associated CA IV contributes robust catalytic activity intracellularly, and that this activity participates in regulating H(+) dynamics in the cytosol, both in injected oocytes and in mouse neurons.


Asunto(s)
Anhidrasa Carbónica IV/metabolismo , Animales , Benzolamida/farmacología , Anhidrasa Carbónica II/antagonistas & inhibidores , Anhidrasa Carbónica II/genética , Anhidrasa Carbónica II/metabolismo , Anhidrasa Carbónica IV/antagonistas & inhibidores , Anhidrasa Carbónica IV/deficiencia , Anhidrasa Carbónica IV/genética , Inhibidores de Anhidrasa Carbónica/farmacología , Cerebelo/citología , Cerebelo/enzimología , Citosol/enzimología , Líquido Extracelular/enzimología , Femenino , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Líquido Intracelular/enzimología , Ratones , Ratones Noqueados , Neuronas/enzimología , Oocitos/enzimología , ARN Complementario/genética , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Xenopus laevis
13.
J Biol Chem ; 289(5): 2765-75, 2014 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-24338019

RESUMEN

Proton-coupled monocarboxylate transporters (MCTs) are carriers of high-energy metabolites such as lactate, pyruvate, and ketone bodies and are expressed in most tissues. It has previously been shown that transport activity of MCT1 and MCT4 is enhanced by the cytosolic carbonic anhydrase II (CAII) independent of its catalytic activity. We have now studied the influence of the extracellular, membrane-bound CAIV on transport activity of MCT1/4, heterologously expressed in Xenopus oocytes. Coexpression of CAIV with MCT1 and MCT4 resulted in a significant increase in MCT transport activity, even in the nominal absence of CO2/HCO3(-). CAIV-mediated augmentation of MCT activity was independent of the CAIV catalytic function, since application of the CA-inhibitor ethoxyzolamide or coexpression of the catalytically inactive mutant CAIV-V165Y did not suppress CAIV-mediated augmentation of MCT transport activity. The interaction required CAIV at the extracellular surface, since injection of CAIV protein into the oocyte cytosol did not augment MCT transport function. The effects of cytosolic CAII (injected as protein) and extracellular CAIV (expressed) on MCT transport activity, were additive. Our results suggest that intra- and extracellular carbonic anhydrases can work in concert to ensure rapid shuttling of metabolites across the cell membrane.


Asunto(s)
Anhidrasa Carbónica IV/metabolismo , Cuerpos Cetónicos/metabolismo , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Ácido Pirúvico/metabolismo , Simportadores/metabolismo , Animales , Transporte Biológico/fisiología , Anhidrasa Carbónica II/metabolismo , Anhidrasa Carbónica IV/genética , Citosol/metabolismo , Espacio Extracelular/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Proteínas de la Membrana/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Proteínas Musculares/genética , Oocitos/fisiología , Isótopos de Oxígeno/farmacocinética , Ratas , Simportadores/genética , Xenopus
14.
Pflugers Arch ; 467(7): 1469-1480, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25118990

RESUMEN

Blood-derived lactate is a precious energy substrate for the heart muscle. Lactate is transported into cardiomyocytes via monocarboxylate transporters (MCTs) together with H(+), which couples lactate uptake to cellular pH regulation. In this study, we have investigated how the interplay between different acid/base transporters and carbonic anhydrases (CA), which catalyze the reversible hydration of CO2, modulates the uptake of lactate into isolated mouse cardiomyocytes. Lactate transport was estimated both as lactate-induced acidification and as changes in intracellular lactate levels measured with a newly developed Förster resonance energy transfer (FRET) nanosensor. Recordings of intracellular pH showed an increase in the rate of lactate-induced acidification when CA was inhibited by 6-ethoxy-2-benzothiazolesulfonamide (EZA), while direct measurements of lactate flux demonstrated a decrease in MCT transport activity, when CA was inhibited. The data indicate that catalytic activity of extracellular CA increases lactate uptake and counteracts intracellular lactate-induced acidification. We propose a hypothetical model, in which HCO3 (-), formed from cell-derived CO2 at the outer surface of the cardiomyocyte plasma membrane by membrane-anchored, extracellular CA, is transported into the cell via Na(+)/HCO3 (-) cotransport to counteract intracellular acidification, while the remaining H(+) stabilizes extracellular pH at the surface of the plasma membrane during MCT activity to enhance lactate influx into cardiomyocytes.


Asunto(s)
Anhidrasas Carbónicas/metabolismo , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Miocitos Cardíacos/metabolismo , Simportadores de Sodio-Bicarbonato/metabolismo , Simportadores/metabolismo , Animales , Benzotiazoles/farmacología , Bicarbonatos/metabolismo , Técnicas Biosensibles , Inhibidores de Anhidrasa Carbónica/farmacología , Células Cultivadas , Transferencia Resonante de Energía de Fluorescencia , Concentración de Iones de Hidrógeno , Ratones , Ratones Endogámicos C57BL , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Miocitos Cardíacos/efectos de los fármacos , Simportadores de Sodio-Bicarbonato/antagonistas & inhibidores , Sulfonamidas/farmacología , Simportadores/antagonistas & inhibidores
15.
Subcell Biochem ; 75: 105-34, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24146377

RESUMEN

Carbonic anhydrases (CAs) have not only been identified as ubiquitous enzymes catalyzing the fast reversible hydration of carbon dioxide to generate or consume protons and bicarbonate, but also as intra- and extracellular proteins, which facilitate transport function of many acid/base transporting membrane proteins, coined 'transport metabolon'. Functional interaction between CAs and acid/base transporters, such as chloride/bicarbonate exchanger (AE), sodium-bicarbonate cotransporter (NBC) and sodium/hydrogen exchanger (NHE) has been shown to require both catalytic CA activity as well as direct binding of the enzyme to specific sites on the transporter. In contrast, functional interaction between different CA isoforms and lactate-proton-cotransporting monocarboxylate transporters (MCT) has been found to be isoform-specific and independent of CA catalytic activity, but seems to require an intramolecular proton shuttle within the enzyme. In this chapter, we review the various types of interactions between acid/base-coupled membrane carriers and different CA isoforms, as studied in vitro, in intact Xenopus oocytes, and in various mammalian cell types. Furthermore, we discuss recent findings that indicate the significance of these 'transport metabolons' for normal cell functions.


Asunto(s)
Bicarbonatos/metabolismo , Anhidrasas Carbónicas/química , Anhidrasas Carbónicas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Animales , Transporte Biológico , Anhidrasas Carbónicas/genética , Catálisis , Ácido Láctico/metabolismo , Proteínas de Transporte de Membrana/química , Mapas de Interacción de Proteínas/genética , Protones , Simportadores de Sodio-Bicarbonato/química , Simportadores de Sodio-Bicarbonato/metabolismo
16.
Biomed Microdevices ; 16(1): 163-72, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24091714

RESUMEN

We report on a cartridge based platform for complex immunoassay formats that allows for flexible adaption of individual steps. It is a sample-to-answer system which is quantitative as well as sensitive. The target molecules are detected through a magnetic bead-based fluorescence sandwich immunoassay. The beads both constitute the solid phase for immobilizing capture molecules and are used for magnetic field activated incubation. The injection molded cartridge comprises several chambers separated by capillary valves. Chambers contain the assay reagents, through which the beads are manipulated via externally applied magnetic fields. Active incubation is made possible by assembling the beads into microstirrers and systematically scanning through a chamber. The beads are transported by focusing them to form an aggregate which subsequently is dragged through the valves. Once the aggregate enters a chamber, it is re-dispersed and magnetic actuation is used to re-assemble the beads into microstirrers. The assay protocol involves an incubation of sample with antibody coated magnetic beads, followed by steps for washing or separation, labeling with fluorescent detection antibody and finally fluorescence detection. An interleukin-8 assay served as a model for evaluating the system and a concentration as low as 5 pg/mL (0.625 pM) was successfully detected. The platform shows potential to be developed into a diagnostic tool to be used in a point-of-care testing (PoCT) environment.


Asunto(s)
Inmunoensayo/métodos , Anticuerpos/análisis , Diseño de Equipo , Fluorescencia , Humanos , Separación Inmunomagnética/instrumentación , Interleucina-8/análisis , Magnetismo , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Reproducibilidad de los Resultados
17.
Proc Natl Acad Sci U S A ; 108(7): 3071-6, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21282642

RESUMEN

Carbonic anhydrases (CAs) catalyze the reversible hydration of CO(2) to HCO(3)(-) and H(+). The rate-limiting step in this reaction is the shuttle of protons between the catalytic center of the enzyme and the bulk solution. In carbonic anhydrase II (CAII), the fastest and most wide-spread isoform, this H(+) shuttle is facilitated by the side chain of His64, whereas CA isoforms such as carbonic anhydrase III (CAIII), which lack such a shuttle, have only low catalytic activity in vitro. By using heterologous protein expression in Xenopus oocytes, we tested the role of this intramolecular H(+) shuttle on CA activity in an intact cell. The data revealed that CAIII, shown in vitro to have ∼1,000-fold reduced activity as compared with CAII, displays significant catalytic activity in the intact cell. Furthermore, we tested the hypothesis that the H(+) shuttle in CAII itself can facilitate transport activity of the monocarboxylate transporters 1 and 4 (MCT1/4) independent of catalytic activity. Our results show that His64 is essential for the enhancement of lactate transport via MCT1/4, because a mutation of this residue to alanine (CAII-H64A) abolishes the CAII-induced increase in MCT1/4 activity. However, injection of 4-methylimidazole, which acts as an exogenous H(+) donor/acceptor, can restore the ability of CAII-H64A to enhance transport activity of MCT1/4. These findings support the hypothesis that the H(+) shuttle in CAII not only facilitates CAII catalytic activity but also can enhance activity of acid-/base-transporting proteins such as MCT1/4 in a direct, noncatalytic manner, possibly by acting as an "H(+)-collecting antenna."


Asunto(s)
Anhidrasa Carbónica III/metabolismo , Anhidrasa Carbónica II/metabolismo , Modelos Moleculares , Protones , Animales , Bicarbonatos/metabolismo , Transporte Biológico/fisiología , Western Blotting , Dióxido de Carbono/metabolismo , Anhidrasa Carbónica II/química , Anhidrasa Carbónica III/química , Catálisis , Humanos , Concentración de Iones de Hidrógeno , Imidazoles , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Oocitos/metabolismo , Xenopus
18.
J Physiol ; 590(10): 2333-51, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22451434

RESUMEN

Rapid exchange of metabolites between different cell types is crucial for energy homeostasis of the brain. Besides glucose, lactate is a major metabolite in the brain and is primarily produced in astrocytes. In the present study, we report that carbonic anhydrase 2 (CAII) enhances both influx and efflux of lactate in mouse cerebellar astrocytes. The augmentation of lactate transport is independent of the enzyme's catalytic activity, but requires direct binding of CAII to the C-terminal of the monocarboxylate transporter MCT1, one of the major lactate/proton cotransporters in astrocytes and most tissues. By employing its intramolecular proton shuttle, CAII, bound to MCT1, can act as a 'proton collecting antenna' for the transporter, suppressing the formation of proton microdomains at the transporter-pore and thereby enhancing lactate flux. By this mechanism CAII could enhance transfer of lactate between astrocytes and neurons and thus provide the neurons with an increased supply of energy substrate.


Asunto(s)
Astrocitos/metabolismo , Anhidrasa Carbónica II/metabolismo , Cerebelo/metabolismo , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Simportadores/metabolismo , Animales , Anhidrasa Carbónica II/deficiencia , Anhidrasa Carbónica II/genética , Células Cultivadas , Femenino , Ratones , Ratones Noqueados , Transportadores de Ácidos Monocarboxílicos/genética , Oocitos , ARN Interferente Pequeño/genética , Simportadores/genética , Xenopus laevis
19.
J Biol Chem ; 286(31): 27781-91, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21680735

RESUMEN

The ubiquitous enzyme carbonic anhydrase isoform II (CAII) has been shown to enhance transport activity of the proton-coupled monocarboxylate transporters MCT1 and MCT4 in a non-catalytic manner. In this study, we investigated the role of cytosolic CAII and of the extracellular, membrane-bound CA isoform IV (CAIV) on the lactate transport activity of the high-affinity monocarboxylate transporter MCT2, heterologously expressed in Xenopus oocytes. In contrast to MCT1 and MCT4, transport activity of MCT2 was not altered by CAII. However, coexpression of CAIV with MCT2 resulted in a significant increase in MCT2 transport activity when the transporter was coexpressed with its associated ancillary protein GP70 (embigin). The CAIV-mediated augmentation of MCT2 activity was independent of the catalytic activity of the enzyme, as application of the CA-inhibitor ethoxyzolamide or coexpressing the catalytically inactive mutant CAIV-V165Y did not suppress CAIV-mediated augmentation of MCT2 transport activity. Furthermore, exchange of His-88, mediating an intramolecular H(+)-shuttle in CAIV, to alanine resulted only in a slight decrease in CAIV-mediated augmentation of MCT2 activity. The data suggest that extracellular membrane-bound CAIV, but not cytosolic CAII, augments transport activity of MCT2 in a non-catalytic manner, possibly by facilitating a proton pathway other than His-88.


Asunto(s)
Anhidrasa Carbónica II/metabolismo , Anhidrasa Carbónica IV/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Animales , Secuencia de Bases , Biotina/metabolismo , Cartilla de ADN , Humanos , Concentración de Iones de Hidrógeno , Inmunohistoquímica , Reacción en Cadena de la Polimerasa , Transporte de Proteínas , Xenopus
20.
Sci Prog ; 95(Pt 2): 175-98, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22893979

RESUMEN

The field of microfluidics, often also referred to as "Lab-on-a-Chip" has made significant progress in the last 15 years and is an essential tool in the development of new products and protocols in the life sciences. This article provides a broad overview on the developments on the academic as well as the commercial side. Fabrication technologies for polymer-based devices are presented and a strategy for the development of complex integrated devices is discussed, together with an example on the use of these devices in pathogen detection.


Asunto(s)
Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/tendencias , Análisis de Inyección de Flujo/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/tendencias , Microfluídica/instrumentación , Microfluídica/tendencias , Diseño de Equipo , Análisis de Inyección de Flujo/tendencias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA